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ABSTRACT

Shahsavani, H., Mann, J., Piruz, I. and Hubral, P., 2011. A model-based approach to the
Common-Diffraction-Surface stack - theory and synthetic case study. Journal of Seismic Exploration,
20: 289-308.

The Common-Reflection-Surface stack method parameterizes and stacks seismic reflection
events in a generalized stacking velocity analysis. The common 2D implementation of the
Common-Reflection-Surface stack is able to consider a discrete number of events contributing to a
given stack sample such that conflicting dip situations can be handled. However, the reliable
detection of such conflicting dip situations is difficult and missed contributions to the stacked section
might cause artifacts in a subsequent poststack migration, just as unwanted spurious events that might
be introduced by this approach. This is deleterious for complex data where prestack migration is no
viable option due to its requirements concerning the accuracy of the velocity model. There, we might
have to rely on poststack migration, at least for the first structural image in the depth domain. In
addition to the approach which considers a small number of discrete dips, the conflicting dip problem
has been addressed by explicitly considering a virtually continuous range of dips with a simplified
Common-Reflection-Surface stack operator. Due to its relation to diffraction events, this process was
termed Common-Diffraction-Surface stack. In analogy to the Common-Reflection-Surface stack, the
Common-Diffraction-Surface stack has been implemented and successfully applied in a data-driven
manner. The conflicting dip problem has been fully resolved in this way, but the approach comes
along with significant computational costs. To overcome this drawback we now present a much more
efficient model-based approach to the Common-Diffraction-Surface stack which is designed to
generate complete stack sections optimized for poststack migration. Being a time-domain stacking
process, this approach only requires a smooth macro-velocity model of minor accuracy. We present
the result for the Sigsbee 2A data set and compare its poststack-migrated result to its counterparts
obtained with the data-driven Common-Diffraction-Surface approach or the Common-Reflection-
Surface stack, respectively. Compared to the data-driven approach, the computational effort is
dramatically reduced with even improved results very close to the results of a prestack depth
migration.

KEY WORDS: common-reflection-surface stack, conflicting dips, wavefield attributes,
dip moveout operator, ray tracing.
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INTRODUCTION

The Common-Reflection-Surface (CRS) stack method has been extensively
discussed in various publications during the last decade. In the following, we
will therefore restrict the discussion of the CRS method to its very basic
essentials required in the scope of this paper. The CRS method follows the
concepts of the classical stacking velocity analysis, i.e., the local
parameterization and stacking of reflection events by means of an analytic
second-order approximation of the reflection traveltime, and the determination
of the stacking parameters by means of coherence analysis (see, e.g., Mann et
al., 1999; Jager et al., 2001). Conventional stacking velocity analysis is applied
within individual common-midpoint gathers with the stacking velocity as the
only stacking parameter (in general azimuth-dependent in 3D) and often on a
relatively coarse grid, only. In contrast, the CRS approach is applied on a fine
grid and also takes neighboring common-midpoint gathers into account,
acknowledging the fact that reflection events are caused by spatially contiguous
reflector elements in depth. The same concepts are employed in similar imaging
methods like multifocusing (see, e.g., Gelchinsky et al., 1999a,b; Landa et al.,
1999, and various more recent publications).

The relation between conventional stacking velocity analysis and the CRS
approach has, e.g., been described by Hertweck et al. (2007). To highlight the
similarities between these approaches, they expressed the CRS operator in terms
of horizontal slowness and two imaging velocities, one of the two latter
representing the well-known stacking velocity. Equivalent formulations can be
given in terms of spatial traveltime derivatives in terms of paraxial ray theory
(Schleicher et al., 1993) or in terms of properties of hypothetical wavefronts
(Tygel et al., 1997), namely the emergence direction of the normal ray
connecting the reflection point to the surface and the curvatures of wavefronts
associated with a point source at the reflection point or a exploding reflector
segment around the latter, respectively. For the sake of consistence with related
publications, we will use the latter description in the following, although
traveltime derivatives will come into play as well.

In its simplest implementation, the CRS stack determines only one
optimum stacking operator for each zero-offset (ZO) sample to be simulated.
Along this optimum operator, we obtain the maximum coherence in the seismic
reflection data. If there is only one reflection event contributing to the
considered sample or no coherent event at all, this is sufficient. However, in the
presence of curved reflectors, diffractors, or multiples various events might
intersect each other and/or themselves, such that a single stacking operator per
Z0 sample is no longer sufficient to simulate a stacked section containing all
relevant contributions. To account for such conflicting dip situations, Mann
(2001, 2002) proposed to allow for a small, discrete number of multiple stacking
operators for a particular ZO sample. The determination of additional stacking
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parameters associated with local coherence maxima is quite simple, but the main
difficulty in this approach is to identify conflicting dip situations and to decide
how many contributions should actually be considered. This implies a tricky
balancing between lacking contributions and potential artifacts due to the
unwanted parameterization of spurious events. Due to the discrete number of
considered events, the number of detected and, thus, imaged events might
change from sample to sample such that seismic events might still show up
fragmented.

The introduction of inversion methods fully exploiting the information
contained in the CRS stacking parameters (Duveneck, 2004a,b) enabled a
consistent imaging workflow consisting of CRS stack, normal-incidence-point
(NIP) wave tomography, and prestack depth migration (see, e.g., Mann et al.,
2003; Heilmann et al., 2004; Hertweck et al., 2004). In this workflow, the
stacked section mainly serves as an intermediate result for automated picking
rather than as a final image for interpretation. Thus, lacking contributions in the
stacked section due to conflicting dip situations are acceptable and do not affect
the final depth image. However, in data of complex nature and/or high noise
level, generating a macro-velocity model of sufficient accuracy for prestack
depth migration might not be feasible with reasonable effort. In such cases,
poststack depth migration with its much lower requirements in terms of velocity
model accuracy is more attractive - and the completeness of the stacked section
turns into a relevant issue again.

To obtain a stack section containing all intersecting events, Soleimani et
al. (2009a,b) proposed an adapted CRS strategy by merging concepts of the dip
moveout correction (e.g., Hale, 1991) with the CRS approach: instead of only
allowing a single stacking operator or a small discrete number of stacking
operators per sample, a virtually continuous range of dips is considered. To
simplify this process and to further emphasize usually weak diffraction events,
this has been implemented with a CRS operator reduced to (hypothetical)
diffraction events. This so-called Common-Diffraction-Surface (CDS) stack
approach has been successfully applied to complex land data (Soleimani et al.,
2010). However, the approach is quite time consuming, as separate stacking
operators have to be determined for each stacked sample to be simulated and
each considered dip in a data-driven manner by means of coherence analysis in
the prestack data. In the following, we will refer to this approach as the
data-driven CDS stack.

In this paper, we propose and apply a model-based approach to the CDS
stack. We assume that a smooth macro-velocity model has already been
determined, e.g., by means of a processing sequence consisting of CRS stack,
automated smoothing and picking, and NIP-wave tomography. Of course, a
macro-velocity model generated with any other inversion approach can be used
as well. In such a smooth macro model, the parameters of the CDS stacking
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operators can be easily forward-modeled by means of kinematic and dynamic
ray tracing such that their determination by means of coherence analysis in the
prestack is no longer required. In this way, a complete stacked section optimized
for poststack depth migration can be generated in a much more efficient manner
compared to the data-driven CDS approach.

TRAVELTIME APPROXIMATION

The CRS method is based on an analytical approximation of the reflection
traveltime up to second order in terms of the half source/receiver offset h and
the displacement of the source/receiver midpoint x,, with respect to the location
X, of the stacked trace. This approximation can be expressed in different flavors,
e.g., in a parametric form or in Taylor series expansions in terms of traveltime
or squared traveltime, respectively (Hocht et al., 1999). The most popular form
is the hyperbolic traveltime expansion, as it directly resembles the well-known
common-midpoint traveltime approximation in the common-midpoint gather x,,
= X,. For the 2D case considered in this paper, the hyperbolic CRS traveltime
approximation can be expressed as

CXnh) = [ty + 2sina/vo)(xy — Xp)I
+ (2tcos’aVo)[{(Xn — )Ry} + (h*/Ryp)] 1)

with v, denoting the near-surface velocity. In this formulation, the latter is
considered to be virtually constant and known within the applied stacking
aperture. The stacking parameter « is the emergence angle of the normal ray,
whereas Ry and Ry, are the local radii of hypothetical wavefronts excited by an
exploding reflector experiment or an exploding point source, respectively. Both
hypothetical sources are attached to the (yet unknown) reflection point of the
normal ray, the so-called NIP. All stacking parameters are defined at the
acquisition surface (x,;z = 0) and can be directly associated with traveltime
derivatives in the prestack data.

For a true diffractor in the subsurface, an exploding point source
experiment and an exploding reflector experiment obviously coincide such that

Ry = Ry. Thus, for diffraction events, the CRS traveltime eq. (1) reduces to
the CDS traveltime approximation

2(Xpm,h) = [ty + (2sina/vo)(X,, — Xo))?
+ (2%C°S2a/V0RCDs)[(Xm - X)) + 1, 2

with Reps = Ryp = Ry. For reflection events, the CDS operator (2) is an
inferior approximation compared to the full CRS operator (1) as Ryp # Ry if
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the curvature of the reflector is not too large (a diffractor can be seen as a
reflector with infinite curvature). Nevertheless, eq. (2) still allows to
approximate the event within a reasonably chosen aperture which will be
discussed below. For the data-driven CDS stack, this simplified operator has
been chosen for performance reasons. For the model-based CDS stack, this
simplification is mandatory, as there is no structural information on reflector
curvatures contained in the considered smooth macro-velocity model. Thus, a
forward-modeling of the parameter Ry is not possible anyway.

Note that the meaning of Rpg depends on the way this stacking parameter
is determined: in the forward-modeling discussed below, it is a completely local
second-order property Ryp 04 Of the emerging NIP wavefront at the considered
Z0 location x,. In the CRS stack, the second-order property Rypg.a iS
determined from the prestack data within a finite aperture. Thus, Ryp ga 1S, in
general, subject to spread length bias and does not exactly coincide with the
forward-modeled Rypmoq (see, e.g., Miiller, 2006). In the data-based CDS
stack, Rcpg is influenced by both data-derived attributes Rypp gu and Ry gup- It
represents a kind of weighted average of these both attributes, depending on the
aspect ratio of the used aperture. In the context of this paper, we consider the
forward-modeled case, i.e., Reps = Ryp.mes Which might differ significantly
from the attribute obtained in the data-driven CDS approach. Finally, Garabito
et al. (2001a,b) also used the CDS operator (2) for stacking. However, they
applied it in a simultaneous two-parameter search for the combination of
emergence angle o and the radius Repg yielding the highest coherence. Using
only one operator per ZO sample, this data-driven approach does not address
the conflicting dip problem considered here. Nevertheless, for the emergence
angle associated with the highest coherence, it should resemble the stacking
parameters of the data-driven CDS stack for the same angle.

FORWARD-MODELING

As mentioned above, the radius of the NIP wave is associated with a
hypothetical point source at the NIP. The local curvature of the hypothetical
wavefront triggered by such a point source is considered along the normal ray.
The wavefront finally reaches the acquisition surface with the curvature 1/Ryp.
Thus, the first step to model this parameter is to determine all potential normal
rays by means of kinematic ray tracing. As we need these rays for given surface
locations and emergence angles, the kinematic ray tracing is performed for the
down-going rays.

Kinematic ray tracing consists in the calculation of the characteristics of
the Eikonal equation

(VT)? = 1IN (x,2) , 3)
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which governs the kinematics of the wavefield in a 2D velocity field v(x,z). In
the following, we will use the Einstein summation convention. According to
Cerveny (2001), the Eikonal equation’s characteristics

dx;/du = d-/dp;, dp/du = —d~/dx;, dT/du = p(dH/dp, ;i = 1,2 (4)

are defined in a generalized domain consisting of slowness vector p and spatial
coordinates x. The projection of these characteristics into the space domain
represents the searched-for ray paths. One possible form of the Hamiltonian is

Hx,p) = n7'[(Pp)"”* — v =0 ; i=172 ®)

with n as a real number. Here, we will use the limit of n = 0, which yields the
Hamiltonian

H(x,p) = '2ln(ppy) + Inv = %In(v’pp) . ©®

For this case, the last characteristic in eq. (4) reduces to dT/du = 1, i.e., the
variable u along the ray is the traveltime. This directly allows to compute the
ray tracing results on the required regular grid in ZO traveltime.

The corresponding kinematic ray tracing system, a system of four coupled
ordinary differential equations, reads

dx/dT = (ppe) ~'pi» dp/dT = —0lnv/dx; ; i = 1,2 @)

and can be numerically integrated with the well known Runge-Kutta scheme of
fourth order. The step length in the numerical solution is chosen as an integer
fraction of the sampling rate of the stacked section to be simulated. In this way,
we directly obtain the discrete points along the ray paths corresponding to the
desired output locations in the ZO time domain.

The determination of Ryyp additionally requires dynamic ray tracing along
the ray path. The derivation of the dynamic ray tracing system again starts with
the Eikonal equation, now defined in ray-centered coordinates (s,n), with s
being the coordinate tangent to the ray and n the coordinate normal to the ray.
A Taylor expansion of the phase function T in the vicinity of the central ray
introduces the second partial derivative M of the traveltime normal to the central
ray (Cerveny, 2001):

M(u) = 8*T(u,n)/dn?|,_, . 8)
The resulting ordinary differential equation of Ricatti type finally yields the

dynamic ray tracing system consisting of two coupled ordinary differential
equations of first order. For our chosen propagation variable u = t along the
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central ray, this system reads
dg/dt = v?p, dp/dt = —(1/v)(0?v/on?)q , ©))

which can be easily numerically integrated along the ray in parallel to the
kinematic ray tracing described above. The properties p and q are related to
different coordinate transforms, see Cerveny (2001) for details. The relevant
property in our context is that their ratio coincides with the second traveltime
derivative normal to the ray, eq. (8):

M(u) = p(u)/q(u) . (10

In turn, for a point source at the NIP, M(u,) at the emergence point of the
normal ray is directly related to the searched-for value of Rqpg:

1/Reps = voM(up) = volp(up)/q(up)] , 11

with v, again representing the near-surface velocity at the emergence point.

A straightforward approach to this task is to integrate the dynamic ray
tracing system upwards along the ray for a given point on the known
down-going ray path with the according initial condition for a point source
initial condition in the starting point, i.e., ¢ = 0 and p = 1. However, this
approach is highly inefficient for two reasons:

® dynamic ray tracing had to be performed separately for each considered
point on the ray, i.e., hundreds or thousands of times along each ray,

e ceither the entire down-going ray paths had to be kept in memory, or
kinematic ray tracing had to be repeated along the up-going ray paths
again.

Instead, it is far more efficient to perform the dynamic ray tracing in parallel
to the kinematic ray tracing along the down-going ray. However, in this way we
cannot directly control the desired "initial" condition at the NIPs, because now
the initial conditions are defined at the acquisition surface rather than at the
NIPs. Fortunately, this problem can be addressed by solving the dynamic ray
tracing system for two mutually orthogonal initial conditions, a point source and
a plane wave at the initial point. The initial condition for the latter reads q =1
and p = 0. Using the index 2 for the point source initial condition and index 1
for the plane wave initial condition, the solutions can be gathered in a ray
propagator matrix IT (Cerveny, 2001):

4 @
II(u;uy) =< ) , (12)
P1 P2
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which can be computed along the ray for any value of u along the ray with the
two initial conditions being defined at the emergence location of the central ray
associated with u,. The ray propagator matrix II(u;u,) can be easily converted
into the corresponding propagator matrix II°(u,;u) describing the dynamic
properties in opposite propagation direction along the ray:

P Q@
°(uyu) = . (13)
P1

The first column of II’ again corresponds to the plane wave initial conditions
and the second column to the point source initial conditions, but these initial
conditions are now defined at the considered point u on the central ray. As we
compute IT along the down-going ray for all required locations u on the ray, I’
is readily available, too. Its second column directly provides the searched-for
solution of the dynamic ray tracing system at the emergence point of the central
ray for a point source initial condition at any considered point u along the ray:

1/Reps(w) = volq(w)/q(w)] . (14)

IMPLEMENTATION ASPECTS

In addition to the stacked section, the CRS method provides sections with
the maximum encountered coherence along the optimum CRS operators and
their corresponding sets of wavefield attributes. In the model-based CDS
approach we can also obtain similar sections with little additional effort.
Although the stacking parameters do not have to be optimized as in the
data-driven approaches, we can calculate the coherence along the individual
CDS operators in the prestack data anyway. Note that this has to be performed
only once per emergence angle for each ZO sample rather than dozens or
hundreds of times as in the data-driven CDS stack. With the calculated
coherence value, we can keep track of the CDS operator yielding the highest
coherence for a particular ZO sample. In this way we can obtain a section of the
highest encountered coherence, along with a section with the corresponding
emergence angle o and a section with the corresponding radius of curvature
Rcps. Obviously, these resemble some of the CRS output sections and allow for
a comparison with the CRS results, plausibility considerations etc.

In the data-driven stack approaches, the size of the search and stacking
aperture in midpoint direction is often based on the size of the (estimated)
projected first Fresnel zone. Furthermore, the aperture size has to be kept
constant for a particular ZO sample as coherence measures are sensitive to the
number of contributing traces which might deteriorate the coherence analysis
(see, e.g., Mann, 2002). In the model-based approach, coherence analysis is not
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employed, such that there is no need for a fixed aperture. In addition, the
aperture size in midpoint direction has to be chosen smaller, as the CDS
approximation with Reps = Rypp mes quickly deviates from the actual event in
case of a reflection event. Therefore, we propose to use a smaller aperture
centered around the so-called Common-Reflection-Point trajectory, where CRS
operator and CDS operator are both tangent to the actual event. In a second
order approximation, the Common-Reflection-Point trajectory describes the
reflection response originating from a single reflection point with an
inhomogeneous overburden. Its projection onto the acquisition surface reads
(Hocht et al., 1999)

Xn(h) = xo + ro{J/[(W¥/r) + 1] — 1} , with rp = Ryp/2sina , (15)

and provides us with the lateral position of the center of the stacking aperture
for each half-offset h. Obviously, all required properties in eq. (15) are readily
available from the dynamic ray tracing. Along the Common-Reflection-Point
trajectory, we can use comparatively small midpoint apertures and still ensure
that we capture the contributions from the area of tangency between event and
operator. With the width of the aperture, we can control to some extent whether
diffraction events should be preferred against reflections events, as the CDS
operator (2) fits diffraction events in a larger area of tangency.

SYNTHETIC EXAMPLE: SIGSBEE 2A DATA

To allow for a direct comparison with the data-driven CDS results by
Soleimani et al. (2009a) we applied the model-based CDS approach to the
well-known synthetic Sigsbee 2A data set (Pfaffenholz, 2001). This data set has
been simulated by the SMAART JV by acoustic finite-difference modeling for
the stratigraphic model shown in Fig. 1. Due to an absorbing top surface, the
data contain no free-surface multiples. They consist of a total of 500 shot
gathers with 150 ft shot interval and up to 348 receivers with a spacing of 75
ft. Temporal sampling rate is 8 ms, offsets range from 0 to 26025 ft.

As we want to focus on the stacking procedure rather than on the
generation of the macro-velocity model by means of an inversion, we used the
migration velocity model (not shown) distributed with the data as basis for our
macro-velocity model. Due to the homogeneous water layer, the assumption of
a virtually constant near-surface velocity in eqs. (1) and (2) is fully satisfied.
The migration velocity model consists of the water column, the salt body, and
a smooth background velocity, namely a constant vertical gradient of 0.3/s
starting with 5000 ft/s at the seafloor. To obtain our macromodel, we first
restored the seafloor at those locations where the salt body is in direct contact
with the water column and then replaced the salt body by the background
gradient. Finally, we smoothed the slowness in the velocity model five times
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with the auto-convolution of a rectangular box of 525 X 525 ft? to get rid of the
sharp velocity contrast at the seafloor without impairing the kinematics of the
model.

The kinematic and dynamic ray tracing has been performed for each
common midpoint bin, i.e., with a lateral spacing of 37.5 ft and a temporal step
length of 0.8 ms. We did not allow turning rays, although this is supported by
the implementation. Rays have been shot for an angle range of +50° at 2°
spacing. For the actual stacking process, the stacking parameter R is linearly
interpolated in between the rays on a grid with 1° spacing. The midpoint
aperture has a constant half-width of 300 ft centered around the approximate
Common-Reflection-Point trajectory (15), the offset aperture ranges from 6000
ft at 2.3 s to 25000 ft at 11 s ZO traveltime. Semblance has been calculated
within a time window of 56 ms.
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True stratigraphy model

Fig. 1. Stratigraphic model used for the simulation of the Sigsbee 2A data.

The stacked section shown in Fig. 2 is very similar to the corresponding
result obtained with its data-driven counterpart presented by Soleimani et al.
(2009a) (not shown). The latter contains some spurious events which do not
show up in the model-based result, but the main difference is the computational
cost which is now more than two orders of magnitude lower for this data set
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(not including the fact that the data driven result excludes the subsalt region for
performance reasons). Of course, with the inherent second-order approximation
of the CRS and CDS approaches, we cannot expect any reasonable result for the
subsalt region, that is why we have removed the salt body in the macro-velocity
model.

Distance [kft]
20 30 40 50 60 70 80

Time [s]

Model-based CDS stack

Fig. 2. Stacked section obtained with the model-based CDS approach. Note the various diffraction
patterns caused by true diffractors, wedges, and model discretization.

The benefits of the complete handling of conflicting dip situations are best
seen after a subsequent poststack migration using the macro-velocity model
depicted in Fig. 1: Fig. 3 shows the result of a Kirchhoff poststack depth
migration obtained for the model-based stack section shown in Fig. 2. All faults
and diffractors are well focused, everything left of and above the salt is well
imaged.

For comparison, we first revisited the CRS results by Mann (2002). They
have been computed with two strategies: the simple approach considering only
one dip per ZO sample and the extended approach with up to three dips per ZO
sample. The poststack migration of the latter is depicted in Fig. 4. Faults and
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diffractors are only partly focused. Spurious events in the stacked section, e.g.,
associated with a change of the number of contributions from sample to sample,
cause various artifacts showing up as isochrones in the migrated section. The
result based on the CRS stack with only one dip (not displayed) differs from the
multi-dip CRS-stacked section in two respects: on the one hand, due to the
lacking contributions at conflicting dip locations, the diffractors and faults
appear even less focused and with lower amplitudes. On the other hand, the
stacked section contains less spurious events such that we have less artifacts in
the migrated section. In both cases, the results of poststack migration are
unsatisfactory. The synclines in the top salt are incomplete and accompanied by
coherent artifacts at slightly larger depths. As discussed by Mann (2002), the
CRS stack has most likely also parameterized and stacked events associated with
prismatic waves which lead to additional events in the stacked section. CRS for
Z0 simulation as well as poststack migration both imply normal rays, such that
prismatic waves cannot be correctly imaged. Note that this effect hardly occurs
in the model-based result shown in Fig. 3: As we explicitly forward-model
normal rays there, the events from prismatic waves are attenuated by destructive
interference.

Distance [kft]
20 30 40 50 60 70 80

Depth [kft]

Poststack depth migration, model-based CDS stack

Fig. 3. Poststack Kirchhoff depth migration result for the model-based stack section shown in Fig.
2. Faults and diffractors are clearly focused.
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For the next comparison, we revisited the data-driven CDS results by
Soleimani et al. (2009a). The corresponding poststack-migrated section
displayed in Fig. 5 shows well focused diffractors and faults and much less
artifacts caused by spurious events compared to the CRS-based result in Fig. 4.
As in the CRS-based result, the synclines in the top salt are still not properly
imaged, as the data-driven CDS stack picks up prismatic waves as well. Note
that the lower right part of the stacked section has not been computed for
performance reasons such that this area remains either empty or shows some
isochrones in the migrated section.

Distance [kft]
20 30 40 50 60 70 80

104

Depth [kft]

25

e

Poststack depth migration, CRS stack

Fig. 4. Poststack Kirchhoff depth migration result for the CRS stack result published by Mann
(2002). Up to three dips have been considered for each ZO sample. Faults and diffractors are only
partly focused, many isochrones caused by spurious events can be seen.

As a final reference, we also applied a Kirchhoff prestack depth migration
to the prestack data using the same macro-velocity model. The offset range and
the muting of the migrated images gather were chosen such that they match the
corresponding parameters used during the CDS stack as closely as possible. Fig.
6 shows the stack of about 80 offset bins with a width of 300 ft each after
depth-dependent muting. The prismatic waves are again imaged wrongly, but
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cancel out during the stack. This section is very similar to the poststack
migration of the model-based CDS-stacked section in Fig. 2. Note that (of
course, except for the subsalt part) the prestack migration has been performed
with an optimum, i.e., kinematically perfectly correct velocity model. For less
accurate models as usually achievable for real data, the prestack depth migration
result will suffer much more from inaccuracy than the model-based CDS stack
and the subsequent poststack migration.

Distance [kft]
20 30 40 50 60 70 80

Depth [kft]

Poststack depth migration, data-driven CDS stack

Fig. 5. Poststack Kirchhoff depth migration result for the data-driven CDS result published by
Soleimani et al. (2009a). Faults and diffractors are well focused, there are only few isochrones
caused by spurious events.

As mentioned above, we can perform coherence analysis along the
individual forward-calculated stacking operators in the prestack data with little
additional effort. In this way, we can obtain coherence and attribute sections
resembling some of the corresponding sections known from the CRS stack
approach: we simply keep track of the operator yielding the highest coherence
measure for an individual ZO sample. As an example, the section with the
highest coherence values encountered for each individual ZO sample is depicted
Fig. 7. It allows to identify the reflection events and to evaluate the local fit
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between CDS operator and event. As this section only shows the coherence for
the most prominent events, less prominent events show up as local lowering of
the coherence of the more prominent events they intersect. This behavior can,
e.g., be seen along the diffraction events caused by the two horizontal rows of
diffractors in the model.

Distance [kft]
20 30 40 50 60 70 80

10

Depth [kft]
o

n
o

25

Prestack depth migration

Fig. 6. Prestack Kirchhoff depth migration result with high similarity to the poststack result shown
in Fig. 3. To allow for a fair comparison, the used offset range coincides with the one used for the
CDS stack and the image gathers have been muted such that they mimic the time-dependent CDS
stacking aperture in offset direction.

Together with the coherence along the most prominent operator, we can
also store the corresponding stacking parameters o and Rqpg for each ZO
sample. Due to the model-based calculation of Ry, these sections (not shown)
look much smoother and more consistent than their CRS-based counterparts,
almost without any outliers. At first glance, this appears to be useful for all
applications using o and Rcpg = Ryp. One of them is inversion, either
layer-based inversion (Majer, 2000; Majer et al., 2000), NIP wave inversion
with a smooth model, or a combination of both (Miiller, 2005, 2007). However,
for inversion the attributes of the model-based CDS stack are obviously of no
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use, because they are forward calculated. Inverting for them will, thus, at best
reproduce the macro-velocity model already employed for stacking. In contrast,
another application of these two attributes clearly benefits from their more stable
and contiguous character: the attribute-based time migration introduced as a
by-product of the CRS stack (Mann et al., 2000; Mann, 2002). This application
is based on a point-to-point remapping of the stacked amplitude from the
stationary point for ZO, i.e., the ZO image location, to the estimated apex of
the time migration operator. Evidently, the latter estimation directly benefits
from the higher stability of the attributes. In addition, this point-to-point
migration can be performed separately for each emergence angle (not only for
the most prominent one), such that the entire process turns into an operator-
to-point migration much more similar to conventional poststack migration.
Under such fortunate conditions, even this very simple approach yields striking
results: Fig. 8 shows the result of this model-based time migration using the
forward-modeled attributes on the fly. Although there are various artifacts in
this section, the sedimentary part looks quite reasonable. Note that CRS-based
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Coherence along dominant events

Fig. 7. Section of maximum encountered semblance corresponding to the stack section shown in Fig.
2. The associated attribute pairs (a,Ryp) form attribute sections (not shown) resembling the
analogous sections of the CRS approach.
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counterpart (not shown) presented by Mann (2002) strongly suffers from high
frequency noise and huge gaps in the events due to missing or unstable
attributes, especially close to the top of the salt. Finally, we would like to
mention that the data-driven CDS approach is not suited for this kind of
migration, as it does not yield the required parameter Ryp, see the section on
traveltime approximation.

Distance [kft]
20 30 40 50 60 70 80

Time [s]

Attribute-based time migration

Fig. 8. Attribute-based time migration result obtained as a by-product of the model-based CDS stack.
Compared to the CRS-based counterpart (not shown), more stable attributes and the quasi-continuous

range of contributing emergence angles render this very simple approach feasible for the sedimentary
regions.

CONCLUSIONS and OUTLOOK

We have implemented and applied a model-based approach to the
common-diffraction-surface stack method. This method is intended to fully
resolve the conflicting dip problem occurring in complex data and, thus, to
allow to simulate a complete stacked section containing all mutually interfering
reflection and/or diffraction events. In contrast to the entirely data-driven
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common-diffraction-surface method (Soleimani et al., 2009a,b), this model-
based approach is far more efficient. The required macro-velocity model can be
generated with any inversion method, including the sequential application of
common-reflection-surface stack and normal-incidence-point wave tomography.
For the Sigsbee 2A data presented here, we excluded the inversion aspect and
used a simplified version of the migration velocity model distributed with the

data.
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Y
preprocessed prestack data

Y
Common-Reflection—Surface stack

Y
event consistent smoothing & picking

Y
NIP wave inversion

model
accuracy
sufficient?

yes

Y
model-based CDS stack

Y y
prestack migration poststack migration

Y
migrated section

Y
end

Fig. 9. Processing flowchart with an alternative to prestack migration using the model-based CDS
stack plus poststack depth migration.
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The model-based common-diffraction-surface stack is tailored to optimize
the stacked section for a subsequent poststack depth migration. This is relevant
for situations in which the generation of velocity models sufficiently accurate for
prestack depth migration is difficult or even impossible. For the Sigsbee 2A
data, we demonstrated that the model-based common-diffraction-surface stack
allows to generate a poststack-migrated section very similar to the corresponding
prestack migration result. The latter process usually requires a more accurate
macro-velocity model. The new approach yields even better results than the
data-driven approach in a significantly shorter computation time.

The model-based common-diffraction-surface stack can be integrated into
the common-reflection-surface-based imaging workflow in situations where the
result of normal-incidence-point wave tomography might not be sufficiently
accurate to perform a prestack depth migration: as schematically shown in Fig.
9, prestack migration might be replaced by a sequence of model-based
common-diffraction-surface stack and poststack migration. In this way, we can
overcome the former deficiencies of the common-reflection-surface stack section
which lead to gaps and artifacts in the poststack migration result.
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