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ABSTRACT

Chen, J., Zhang, C. and Bording, R.P., 2010. Comparison between the nearly perfectly matched
layer and unsplit convolutional perfectly matched layer methods using acoustic wave modeling.
Journal of Seismic Exploration, 19: 173-185.

The unsplit convolutional perfectly matched layer (CPML) and nearly perfectly matched
layer (NPML) methods both have been proven to be very efficient algorithms for eliminating
artificial reflections from the edges of the synthetic seismic wave models. Their absorbing
performance and efficiency have been studied in separate works in several papers. Obviously, if we
provide numerical comparisons between CPML and NPML in seismic modeling, it is very helpful
to understand their performances and differences. In this paper, we will carry out these comparisons
using 2D acoustic wave modeling codes with  staggered-grid finite-difference schemes. For the
implementation of the finite-difference operator, we employ fourth-order accuracy methods in space
and second-order accuracy methods in time. In the model tests, we demonstrate that NPML has the
same absorbing performance as CPML, with some very minor differences. We suggest that more
analysis will be needed to study how these methods perform in the wide varieties of complex media
that are typically used in seismic modeling.

KEY WORDS: nearly perfectly matched layer, unsplit convolutional perfectly matched layer,
acoustic modeling, staggered-grid finite-difference.
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INTRODUCTION

When we simulate seismic wave propagation in the earth’s interior, we
have to treat the seismic model as a truncated domain with boundaries. The
computational resources are finite and limit the size of seismic simulations.
Thus, we must face the new problem: how can we eliminate the reflections from
the edges of the model because of the limitation of computational domain?

During the last several decades, absorbing boundary conditions (ABC) and
absorbing layers techniques have been developed for dealing with the problem
of existing artificial reflections mentioned above. Many authors have introduced
various absorbing boundary conditions (ABC) in numerical modeling, for
example, sponge boundary conditions (Cerjan et al., 1985), paraxial conditions
(Clayton and Engquist, 1977; Higdon, 1991; Quarteroni et al., 1998), the
eigenvalue decomposition method (Dong et al., 2005), and continued fraction
absorbing boundary conditions (Guddati and Lim, 2006). However, all of these
local condition operators exhibit poor behavior under some circumstances,
especially, there can exist a large amount of spurious energy at grazing
incidence angles. In addition, some researchers also provided improved methods
by globally minimizing the amount of energy (Madariaga, 1976; Virieux, 1986;
Bording, 2004; Chen et al., 2010). They can get the nearly optimal results, but
these methods need more computing time in the search.

Absorbing layers techniques were developed a little later than ABC, but
they revealed significant advantages over ABC. Bérenger (1994) introduced a
technique called the perfectly matched layer (PML) that had the remarkable
property of generating no reflection at the interface between the free medium
and the artificial absorbing medium. This method has been proven to be more
efficient and has become widely used (Collino and Tsogka, 2001). The
improved PML absorbing behavior has been developed for Maxwell’s equations
in Kuzuoglu and Mittra (1996) and Roden and Gedney (2000), named unsplit
convolutional perfectly matched layer (CPML). Subsequently, Komatitsch and
Martin (2007) and Martin et al. (2008) introduced this technique to seismic
wave modeling. In the CPML, it is only necessary to store the memory
variables in the absorbing layers, and its cost in terms of memory storage is
similar to that of the classical PML (Komatitsch and Martin, 2007). All
numerical results reveal that the CPML has better performance than classical
PML. In addition, another novel PML named nearly perfectly matched layer
(NPML) was introduced in Cummer’s paper (Cummer, 2003). This alternative
PML also has been shown better performance in removing the reflections from
artificial model boundaries than classical PML. Some authors further provided
the details of the valuable advantages of the NPML over classical PML (Hu and
Cummer, 2004, 2006; Bérenger, 2004; Hu et al., 2007). The NPML does not
modify the original form of the governing equations in any linear media, and the
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NPML uses fewer auxiliary variables and fewer extra ordinary differential
equations (Hu et al., 2007). Some authors conclude the NPML has similar
advantages as the CPML, and can be a valuable alternative to other PML
implementations (Bérenger, 2004; Hu et al., 2007).

As mentioned above, CPML and NPML as excellent absorbers both have
better absorbing ability, but were introduced independently. Currently, we can
not find any published papers or reports discussing them together for seismic
modeling applications. A comparison between CPML and NPML would very
helpful to understand the differences of their absorbing performances. In this
paper, we will provide this kind of comparison using 2D acoustic models.

Numerical modeling with the finite-difference method has been used to
simulate wave propagation in complex media (Hassanzadeh, 1991; Dai et al.
1995; Carcione, 1996). In this paper, we apply staggered-grid finite-difference
operator due to its higher accuracy (Faria and Stoffa, 1994; Carcione, 1998;
Moczo et al., 2000; Zeng and Liu, 2001; Mittet, 2002; Sheen et al., 2006). For
the implementation of the staggered-grid finite-difference scheme, fourth-order
accuracy method in space and second-order accuracy method in time are used.

We must recognize that the 2D acoustic model used in our research is
simple and straightforward, but the comparison between CPML and NPML is
very interesting topic and we do not want to introduce media differences. In
future studies, we will conduct further discussion and analysis for complex
media.

GOVERNING EQUATIONS

The governing equations describing acoustic wave propagation are
introduced by (Fokkema and van den Berg, 1993). They are written in 2D
first-order pressure-velocity form in time domain by

dP/dt = —pV?[(3v,/0x) + (3v,/07)] , (1)
av,/ot = —(1/p)(dP/3x)] 2)
av,/at = —(1/p)(3P/dz)] , 3)

where P is the acoustic pressure (Pa), V is the acoustic velocity (m/s), and p
denotes the volume density of mass (kg/m’). In addition, v, and v, are the
acoustic velocity components along x- and y-coordinates, respectively.
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THE IMPLEMENTATION OF CPML

Komatitsch and Martin (2007) and Martin et al. (2008) introduced the key
idea of the CPML (Roden and Gedney, 2000) to a more general choice for s,
(along the x-coordinate) in seismic modeling by introducing a real variable k,
= 0 and o, = 0, so we get

s, = k, + d/(e + iw) 4)

where d, is the PML decay factor along the x-direction, i2 = —1, and w is the
angular frequency. According to Collino and Tsogka (2001), for the PML decay
factor, we select d, = dy(x/L)Y, where L is the width of the absorbing layers,
and d, is a function of the theoretical reflection coefficient R, and is expressed
by dy = —(N + 1)Vlog(R,)/(2L), where V is the acoustic velocity and N is a
integer parameter. In the particular case of k, = 1 and o, = 0 in eq. (4), we
get the classical PML form of the coordinate transformation. Using some simple
mathematical algorithms and combining the recursive convolution method
(Luebbers and Hunsberger, 1992), the generalized form can be carried out by
introducing a memory variable ¥, updated at each time step according to the
following expression

Y= byl + a0 (5)
where 9, denotes the spatial derivative to x, b, = e @/ Faa and a, =
[d/k(d, + k)l(b, — 1). Then, in the implementation of staggered-grid
finite-difference code without PML, we only replace the spatial derivative 9,
with (d,/k,) + ¥, and update v, in time according to the expression (5).

THE IMPLEMENTATION OF NPML

Hu et al., (2007) introduced the NPML method in acoustic wave
modeling. Here, we give the detail implementation of NPML in acoustic media.
According to Cummer’s paper (Cummer, 2003) and combining the particular
case of eq. (4), s, = 1 + (d,/iw) , we are able to use four auxiliary variables
and equations to rewrite the eqgs. (1), (2) and (3) as the following formulations,

dP/ot = —pvz[(agvx.x/ax) + (agvz,z/az) s (6)
av,/at = —(1/p)(0kp /0X) @)
av,/at = —(1/p)(0¢p,/02) , )

where £, ., &,,., &b, and &, are auxiliary variables, the corresponding four
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auxiliary expressions are £,,, = v,/s,, &,,, = V,/s,, &€, = Pls,, and &, = P/s,.
We can redefine these expressions above from frequency domain to time domain
by using the inverse Fourier transform,

(0%,,,/00) + d &, = Ov,/3t )
0%,,,/00) + d&,,, = dv,/ot | (10)
(0%, ./01) + d &, = dP/OL | (11)
(085,100 + d &p, = OP/OL . (12)

So far we have obtained all the needed eqgs. (6)-(12) in 2D acoustic media.
It is very easy to use the staggered-grid finite-difference method.

NUMERICAL TEST

We consider a 2D acoustic model of size 4000 X 4000 m. This model is
discretized using a grid comprising of N, X N, = 400 X 400 nodes. The spatial
grid spacings Ax and Az are selected by the same value 10 m, whereas the time
step is 1 ms. The acoustic media is homogeneous, and has the acoustic velocity
of 3300 m/s, and a density of 2800 kg/m*. The implementation of staggered-grid
finite-difference meets the Courant-Friedrichs-Lewy stability condition
(Komatitsch and Martin, 2007). The point source is a velocity vector oriented
at 135° in the (x,z) plane, and is located at the grid position (150,150) of the
model (Fig. 1). This selected point source is the first derivative of a Gaussian
(Yao and Margrave, 2000) of dominant frequency f, = 25 Hz shifted by t, =
1.2/, = 0.048 seconds from time t = O to have null initial conditions. For
checking the absorbing ability of CPML and NPML layers, we record the
seismograms by x- and z-components of the velocity vectors at two receivers (R,
and R,) in our model, respectively. The interior edge of the absorbing region
we call the first PML layer. The two receivers are placed at the grid points
(20,170) and (380, 375) close to the PML layers (Fig. 1). Thus it is very easy
to find the strongly spurious reflections from the PML layers if the PML layers
are not working well. In Fig. 1, the black cross indicates the source S, the two
black-filled triangles indicate the receivers R, and R,, respectively.

In modeling tests, we set the same width of CPML and NPML layers at
100 m, i.e., 10 grids. Following Komatitsch and Martin (2007), we take N=2,
R, = 0.1%, o, = 7f; and k, = k, = 1 in the implementation of CPML, and
N = 2, R, = 0.1% in the implementation of NPML, respectively. Fig. 2
illustrates the snapshots of the acoustic wave propagation at 0.4 s, 0.6 s, 0.8 s
and 1.0 s by using CPML. Fig. 2a represents the x-component of the velocity
vectors v,, and Fig. 2b represents the z-component of the velocity vectors v,.
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Fig. 1. The configuration of the 2D acoustic model of size 4000 X 4000 m. The black cross
indicates source; the two black-filled triangles indicate receivers R, and R,, respectively; the dashed
lines represent PML layers.

Fig. 3 shows the same snapshots of the acoustic wave propagation with
NPML as Fig. 2. No spurious waves of significant amplitude are visible along
all snapshots in Fig. 2 and 3. These snapshots indicate that NPML has the same
absorbing efficiency as CPML.

For further comparison, we study the decay of energy with time. Fig. 4a
represents the time decay of total energy (0-1.6 s): E = p|v|? in the main
domain without PML layers. The energy carried by the acoustic wave is
gradually absorbed (theoretically beyond 0.42 s) in the PML layers. After
approximately 1.07 s, theoretically there should remain no energy in the model
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Fig. 2. The snapshots of the acoustic wave propagation with CPML at 0.4 s, 0.6 s, 0.8 s and 1.0
s. (a) indicates the x-component of the velocity vectors v,; (b) indicates the z-component of the

velocity vectors v,.
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Fig. 3. The snapshots of the acoustic wave propagation with NPML at 0.4 s, 0.6 s, 0.8 s and 1.0
s. (a) indicates the x-component of the velocity vectors v,; (b) indicates the z-component of the

velocity vectors v,.



COMPARISON BETWEEN NPML AND CPML 181

because the acoustic wave has left the main domain. All the energy that remains
is therefore spurious. We can observe that the total energy computed with
CPML and NPML is close to zero beyond 1.07 s in Fig. 4a. One important
observation is that the decay of total energy computed with CPML and NPML
is amazingly agreement, we almost cannot find any difference between them.
However, we can observe that the absorbing performance of NPML is better
than CPML through the zoomed-in Fig. 4b, the value of the total energy with
NPML is smaller than the value with CPML beyond 0.9 s. We must recognize
the difference of the decay of the total energy between CPML and NPML might
be ignored. These algorithms use floating point arithmetic and the scale of the
number ranges for these relatively quiescent computations could create
numerical discontinuities. These small differences could also be a by-product of

the algorithm implemention. These numerical concerns need further study to
find the root causes.

Fig. 5 illustrates the seismograms of v, and v, components of velocity
vectors at receiver R, (a) and receiver R, (b), respectively. The agreement
between CPML and NPML is also excellent satisfactory, where receivers are
both placed close to PML layers. However, from the two seismograms of v,-
components, we can observe that the NPML absorbing performance (dashed
lines) is better than CPML (solid lines). There exists the spurious energy in the
v,-seismograms with CPML. These algorithms use floating point arithmetic and
the scale of the number ranges for these relatively quiescent computations could
create numerical discontinuities. These small differences could also be a
by-product of the algorithm implementation. These numerical concerns need
further study to find the root causes. In considering our simple 2D acoustic

model, further analyses of the absorbing abilities of CPML and NPML in
complex media are needed.

CONCLUSIONS

In this paper, we provide the numerical comparison between CPML and
NPML techniques through 2D acoustic modeling study. The testing results
indicate there remains excellent agreement with their absorbing performances
in removing the reflections from model boundaries. Given the success of this
comparison we will pursue in complex media analysis in future efforts.
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Fig. 4. Decay of the total energy with time in the domain without the PML layers. (a) the decay of
the total energy from 0 to 1.6 s; (b) the zoomed-in observation from 0.8 s to 1.4 s. The solid lines
indicate the energy computation with CPML, and the dashed lines indicate the energy computation
with NPML.
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