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ABSTRACT

Yang, D., Song, G. and Zhang, J., 2010. A modified NAD algorithm with minimum numerical
dispersion for simulation of anisotropic wave propagation. Journal of Seismic Exploration, 19: 21-
42.

Conventional explicit finite-difference methods for solving the elastic-wave equation suffer
from numerical dispersion when too few samples per wavelength are used. A nearly analytic discrete
method for suppressing the numerical dispersion was proposed recently by Yang et al. (2003a). In
this paper, we present a modified algorithm of the nearly-analytic discrete method (NADM) for
modelling seismic propagation in 2D anisotropic media. We also investigate the numerical dispersion
of the modified algorithm using numerical examples and compare numerically the dispersion errors
and the wavefield results computed using the modified algorithm against those of our previous
method and other finite-difference (FD) methods. We show that, compared with the improved
NADM, the modified algorithm for the 2D case can further minimize the numerical dispersion,
while its computational cost and storage space are the same as those of our previous method.
Wavefield snapshot for two-layer heterogeneous medium and three-component synthetic VSP
seismograms in three-layer transversely isotropic media with a vertical symmetry axis, generated
using the modified algorithm, are also reported. Numerical results demonstrate that the modified
algorithm further reduces the numerical dispersion and source noise caused by the discretization of
elastic-wave equations when too few samples per wavelength are used or when models have large
velocity contrast and strong anisotropy.

KEYWORDS: modified NAD algorithm, numerical dispersion, wavefield simulation,
seismic anisotropy.
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INTRODUCTION

In anisotropic media, the seismic wave propagation becomes very complex
because many wave modes such as quasi-P (qP), quasi-S (gS), converted waves,
and so on simultaneously exist in anisotropic media. Therefore, modelling
seismic wave propagation in complex geological media is a challenging task for
most classical methods.

Given the discretized equations, the boundary conditions, and the source,
we may generate the synthetic seismograms for two-dimensional geologic
models of interest. However, such seismograms may contain several artifacts
inherent to most classical discretization (e.g., finite-difference, finite-element)
procedure, such as, grid dispersion (or called the numerical dispersion),
source-generated noise (artifacts due to source location at grid points), and edge
reflections. The numerical dispersion or source noise, caused by the
discretization of the wave equations when too few samples per wavelength are
used or when the models have large velocity contrast, or artifacts caused by
source at grid points (Kelly et al., 1976; Fei and Larner, 1995; Zhang et al.,
1999; Yang et al., 2002a; Zheng and Zhang, 2005), can lower the resolution of
modelling results. To eliminate the numerical dispersion, one way is to use
sufficient grid points per upper half-power wavelength. For example, ten or
more grid points per wavelength at the frequency of the upper half-power point
should be adequate when the usual second order accuracy finite-difference
scheme is employed, while the fourth-order scheme seems to produce accurate
results at five grid points per wavelength at the frequency of the upper
half-power point (Alford et al., 1974). Dablain (1986) stated that eight and four
grid points at the Nyquist frequency are required to eliminate the numerical
dispersion for second-order and fourth-order finite-difference methods,
respectively. However, this way using more grid points per wavelength results
in needing more computational costs and storages for computer code. It is
difficult to implement the large-scale application of the technique, especially for
the 3-dimensional simulation of seismic wave propagation because of its
intensive use of CPU time and its need for large amounts of direct-access
memory. Another way of reducing the numerical dispersion is to use
higher-order FD schemes (e.g., tenth-order method; Dablain, 1986) or the
pseudo-spectral method (Kosloff and Baysal, 1982; Kosloff et al., 1984; Huang,
1992) or optimizing finite-difference operator method (the higher-order
finite-difference algorithm) according to a required accuracy (Holberg, 1987) to
reduce the numerical dispersion. The higher-order FD method requires more
floating point operations, however, because, in general, it involves more grid
points in a direction. The requirement of more grids in the higher-order
finite-difference methods is not advantageous to implement artificial boundary
treatment and efficient parallel calculations. The pseudo-spectral (PS) method
is attractive as the space operators are exact up to the Nyquist frequency. In
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other words, the PS method only requires two grid points per wavelength for
eliminating the spatial numerical dispersion (Dablain, 1986). However, it also
suffers from numerical dispersion in time, and its numerical dispersion increases
with increasing the Courant number defined by o = cAt/Ax (Dablain, 1986; Sei
and Symes, 1994), i.e., as the time increment increases (Yang et al. 2006). For
example, the PS method based on the Fourier transform means that each point
interacts with every other point. To some extent, this is unphysical as the
interaction in dynamic elasticity is of a local nature. Besides, we can also use
the flux-corrected transport technique, which is unable to recover the lost
resolution due to the numerical dispersion when the spatial sampling becomes
too coarse (Yang et al., 2002a; Zheng et al., 2006).

The staggered-grid FD methods with local operators (Virieux, 1986;
Fornberg, 1990; Igel et al., 1995) can further reduce the numerical dispersion,
but they still suffer from the numerical dispersion when too few samples per
wavelength are used (Sei and Symes, 1994; Yang et al., 2002b). Meanwhile,
Igel et al. (1995) conclude that for the anisotropic case the staggered-grid FD
method may result in the numerical anisotropy and induce additional error of the
wave properties, due to some of the elements of the stress and strain tensors
must be interpolated to calculate the Hook sum for the strain-stress
staggered-grid FD.

The "nearly analytic discrete method", suggested by Yang et al. (2003a)
for acoustic and elastic equations, is another effective method for decreasing the
numerical dispersion. The method, based on the truncated Taylor expansion and
the local interpolation compensation for the truncated Taylor series, uses the
wave displacement-, the velocity and their gradient fields to restructure the wave
displacement-fields. Hence it enables effectively to suppress the numerical
dispersion caused by discretizing the wave equation. Recently, we improved the
NADM including increasing the time accuracy and reducing the storage (Yang
et al., 2007a) as the optimal NADM presented in Yang et al. (2006), but the
optimal method cannot be applied to the Biot equations including the velocity
dU/at of the wave displacement U because the optimal method does not compute
the velocity-fields. Both the NADM (Yang et al., 2003a) and the improved
NADM (Yang et al., 2007a), which involves to compute the velocity dU/dt, is
called simply the NAD method in this article.

This paper is to present a modified algorithm of the NAD-type methods,
called the modified NAD algorithm (NADA), and discuss the efficient
implementation of the modified NADA. We also investigate the dispersion
errors and the sampling rate per wavelength to eliminate the numerical
dispersion for the modified algorithm, and compare some wave fields computed
by the modified algorithm against the method of Yang et al. (2007a) and the
fourth-order Lax-Wendroff correction (Dablain, 1986). Wavefield modelling
shows that the modified NADA can further reduce the numerical dispersion over
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the original one, while it keeps the same computational costs and storages as
those of Yang et al. (2007a). Meanwhile, we also show the VSP synthetic
seismograms generated by the modified NADA for the 2D transversely isotropic
medium.

ANISOTROPIC WAVE EQUATION AND BASIC NAD-TYPE METHODS
Anisotropic wave equation

In 3D anisotropic media, the system of elastic wave equations can be
written as

(0o /0x) + £, = p(d%y;/0t?) , 1= 12,3, (1a)
0y = Y2C;(X,y,2)[(duy /0x)) + (du,/0x,)] , (1b)

where i,j,k, [ = 1,2,3, p = p(X;,X,,X5) is the density, u; and f, denote the
displacement component and the force-source component in the i-th direction.
The fourth-order stiffness tensor c;y(X;,X,,X;) may have up to 21 independent
elastic constants for the 3D case and satisfies the following symmetry
conditions:

Cijia(X1,X0,X5) = Cpa(X,Xp,X5) = Ciji(X15X0,X3) = Cpii(X1,X05X5)

Basic NAD methods

For convenience, in the following we replace the coordinate variables x; and
X; in egs. (2a) and (2b) by x and z, respectively, and take the 2D case as an
example to illustrate the implementation of the NADM. The same notations as
that in the basic NADM (Yang et al., 2003a) are used in our present study, i.e.,

U = (u;,u,u,)" , 920/0t2 = P,
U = [U,(8U/3x),(0U/82)]" ,

P = [P,(dP/3x),(dP/3z)]" ,
and _
W = /00U .

Note that W is the time derivative of both the displacement component U and
its first-order spatial derivatives, which is called the particle-velocity W. Using
the above notation with values at the time t, and the truncated Taylor series
expansion, Yang et al. (2003a) obtained the following equations
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Wil = Wi+ APY, + [(AD2](8P/0Y)!; + [(A6Y/6](82P/at2)!; , (2a)
Ul = U1 + AtWY, + [(AD22]PY; + [(A1)’/6](3?P/at2)!
+ [(A1)*/24)(82P/9t2)" (2b)

ij
where At denotes the time increment.

Using original eq. (1), we convert the higher-order time derivatives of the
displacement U on the right side of egs. (2a) and (2b) into spatial derivatives,
which is similar to the higher-order FD methods (Dablain, 1986; Wang et al.,
2002) or the Lax-Wendroff correction schemes (Blanch and Robertsson, 1997).
These higher-order spatial derivatives at grid points are determined by the
displacement U and its gradients using the interpolation approximation [see
Appendix B in the cited reference (Yang et al., 2003a)], while in the NADM
the higher-order spatial derivatives of the particle-velocity W on the right side.
are determined by a backward difference, resulting in the second-order time
accuracy of the NADM.

In our recent work, we introduce similar interpolation function and
connection relations to determine d,,,,W}; (2 < k+m < 3) [see Appendix A
in the cited reference (Yang et al., 2007a)], as shown in our earlier work (Yang
et al., 2003a). As a result, the improved NADM, compared with the NADM,
saves the storage about 37% and improves the time accuracy from second-order
of the original NADM to fourth-order (Yang et al., 2007a), while the space
accuracy remains the same as that of the original NADM. And like the NADM
the improved NADM enjoys the same less numerical dispersion (Yang et al.,
2007a). Note that the improved NADM suggested by Yang et al. (2007a) has
also similar computational equation as (2).

MODIFIED ALGORITHM OF NAD-TYPE METHODS

Now let us take a closer look at eq. (2) in the NAD-type methods. To
compute U™} at the grid-point (i,j) using eq. (2b), we need to calculate the
particle-velocity Wi*! using eq. (2a) because of the involvement of the
particle-velocity W7, in eq. (2b). From the computational process of the
NAD-type methods using eqgs. (2a) and (2b) we find that the particle-velocity
W?f} at the (n+ 1)-th time-level has been calculated using eq. (2a) as we use eq.
(2b) to compute U}*j. Therefore, we can replace WY, in eq. (2b) by Wi*l,
resulting in the following alternative algorithm:

Wil = Wi+ AP+ [(AD2](8P/30), + [(A1)Y/6](32P/aE), , (3a)

ij
Ul = Ut + AW+ [(AD22]P}; + [(A)Y/6](8°P/3e)",
+ [(A1)*/24](32P/32); (3b)
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Note that we use the same approximations as those of the NAD methods
to compute P};,(dP/at)};, and (9?P/3t?)}; as we use the algorithm (3) to simulate
anisotropic wave propagation in our present work. In other words, the
higher-order spatial derivatives at the grid points, involved on the right side of
egs. (3a) and (3b), are determined by the displacement U and its gradients using
the interpolation approximation as shown in the cited reference (Appendix B,
Yang et al., 2003a), whereas the higher-order spatial derivatives of the
particle-velocity W on the right side are determined using egs. (A-1) to (A-7)
found in our recent work (Yang et al., 2007a). For convenience, we summarize
the basic idea of approximating higher-order spatial derivatives using the
displacement or the particle-velocity and their gradients, and list some
approximate equations in Appendix A.

Comparing algorithm (2) with algorithm (3), we can find that the only
difference between algorithm (2) and algorithm (3) is to use the particle-velocity
W1, at n-th time-level in the original NAD-type algorithm (2) and to use the
up-to-date Wi} at (n+1)-th time-level in the present algorithm (3). On the basis
of such a structure, the modified NADA needs the same computational costs and
storage space as the method proposed by Yang et al. (2007a), and the modified
NADA also improves over the original NADM in the computational accuracy
in time and increases slightly the computational costs because it employs egs.
(A-1) to (A-7) presented in Yang et al. (2007a) to determine particle-velocity
Wi ,. And, compared with the NADM, it saves about 37% of storage from our
recent conclusions in Yang et al. (20007a).

As we have stated earlier, our present algorithm also employs the
truncated Taylor series function of spatial increments and the connection relation
to determine the higher-order spatial derivatives at the grid-point (i,j), the same
technique as we used in the NAD-type methods. Therefore, the present
algorithm enjoys several desirable properties as the NAD-type methods. It can
suppress effectively the loss of wavefield information included in the
higher-order terms of the infinite Taylor expansion, leading to less numerical
dispersions as verified by our numerical examples. On the other hand, replacing
algorithm (2) with algorithm (3), without adding any complex items such as
computational costs and storage, leads to two advantages: (1) further
suppressing the numerical dispersion; (2) increasing the computational
convergence because we use the up-to-date W'} instead of W7,. It will be
verified in our latter examples. Meanwhile, using the local connection relations
(A-2) greatly improves the continuity and derivability of the approximate
function U" (because U" is an approximate variable during data processing) and
its approximate gradient, resulting in further improving the continuity of stress
at the points in the neighborhood of interface because of the stress expressed by
the gradients of displacement components.
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STABILITY CRITERIA

To keep numerical calculation stable, the temporal increment At must
satisfy the stability condition of the modified NADA. For the 2D homogeneous
case, following the Fourier analysis method we firstly obtain the growth matrix
H for the modified method, in which the detail expression of the matrix H is
omitted because of its complex elements, and then assume that A;,A, and A, are
the eigenvalues of H. We know that the scheme with the growth matrix H is
stable if |N\| < 1, j = 1,2,...,p are satisfied. So we can obtain the stability
criterion of the modified method for the homogeneous case under the condition
of AX = Az = h, deriving from the conditions of |N\| < 1,j = 1,2,...,p, as
follows

At < 0.24h/c, C))
where ¢, is the wave velocity.

The stability condition for a heterogeneous medium cannot be directly
determined but may be approximated using a local homogeneous method. We
expect that eq. (4) is approximately correct for a heterogeneous medium if the
maximal value of the wave velocity ¢, is used.

Wave velocities vary with propagation directions in anisotropic media, so
the stability condition At < 0.24Ax/v,,, is used, where Ax corresponds to the
spatial increment and v,,,, is the maximum gP velocity in present computations.
Of course, 0.24Ax/v,,,, which corresponds to the Courant number o =
ViaxAt/AX = 0.24, is not the upper limit of the interval for time increment At,
for which the modified nearly-analytic discrete algorithm is stable, and the
further theoretical stability condition will be given in a separate study.

NUMERICAL DISPERSION AND EFFICIENCY

Numerical dispersion or grid dispersion is the most significant numerical
problem limiting the usefulness of point-wise discretization schemes for acoustic
and elastic wave equations. This numerical artifact causes the phase speed to
become a function of spatial and time increments. The relative computational
merit of most discretization schemes hinges on their ability to minimize this
effect. In this section, we take the transversely isotropic wave equation as an
example to investigate the effect of sampling rate at a wavelength for algorithm
(3) through wavefield modelling and compare the dispersion errors of different
methods. In this work, the computations of generating wavefield snapshots or
synthetic seismic records are performed on a Pentium 4 with 512 MB memory.
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In the following numerical example, we choose the transversely isotropic
medium with a vertical symmetry, which is described by five elastic constants
(GPa): ¢, = 30, c; = 8.4, cy3 = 25, cyy = 10, cs = 8, and the density p =
2.1 g/cm?®. The size of the computational domain is 5.54 km X 5.54 km for the
acoustic case (case 1) and 10.24 km X 10.24 km for the elastic case (case 2),
respectively, and all their boundaries are free surfaces. An explosive force is
applied exactly at the centre of the domain. The source time function is a Ricker
wavelet with a dominant frequency f, = 20 Hz. The different spatial sampling
rates is chosen so that we test the effects of sampling rate based on the Nyquist
frequency, which is defined by Dablain (1986)

Ax = v, /(fy'G) , (%)

where v, denotes the minimum gS-wave velocity, fy is the Nyquist frequency,
and G denotes the number of grid points per minimum S wavelength along the
slowest axis of the medium at the upper half-power frequency of the source
(Alford et al, 1974) or the number of grid points needed to cover the Nyquist
frequency for nondispersive propagation (Dablain, 1986). In this case chosen
that implies a Nyquist frequency of 40 Hz.

Example 1

In the acoustic wave modelling, the spatial and time increments are chosen
as Ax = Az = 27.7 m and At = 0.0015 sec, resulting that the number of grid
points per minimum wavelength is two as the minimum wave velocity is about
2.2174 km/s for the acoustic wave, and the approximate stability condition given
previously is kept. Snapshots of acoustic propagation at time 0.6 s are shown
in Fig. 1, generated respectively using the fourth-order Lax-Wendroff correction
(LWC) (Dablain, 1986), the method of Yang et al. (2007a), and the modified
NADA. We can see that the wavefronts of seismic waves shown in Fig. 1 are
identical. However, the wavefield snapshot (Fig. lc), generated using the
modified NADA, shows that the modified NADA has almost no numerical
dispersion and source noise even if the space increment chosen is 27.7 m (G=2)
without any additional treatments, whereas the fourth-order LWC scheme suffers
from serious numerical dispersions (see Fig. la) and the improved NADM
(INADM) (Yang et al., 2007a) causes slightly numerical dispersion (Fig. 1b).
Fig. 2 shows the primary arrivals at receivers R1 (3.435 km, 2.216 km) and R2
(3.324 km, 2.77 km), computed using the fourth-order LWC scheme, the
improved NADM, and the modified NADA, respectively. In Figs. 2a and 2b
generated using the fourth-order LWC scheme and the INADM we can see the
anomalous dispersion behind the exact signal, whereas the waveform (Fig. 2c)
computed using the modified NADA shows no anomalous dispersion. It further
demonstrates that the modified NADA can effectively suppress the numerical
dispersion and source noise.
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Fig. 1. Snapshots of seismic wavefields at time 0.6 s on the coarse grid (Ax = Az = 27.7 m) that
corresponds to G = 2, generated by the fourth-order LWC method (a), the INADM (b), and the
modified NADA (c).

(a) LWC (b) INADM
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0.0 0.6s 0.0 0.6s

/ W~ Rro / N~ R
[ T I T ] [ T I T ]
0.0 0.6s 0.0 0.6s
(c) RNADA

[ T I T ]

0.0 0.6S

—/\ R2

[ T I T |
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Fig. 2. A comparison of the acoustic waveforms for case 1. The synthetic seismograms (a), (b) and
(c) are generated by fourth-order LWC method (Dablain, 1986), the INADM, and the modified
NADA, respectively.
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Fig. 3. Snapshot of seismic wavefields at time 0.6 s on the fine grid (Ax = Az = 9.2 m) that
corresponds to G = 6, generated by the fourth-order LWC method (Dablain, 1986) for case 1.

R1
[ I | I |
0.0 0.6s

R2
I T | T |
0.0 0.6s

Fig. 4. Waveforms on the fine grid (Ax = Az = 9.2 m) that corresponds to G = 6, generated by
the fourth-order LWC method (Dablain, 1986) for case 1.

To compare the computational costs between the modified NADA and the
LWC method, we also present the snapshot Fig. 3 and the waveform Fig. 4 on
the fine grid Ax = Az = 9.2 m (G=6) and At = 4.982 X 107* s, generated
using the fourth-order LWC method. Comparison between Fig. 1c and Fig. 3
or Fig. 2¢ and Fig. 4 demonstrates that the modified NADA can provide the
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same accuracy as that of the LWC with fourth-order accuracy on a fine grid
under the same Courant number defined by a = c,At/Ax (Dablain, 1986; Sei
and Symes, 1994) with the wave velocity c,. But the computational cost of the
modified NADA is quite different from that of the LWC method. For example,
it took the modified algorithm about 33 s to generate Figs. 1c or 2c, whereas
the LWC method took about 435 s to generate Figs. 3 or 4. This suggests that
the computational speed of the modified NADA is roughly 13 times of the
fourth-order LWC on a fine grid to achieve the same accuracy as that of the
modified algorithm. Note that the computational cost of the modified algorithm
is more expensive than the higher-order LWC on the same coarse grid.
Meanwhile, the storage space required for computation in the modified
algorithm is also different from that of the LWC method. Through similar
analysis in our previous work (Yang et al., 2006), we know that for the acoustic
case the number of total arrays involved in the modified NADA is 12 for a
typical implementation, and the number of grid points is 201 X 201 on a coarse
grid for generating Figs. 1c or 2c. The fourth-order LWC method needs only
three arrays to store the wave displacement at each grid point, but the number
of grid points on a fine grid for generating Fig. 3 or 4 goes up to 600 X 600
for eliminating the numerical dispersion. It indicates that the modified NADA
requires only roughly 45% of storage space of the fourth-order LWC while the
modified algorithm needs the same storage space and computational costs as the
INADM, as stated earlier.

Example 2

In the elastic wave modelling, the spatial and time increments are chosen
as Ax = Az = 25.6 m and At = 0.001 sec, corresponding to G = 2 because
of the minimum qSV wave velocity of 2.0495 km/s for the qSV wave. Figs. 5
and 6 are the horizontal and vertical component snapshots at time 1.0 s
generated using the modified NADA and the fourth-order LWC, respectively.
In Fig. 5 and 6, we can see that the wavefronts of seismic waves simulated
using two kinds of methods at the same time are basically identical. However,
the snapshots in Fig. 6 simulated using the fourth-order LWC present strong
numerical dispersion, and the corresponding results in Fig. 5 computed using
the modified algorithm show that the modified NADA has almost no numerical
dispersion even if the sampling rate per minimal wavelength is G = 2 without
any additional treatments. In other words, when G goes up to the minimum grid
points (two points) (Dablain, 1986) per wavelength for eliminating the spatial
numerical dispersion, our present algorithm can also produce the acceptable
clear wave fields. It implies that we can minimize the computational costs and
storage through choosing the significant maximum spatial increment defined by
AXpax = Vmin/2fy. The wavefield simulation (Fig. 5) exhibits strong anisotropy,
with typical curved qP and qSV modes, and clear cusps of gSV mode. All
modelling results do not exhibit significant noise and numerical dispersion.
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Fig. 5. Snapshots of seismic wavefields for horizontal- and vertical-components at time 1.0 s in the
anisotropic medium (case 2), generated by the modified NADA, for (a) u, component, (b) u,
component.
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Fig. 6. Snapshots of seismic wavefields for horizontal- and vertical-components at time 1.0 s in the
anisotropic medium (case 2), generated by the fourth-order LWC method, for (a) u, component, (b)
u, component.

For further comparison, we also present the waveforms (Figs. 7a and 7b)
of the horizontal component, which are the primary arrivals at receiver R1
(4.608 km, 6.144 km), generated using the modified NADA and the
fourth-order LWC, respectively. From Fig. 7b computed using the fourth-order
LWC, we can see the anomalous wave between the qP- and qSV-wave signals,
whereas the waveform (Fig. 7a) computed using the modified NADA shows no



MODIFIED NAD ALGORITHM 33

anomalous wave. It further verifies that our present algorithm, using the
up-to-date value Wi*; in eq. (3b), can indeed minimize the numerical dispersion
even for the minimum number of grid points (two points) per minimum gSV

wavelength.

To deeply investigate the improvement of the numerical dispersion of the
modified nearly-analytic discrete algorithm, following the analysis methods of
the cited references (Vichnevetsky, 1979; Dablain, 1986; Wang et al., 2002;
Yang et al., 2006) we give numerically the dispersion relation of the modified
nearly-analytic discrete algorithm for the 1D case, depending on the Courant
number of the method. And compare these dispersion errors of the fourth-order
Lax-Wendroff correction, improved nearly-analytic discrete method, and the
modified nearly-analytic discrete algorithm.

00 1.0s
(b)

I | | | I

0.0 1.0s

Fig. 7. Waveforms of the horizontal component on the coarse grid (Ax = Az = 25.6 m) that
corresponds to G = 2 for case 2, generated by the modified NADA for (a) and the fourth-order
LWC method for (b), respectively.

Fig. 8 shows the dispersion relations for the fourth-order Lax-Wendroff
correction, improved nearly-analytic discrete method, and the modified
nearly-analytic discrete algorithm for the 1D homogeneous wave equation
corresponding to different Courant numbers, which are shown in Figs. 8(a), (b),
and (c), respectively. From Fig. 8 we can observe that the dispersion error of
the modified NADA is the smallest among these errors of three algorithms in
the chosen Courant ranges. From a mathematical point of view, because the
modified nearly-analytic discrete algorithm uses the up-to-date Wi} to replace
the old value W1 in algorithm (3b), it increases the computational convergence,
resulting in the further reduction of dispersion error of the modified
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nearly-analytic discrete algorithm. This is the reason why Fig. 1(c) and Fig. 5
are clearer than Figs. 1(a), 1(b) and Fig. 6, respectively. Fig. 8(a) also shows
that the numerical velocity of the modified nearly-analytic discrete algorithm
gradually approximates the exact wave velocity while the Courant number «
increases in the high frequency range, whereas the dispersion errors of the
fourth-order LWC and the modified NADM are not sensitive to the Courant
number «. This suggests that we can further minimize the dispersion error
caused by the modified nearly-analytic discrete algorithm using a suitable
Courant number. For example, when we choose the Courant number in
0.15~0.2, the modified nearly-analytic discrete algorithm will have no visible
numerical dispersion and source noise.

1.1 A (a) 1.1 1 (b)

/

R 0.9 R 09 A
———a=005 ———a2=005
------ 2200 = d
081 | T 2 =020 08 7 | T a =020
0.7 T ) 0.7 j T ]
0 pl2 p 0 pl2 p
kDx kDx
1.1 + (©)
1.0 T
~ ~\~:
0.9 7
R
— —— 32=005
______ a =0.10
0.8 7 a =0.15
.................. a =020
0.7 T |
0 pl2 p
kDx

Fig. 8. The ratio of the numerical velocity to the phase velocity versus wavenumber kAx for the
three different methods of the fourth-order LWC method, INADM, and the modified NADA for
different Courant numbers o = c,At/Ax, where four lines correspond to o = 0.05, 0.1, 0.15 and
0.2, respectively.
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SYNTHETIC MODELLING

To further validate the algorithm (3), and to show that we can handle
heterogeneous media, in this section we consider the transversely isotropic
models of two-layer heterogeneous medium (model 1) and three-layer medium
(model 2), and present the wavefield modelling results computed using the
algorithm (3).

Heterogeneous, anisotropic model

In this example, we choose the two-layer medium model composed of two
half-spaces: a transversely isotropic medium on the left and an isotropic material
on the right. Similar model has been used to test the spectral element method
(Komatitsch et al., 2000). The mechanical properties of the anisotropic and
isotropic media are listed in Table 1. The computational domain is 5.744 km X
5.744 km. The spatial and time increments are chosen respectively as Ax = Az
= 14.36 m and At = 3.59 X 10~*s, and the number of grid points 401 X 401.
The source is an explosive source located 301 m to the left of the interface in
the anisotropic half-space. The source time function is a Ricker wavelet with the
dominant frequency f, = 20 Hz, resulting in 2.5 grid points per minimum qS
wavelength along the slowest axis of the medium because of the minimal
gS-velocity of 1437 m/s.

Table 1. Mechanical properties of the two-layer elastic medium used in the heterogeneous model,
which is composed two half-spaces: a transversely isotropic medium on the left and an isotropic
material on the right.

Layer Thickness Cyy Ci3 Cy3 Css o
(km) (GPa) (GPa) (GPa) (GPa) (g/cm?)

Anisotropic ~ 2.872 16.5 5 6.2 3.96 1.78

Isotropic 2.872 16.5 8.58 16.5 3.96 1.78

Fig. 9 shows the wavefield snapshot of horizontal component of
displacement at time 0.8 sec, generated using the algorithm (3). Fig. 9 shows
numerous phases such as direct qP-wave, direct qS-wave, and their reflected,
transmitted, converted phases, and so on, which are labeled in Fig. 9. We can
clearly see from Fig. 9 that the wavefront of gS-wave is an ellipse in the left
layer and is a cycle in the right layer, and the qS wavefronts can have cusps and
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triplications depending on the value of ¢, (Faria and Stoffa, 1994). Triplications
can be observed in the horizontal component qS-wavefronts shown on the left
layer in Fig. 9, which also shows that the modified NADA has less numerical
dispersions without any additional treatments even if the number of grid points
per minimum wavelength is about 2.5 and the model velocity contrasts between
adjacent layers are 1.63 times. On a Pentium 4 with 512 MB memory, it took
roughly 9 min to generate the results shown in Fig. 9.

0 Distance (km) 5.744

0

Distance (km)

SiP PiP PiriS

5.744

Fig. 9. Wavefield snapshot of the horizontal u, component at time 0.8 s for a heterogeneous
medium, generated by the modified NADA.

Three-layer anisotropic model

In the final example, we choose the three-layer anisotropic model that
mechanical properties of the model are summarized in Table 2. The geometry
is illustrated in Fig. 10. The source is an explosive source located at the depth
of z = 0.3 km and the distance between the source to the first receiver is 8.55
km. The source time function is a Ricker wavelet with the dominant frequency
fo = 20 Hz. The degrees of qS-wave anisotropy are about 11.8%, 17.3%, and
11.8%, corresponding to layers 1, 2 and 3, respectively. The computational
domain is 10 km X 10 km. A grid size of 50 m in x- and z-direction is chosen.
The time sample rate is 0.0025 s. The wavefields are recorded in well by 201
receivers for the tree-layer anisotropic model spread from the surface (z = 0)
to the depth of 10 km spaced 50 m apart. Absorbing boundary conditions
suggested by Yang et al. (2003b) are used on the three edges (left and right
boundaries, and bottom boundary) of the grids and the free boundary condition
(stiff boundary condition) is used on the surface.
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Table 2. Mechanical properties of the three-layer anisotropic medium used in model 2, which is the
same elastic property of layer 1 as that of layer 3.

Layer Thickness Cy Cy3 Cy3 Cay Ces o
(No.) (km) (GPa) (GPa) (GPa) (GPa) (GPa) (g/cm®)
1 5 30 8.4 25 10 8 2.1
2 2.5 20 6.4 19 5.5 4 3.5
3 2.5 30 8.4 25 10 8 2.1

0 Distance (km) 10 X

[ ]
Source

Layer 1

Layer 2

Layer 3

ZYy

Fig. 10. Three-layer medium model. The explosive source is located at (x,,z,) = (1.45 km, 0.3 km).
Mechanical properties of the three-layer anisotropic medium model are listed in Table 2.
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0 Range in km 10

1.0

(a)

Time in seconds

9.0

0 Range in km 10

1.0

(b)

Time in seconds

9.0

1.0

(c)

Time in seconds

9.0

Fig. 11. Three-component synthetic seismograms for the three-layer anisotropic medium model,
generated by the modified NADA, for (a) u, component, (b) u, component, (c) u, component. The
wavefields are recorded in the well by 201 receivers for the tree-layer anisotropic model shown in
Fig. 10 spread from the surface (z = 0) to the depth of 10 km spaced 50 m apart.
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Synthetic VSP seismograms of three components are shown in Fig. 11.
From Fig. 11 we can see that the VSP seismograms are very clean and have no
grid dispersions while the model velocity contrasts between adjacent layers
(layers 1 and 2, layers 2 and 3) are about 65% for the qP wave and 104% for
the gS wave, respectively. In Fig. 11, the qP-, qS-waves, and the reflected,
transmitted, and converted waves can be clearly identified. We can also observe
the different arrival times of qP- and gS-waves from the synthetic VSP
seismograms presented in Fig. 11. Furthermore, we can also see that the
numerical computing is still stable at the inner interface of the anisotropic
medium with large velocity contrasts between adjacent layers. On the same
computer, it took the algorithm about 6 min to generate Fig. 11(b) and 16 min
to simultaneously generate Figs. 11(a) and 11(c).

SUMMARY

B We have modified the NAD-type methods by replacing particle-velocity
W?, in eq. (2b) with the up-to-date W'} in eq. (3b), which are recently
developed by Yang et al. (2003a) for modelling seismic wave propagating in
single-phase elastic media (Yang et al., 2003a) and in porous two-phase media
with saturated fluids (2007a). Strongly curved qP and qS wavefronts are well
reproduced by the modified NADA, including cuspidal triangles. As we have
seen in our previous numerical examples, the modified algorithm (3) can further
minimize the numerical dispersion of the NAD-type methods, whereas its
computational costs and storage space are the same as those of the INADM, and
it, compared with the original NADM, saves the storage about 37% and
increases slightly in the computational costs (Yang et al., 2007a). Numerical
computational results show that the modified algorithm can further suppress the
numerical dispersion and the source-noise as we take the minimum number
(G=2, Dablain, 1986) of grid points per wavelength for eliminating the spatial
numerical dispersion. And the computational speed of the modified NADA is
roughly 13 times of the fourth-order LWC method and the modified algorithm
requires only roughly 45% of storage space of the fourth-order LWC method
on a fine grid to achieve the same accuracy as that of the LWC method. This
indicates that the modified NADA enables simulating wave propagation in
large-scale models and minimize both the computational CPU time and the
storage space using the significant maximum spatial increment (AX,, =
Vimin/2fy). Our present algorithm also produces very clear wavefield snapshots
and synthetic seismograms for anisotropic media even for the large velocity
contrasts between adjacent layers and strong anisotropy.
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APPENDIX
EVALUATION OF THE HIGHER-ORDER DERIVATIVES

To approximate the higher-order derivatives included in eqgs. (3a) and (3b)
using the displacement or the particle-velocity and their gradients, following
Yang et al. (2003a, 2007b), we introduce the interpolation function of the spatial
steps Ax and Az as follows

5
G(Ax,Az) = E (I/rH[Ax(a/0x) + Az(9/3z)]'V , (A-1)

r=0

and construct the connection relations between the point (i, j ) and its
neighboring nodes. For example, at the grid point (i+1, j) we have the
following connection relation,

[G(AX,O)]?,J' = Vril+l,j ’

[(3/3A)GAX,0),; = (BT, | (A-2)

[(0/3A2)G(AX,0)]%; = ((/62)V)},, 5
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and similarly the rest twenty-one connection relatiors at other seven neighboring
nodes can be easily written. Notice that the vector V is defined by V = (U,W)T,
where U is the displacement and W is defined by W = 9aU/dt.

From the twenty-four connection relations at the nodes (i+1,j), (i—1,j),
Gi,j—1, (,j+1), —1,j—1), (i—1,j+1), (i+1,j—1), and (i+1,j+1), we can
obtain the computational equations to approximate the higher-order derivative
(0™ V/9x™3z");; (2 < m+k < 5) at the grid point (i,j), which are similar to
those suggested by Yang et al. (2003a, 2007b). For convenience, we present
these approximate equations as follows

3, VI = (2/Ax)§V, — (12Ax)(E! — E7Ha, V1, (A-3)
3, V1, = (2/Az2)82V?, — (1/2Az)(E} — E;H3, V1, (A-4)
35,V = (152Ax°)(EL — E;H9, V1,
— (32Ax%(E! + 81 + E{Ho, Vi, | (A-5)
35, V1, = (15/2AZ%)(E} — E;"H9, V1,
— (3/2Az)(E} + 81 + E;H9,V; , (A-6)
0., V!; = (1/4Ax2Az)(SE!E! — 5E{'E;' + E!E;' — E;'E!
— 4E! + 4E;' — 6E! + 6E;")V,
+ (12AxAz)(—E!E! — E{'E;' + E! + E;' — 2629,V1,
+ (1/Ax2)8209,V1)) (A-T)
8,0, V1, = (1/4AxAz?)(SEIE! — SE;'E;' — EIE;' + E}'E!
— 4E! + 4E;' — 6E! + 6E;)V1,
+ (1/2AxAz)(—EIE! — E{'E;! + E! + E;!' — 262)9,V",
+ (1/Az2)820, V5 (A-8)

where 62V, = Vi, — 2Vl + VI, |, E}V}, = Vi, E;'Vl, = Vi, . The
operators 62, E,, and E' can be similarly defined. And, V1, a,Vi;, 9,Vi; and
O, V1 jpdenote  V(iAx,jAz,nAt), (9/0x)V(iAx,jAz,nAt), (0/0z)V(iAX,jAz,nAt)
and (9™**V/9x"9z"); ;, respectively. Following Yang et al. (2003a, 2007b), we
can similarly write other approximate equations of the higher-order spatial

derivatives of the vector V. These equations are here omitted.



