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ABSTRACT

Ramirez, A.C., 2013. Analysis of data-driven internal multiple prediction. Journal of Seismic
Exploration, 22: 105-128.

The internal multiple prediction (IMP) algorithm analyzed in this paper is almost entirely
data-driven, requiring a convolution and a crosscorrelation of the input data and information about
the main internal multiple generators. The generators or generating horizons are the reflectors where
the internal multiples’ energy was downward reflected. There are two common approaches to
applying IMP:

1) The first is the layer-stripping approach in which internal multiples are predicted starting from
the shallowest generator (top-down approach) and subtracted from the input data prior to attempting
the prediction using the next horizon as generator. For each generator’s prediction, there is a
subtraction.

2) The second approach, referred to as the non-top-down approach, predicts the multiples using one
horizon at a time, but does not remove the predicted multiples from the input data prior to running
the IMP algorithm with the next horizon. The first approach is in agreement with the theory behind
this algorithm. The second approach still provides value; however, the same internal multiple can
be predicted more than once by different horizons. These predictions have different amplitude
information and opposite polarity with respect to each other. Hence, it is not always easy to deal
with these internal multiple models when attempting to subtract them from the input data. I provide
an analysis of the prediction of internal multiples using IMP with the different approaches.

KEY WORDS: internal multiples, interbed multiples, adaptive subtraction, wave theory,
monotonicity condition, seismic processing.
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INTRODUCTION

The purpose of this paper is to describe an analysis that helps in our
understanding of the phase and polarity of the internal multiples’ prediction
using an almost entirely data-driven algorithm. The internal multiple prediction
algorithm, IMP, predicts these events by using convolution and correlation
operations of preprocessed input data. The input data are preprocessed using
information about the reflectors in the subsurface; the need for subsurface
information is what makes IMP not entirely data-driven. The IMP algorithm is
very similar to the method proposed by the Delphi consortium (Verschuur and
Berkhout, 1996; Berkhout and Verschuur, 1997; Verschuur et al., 1998) and
further updated by Jakubowicz (1998). Some relevant references for the
practical implementation of this method are Moore (2001), El-Emam et al.
(2007), Baumstein (2008), and Terenghi et al. (2010). The algorithm used by
IMP does not contain the obliquity factors required by the theory based on the
wave equation (Aradjo et al., 1994; Weglein et al., 1997). The wave-theoretical
algorithm described by Aratjo et al. (1994) and Weglein et al. (1997), based on
the inverse scattering series, is entirely data-driven. It does not require any
velocity or moveout discrimination, event picking, or any subsurface
information. However, these advantages come at a price: the algorithm works
in the frequency-wavenumber domain that requires proper sampling in both
receiver and source domains and has a high computational cost. To simplify the
requirements of the inverse scattering internal multiple algorithm and to improve
efficiency, one could ignore the obliquity factors and use a high-frequency
approximation to write the algorithm in the space-time (or space-frequency)
domain to obtain an expression similar to the one presented by Jakubowicz
(1998) that requires knowledge of the reflectors in the subsurface. This is the
algorithm that I refer to as IMP. Thus, the IMP algorithm can be written in the
space-time or space-frequency domain, which makes it more efficient but less
data-driven and less accurate at the far offsets. IMP is constrained by a total
traveltime monotonicity condition (ten Kroode, 2002), which makes it less
effective than the inverse scattering algorithm that obeys a vertical time or
pseudodepth (constant-velocity F-K migration depth) monotonicity condition, as
explained by Nita and Weglein (2009). It is important to mention that a more
complete representation of the algorithm in a high-frequency regime could be
obtained without excluding the obliquity factors, as demonstrated for the layered
media case by Jin et al. (2009).

Some of the assumptions and limitations of IMP are:

1) The most significant multiple-generating horizons were identified and their
corresponding primaries were picked in the data.

2) The data are reasonably free of noise.
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3) The predicted multiples do not have the correct amplitudes.

4) Adaptive subtraction will be used to match the predicted internal multiples
(model) with the actual internal multiples in the data.

In principle, not only the most significant, but all generating horizons in
a top-down approach must be identified and their corresponding primary
reflections picked in the data. By all generating horizons, in a top-down
approach I refer to the set of horizons starting at the shallowest (water-bottom
horizon, in the marine case) and ending with the deepest generator of interest.
In practice, this is almost never feasible and only the most significant generators
are (or can be) properly identified. This more realistic scenario and its
implications in the effectiveness on the prediction of internal multiples will be
further analyzed and discussed throughout this paper.

The organization of this paper is as follows: The first section provides a
general theoretical background. Once the algorithm under analysis is well
established, a brief discussion of the practical application of IMP is provided.
The practical application has two common approaches: a top-down or layer-
stripping approach and a non-top-down approach (Ramirez et al., 2011). The
field data application will, most generally, fall in the second approach. The
non-top-down approach is not ideal; hence, the result from applying it must be
thoroughly understood for a successful application. Therefore, the third section
provides an analysis that explains exactly the general output of IMP with the
non-top-down approach. These results are discussed in the final section.

METHOD

In general, the IMP algorithm will predict an estimate of the internal
multiples for a target location and a target generator using the relation

DM(x, | xw) = — jxclx1 | dx, Dy(x,|x30) DI, | %0500) Dy |%500) .+ (1)

where the first space argument, x,, represents the receiver coordinate and the
second argument, X, represents the source coordinate, w is the temporal
frequency, the superscript * represents complex conjugation, D; are the
preprocessed input data, and D™ are the predicted internal multiples. The reason
why I state that this equation will predict an estimate of the internal multiples
for a specific generator is because the left hand side of this equation is a set of
events associated to the internal multiples of a target generator with the
following characteristics: 1) correct traveltime when compared to the true
internal multiples in the input (raw) data, 2) incorrect phase and amplitude due
to the fact that the events in D™ contain the effect of three source signatures
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(the auto-crosscorrelation plus convolution of the raw data source signature), 2)
the fact that the left hand side does not compensate for the accumulated radiation
pattern (via the obliquity factors that appear in the inverse scattering theory), the
left hand side of the equation, needs to be compensated by two obliquity factors,
and 3) the amplitude information is an approximation to the one of the true
internal multiples. The amplitude estimation has been thoroughly analyzed by
Ramirez and Weglein (2005b). It is always less than the true amplitude of the
internal multiple in the raw data by a factor of one set (up and down) of
transmission coefficients corresponding to the generating reflector and the square
of all pairs of transmission coefficients from reflectors above the generating one.
In practice, IMP will also have differences due to obliquity and source signature
factors which are not properly compensated for in the theory.

Eq. (1) is written in the time domain as a convolution (represented by o)
and a crosscorrelation (represented by &),

DM(x,|xgt) = — S dx, S dx, Di(x[x;5) ® Dy(x;|%55t) 0 Dy(x,[x51) . (2)
The difference between the three datasets’ input to the algorithm are:

® D, is the portion of the data that represents the generating horizon. In other
words, it contains the primary event corresponding to the interface in the
subsurface interpreted as an internal multiple generator. For a first-order
internal multiple, the generating interface is the one where the downward
reflection took place. For example, D, for the shallowest generator will only
contain the information corresponding to the first primary in the data. This is
achieved (in the time domain) by muting out all events except for the internal
multiple generator.

® D, and D; have a top mute (in the time domain). It will mute all the
information in the data with times shorter than or equal to the traveltime for the
event selected as the generator in D,.

In eq. (2), D, and D; contain a set of recorded events each with a
traveltime longer than the traveltime of the generator (event in D,). Let the
events in D, have traveltimes represented by the subscript i, events in D; will
be then represented with a subscript k, and the primary in D, will be
represented with the subscript j. The interpretation of eq. (2) is the prediction
of internal multiples having traveltimes equal to (t; — t; + t,), corresponding to
a combination of longer-shorter-longer events in total traveltime. The traveltimes
of the events in D, and D, are added and the traveltime from the generator, D,,
is subtracted. The three events combined in the algorithm are referred to as
subevents of the predicted internal multiple. In general, the predicted traveltimes
correspond to the actual traveltimes of true internal multiples in the data.



INTERNAL MULTIPLE PREDICTION ANALYSIS 109

The IMP algorithm has been tested and validated in terms of its ability to
predict the traveltime of the internal multiples in the data (see El-Emam et al.,
2007; Hembd et al., 2010, and references therein); it was also extended and
validated for marine surveys acquired with poor crossline sampling and for
cross-spread land surveys by Terenghi et al. (2010). This paper is an extension
that focuses on understanding the phase and polarity of the predicted internal
multiples.

IMP IN PRACTICE

There are two common approaches to apply IMP to predict internal
multiples:

® The first is the layer-stripping approach in which internal multiples are
predicted starting from the shallowest generator (top-down approach) and
subtracted from the input data prior to attempting the prediction using the
next horizon as generator. For each generator’s prediction there is a
subtraction. No generators are to be skipped in this approach.

®  The second approach, the non-top-down approach, predicts the multiples
using one horizon at a time but does not remove the predicted multiples
from the input data prior to running IMP with the next horizon.

The first approach is in agreement with the theory behind this algorithm.
The second approach is not ideal but still provides value. In the non-top-down
approach, the same internal multiple can be predicted more than once by
different horizons. These predictions have different amplitude information and
opposite polarity. As recognized by Baumstein (2008), the second approach is
the most likely to be used in the field data case because we are either not always
able to identify each generating horizon (primary in D,), or to run the algorithm
in a top-down approach due to the computational cost involved. Baumstein
(2008) analyzed the second approach using synthetic 2D data with two
generating primaries (three primaries in total). In the analysis, Baumstein (2008)
recognized that making predictions for the second generating horizon without
removing the internal multiples generated at the shallowest horizon produces a
multiple model for the second horizon dominated by multiples from the first
horizon with wrong polarity and .amplitude. In other words, the prediction
contains internal multiples corresponding to the first and second horizon, where
the first set has wrong polarity and the second set has the correct polarity. The
prediction has both incorrect amplitudes and mixed polarities. This fact has
severe implications in the practical application of this algorithm. The main
implication is related to the adaptive subtraction step, making it difficult to
accomplish with conventional global search and energy minimization (least-
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square-based) techniques. In the following, I will provide an analysis of the
prediction of internal multiples using IMP with the non-top-down approach. I
will show that, in the case studied by Baumstein (2008), the prediction using the
second generator does not contain all internal multiples due to the first and
second generator. It contains a partial set of internal multiples due to the first
generator and all multiples (within the limitations and assumptions of the
algorithm) for the second horizon. Furthermore, I will extend and generalize
this analysis for any number of horizons and provide a specific set of conditions
that are sufficient and necessary to predict an artifact with IMP.

In the next section, a mathematical analysis of the predictions of internal
multiples using the non-top-down approach and any number (N) of generating
horizons is given. The deeper generators (3 < n < N) can generate artifacts
(Ramirez et al., 2011). A set of conditions that the data must satisfy to create
these artifacts is also provided.

ANALYSIS

An analysis is useful to understand the inner workings of an algorithm.
The amplitude predicted by IMP is not correct; it is an attenuated amplitude
further scaled by the effect of two obliquity factors (containing information
related to angle of incidence/reflection and geometrical spreading). Ignoring the
missing obliquity factors, the predicted amplitude is, in general, smaller than the
amplitude of the true internal multiple (Weglein and Matson, 1998; Ramirez and
Weglein, 2005a; Lira et al., 2010; Zhang and Shaw, 2010). Furthermore, if the
source signature in the data is not deconvolved or compensated for in the
prediction process, the prediction contains the effect of three wavelets.

For an analysis of the amplitude prediction the reader is referred to
Ramirez and Weglein (2005a) and Ramirez Pérez (2007) where the internal
multiple algorithm (using the inverse scattering algorithm and normal-incidence,
planewave data that do not require obliquity factor compensation) is analyzed
in terms of its effectiveness to predict information corresponding to the
amplitude of the true internal multiples in the data. The result of this analysis
is an analytic expression of the amplitude prediction of first-order internal
multiples that is generalized for a model with any number of interfaces or
internal multiple generators. The analysis was done in the context of the inverse
scattering series internal multiple prediction algorithm, but it is also useful to
understand the amplitude prediction in IMP. Ramirez and Weglein’s analysis is
an extension of an earlier work by Weglein and Matson (1998) where a model
with a single generating horizon was considered. Zhang and Shaw (2010)
extended the analysis considering higher-order internal multiples in the
single-generator model used by Weglein and Matson (1998).
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Ramirez and Weglein’s (2005) earlier analysis focused on internal
multiples predicted using only primary subevents. The analysis by Zhang and
Shaw (2010) includes internal multiples as subevents; as mentioned before, it
only considers a model with a single generator that is always considered to be
a primary event. Here, I extend both works by considering both primaries and
internal multiples as subevents as well as a model with any given number of
generators. The analysis is performed in 1D normal-incidence planewave data;
and, hence, it is valid for both the inverse scattering series algorithm and the
IMP algorithm. In practice and in multi-D the analysis provided here remains
valid given the assumptions in each algorithm. In other words, the amplitude,
phase, and traveltime prediction remains valid for the inverse scattering series
algorithm and it is only constrained by the pseudo-depth or vertical time
monotonicity condition and the effect of the wavelet (if not properly dealt with).
The result is constrained by the total traveltime monotonicity condition for the
IMP algorithm and the wavelet effect (if not compensated for); IMP will also
suffer the effects of the missing obliquity factors affecting the amplitude and
traveltime predictions analyzed here.

Consider planewave data, without the effect of a wavelet, containing
primaries and internal multiples. Using Einstein’s summation convention, these
data can be expressed as

D® = Rid(t — t) — Rdlt — (t + ¢ + — )]
+ Rimdlt — (& + t + ty — & — )] + ... , 3)

where R’ represents the amplitude of recorded events (it includes the effect of
reflection and transmission effects), the subscripts i, j, k, ... represent reflection
points in the subsurface, and t; is the two-way traveltime from source to
interface i and back to the receiver position; sources and receivers are assumed
to be located at zero depth. The first term on the right side represents primaries,
the second term represents first-order internal multiples, the third term
represents second-order internal multiples, and the higher-order terms represent
higher-order internal multiples. The negative sign used to describe first-order
internal multiples is there because each of these events contains a single
downward reflection with a negative reflection coefficient (considering positive
those reflection coefficients representing an upward reflection). For the same
reason, the second-order internal multiples have a positive sign - the result of
the multiplication of two downward (negative) reflection coefficients.

The notation in eq. (3) can be illustrated using the example raypaths in
Fig. 1, where:

® The first term in the equation is illustrated in Figs. la and 1b. The
primary in Fig. 1a can be mathematically described as
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(Primary), = R, 8(t — t)) , )

thus, for this primary R = R,. The primary in Fig. 1b is mathematically
described as

(Pl‘lmary)2 = T01R2T106(t - t2) 9 (5)

thus, R; = T, T}(R,, where Tj; is the transmission coefficient for a wave
traveling from medium i to j.

The second term in eq. (3) corresponds to Fig. 1c. The first-order internal
multiple in the figure can be mathematically described as

(Internal multiple)212 = TOle(_RI)Rleoa[t - (tz - tl + tz)]
= —TyT,eRRS[t — 2, — )] (6)

thus, —Rj;, = — Ty T;pRIR;.

a) "\/
n=1 n=1
V n=

Rja(t-t;) RLa(t-t,)

JANVA . i
W n=1 \A A/ ni1
_ VV n=2
n= n=3
Rz a(t-(2t,t,)) Rj1a130(t-(12+2t3-2t1))

Fig. 1. Raypaths illustrating the different types of seismic events described in eq. (3): a) and b)
represent primary events, ¢) and d) represent first-and second-order internal multiples, respectively.
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® The third term is represented by Fig. 1d. The second-order internal
multiple in the figure can be mathematically described as

(Internal multiple),5;5

= ToiRy(—R)T R T (—RYT R Ty Typb[t — (6, —t +t3—t, +t5)]

= =T Tyo(T,T5)’RIR,R20[t — (t,+2t,—2t)] (7
thus, Rj}33 = T, T1o(T1,T,)*RZR,R2.

Thus, data in eq. (3) can be separated into primaries, and different orders of
internal multiples. The reflection points for first-order internal multiples satisfy
the conditions j < i & j < k. This condition leads to the well-known ‘w’
diagram representing internal multiples in data space. The ‘w’ diagram was used
in the original derivation of the inverse scattering internal multiple prediction
equation (Weglein et al., 1997). The reflection points for second-order internal
multiples obey the relations j < i& j < kand1 < k & 1 < m. The primaries,
in the context of this discussion, are defined as singly upward reflected events
and can include headwaves. The headwaves as subevents of data-driven internal
multiple prediction via ISS was first studied by Nita and Weglein (2004),
however, only the case with two reflectors was part of this study - thus, no
artifacts, nor higher order effects were analyzed. The internal multiples are
defined as multiply reflected events with at least one downward reflection within
the subsurface. Observe that this classification of events is only complete for
data generated from a 1D layered medium without a free surface, where each
layer is considered to be of constant velocity. When working with
multidimensional data, more types of events would be generated (like prismatic
waves or composite events, diving waves, and others). The interested reader is
referred to Weglein and Dragoset (2005) for a thorough classification of events
generated in multidimensional models or predictions.

A predicted first-order internal multiple using eq. (2) will have the general
form

PIM,; = RIR{Ry o[t — (; + t, — t)] ; (8)
analogously, the second-order predicted internal multiple is

PIM, = RiR/R{R|R; [t — (fi 4+t - —t)] . )
Observe that the subscripts in amplitudes and traveltimes can either refer to
primaries or internal multiples’ traveltimes and amplitudes. In other words, not

only primaries contribute to the prediction of internal multiples; internal
multiples themselves can be combined to predict other internal multiples.
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Internal multiple prediction for the first horizon

Following the general workflow of IMP, the first step is to select the
generating horizons. The process starts with the shallowest of the generators by
picking the corresponding primary and applying the proper mutes to the data to
obtain two datasets: D, with the generating primary isolated and D, containing
all the events with longer total traveltimes than the primary in D,. The third
data, Ds, in eq. (2) is the same as D,. Once the data are prepared for the
shallowest horizon, the related internal multiples are predicted.

Assuming a layered medium with N layers where the interfaces between
layers are numbered with positive integers starting with the shallowest location,
the shallowest generator is represented by the primary R;8(t — t,;). Using eq. (2)
with

D, = Rio(t — t) — Ri’jka[t -+ e — tj)]

+ Rijmdlt — (6 + 6 + tn — t — )] + ..., Vi # 1,
D2 = R{(S(t - tl) N
D, =D, , (10)

the prediction gives multiples of the forms in equations 8 and 9 for first and
second order, respectively,

PIM,

R{R{R{(B[t - (ti + 4 = tj)] ’ v (11)
PIM, = RIRIRRRIR O]t — (t + t, + t, — t; — t)]
+ RIRRRIRO[E — (4 + t + t, — t; — )] . (12)
Theoretically, IMP must be applied one horizon at a time and the
predicted internal multiples must be removed from the data before selecting the
next horizon and predicting the next set of internal multiples.
Internal multiple prediction for the second horizon

In the following, I will only consider the traveltime of the events.

In general and under the assumption that the event selected and isolated
as generator in D, is a primary, we can write:

bm = 4 — 4 + 13)
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as the formula for the traveltime of the first-order internal multiples predicted
using primaries only;

tim = tix — 4+ th =& -t +6) —t, + ¢, (14)

would be the traveltime formula for an internal multiple predicted using two
primaries and a first-order internal multiple as subevents;

Gikmno = bk — 4 Tt = (G — G+ ) — 4 + (ty — t, + t) 15)
would be the traveltime formula for an internal multiple predicted combining
one primary and two first-order internal multiples, and combinations using
higher-order internal multiples. The assumption, of course, is that the algorithm
is selecting subevents that meet the condition longer-shorter-longer in traveltime,
and that this condition transfers to a lower-higher-lower condition in actual
depth (ten Kroode, 2002; Ramirez and Weglein, 2005a; Malcolm and de Hoop,
2005; Nita and Weglein, 2007). This assumption, or total traveltime
monotonicity condition, is equivalent (only for 1D layered media) to the
pseudodepth monotonicity condition, governing the inverse scattering algorithm.
If this condition is not met, the result is the prediction of artifacts. In the
problem considered here, the monotonicity condition is always satisfied for
internal multiples predicted with primary subevents, eq. (13), as demonstrated
by Ramirez and Weglein (2005a), but it is not always satisfied when internal
multiples are used as subevents (Ramirez et al., 2011). This is further explained
at the end of this section.

For the second horizon, one sets time t, = t,. Eq. (13) is the prediction
of first-order internal multiples with downward reflection at horizon 2, H2. Eq.
(14) will predict first- and second-order internal multiples. Eq. (15) will predict
different orders of internal multiples. The first, in traveltime, internal multiple
event that can be selected as a subevent in the algorithm’s prediction for H2 is
the internal multiple t,;,. A simple confirmation of this statement is the fact that
the subevent IMj};, has a total traveltime longer than the primary of the second
reflector, P, , which satisfies the monotonicity condition as long as the

traveltime of the third subevent, t,, is longer than that of P,. This particular
combination results in

biom = —t +6) -t +t, , vm > 2. (16)
With the help of simple algebra, one obtains
Giom = him =4 — 4 +t;, , Vm > 2, 17)

the traveltime of internal multiples with downward reflection at the first
interface and upward reflection at interfaces 2 and m. Observe that operating
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with the primary for the second horizon as generator predicts multiples
generated at the first (shallowest) horizon because the internal multiple subevent,
IM},,, contains an instance of +t,.

In general, if there is an extra instance of +t, in egs. (14) or (15), the
prediction is formed of internal multiples generated at the first horizon.
Selecting t, = t, forces the selection of t; = t;, and allows us to generalize the
result just obtained to

tom = G =4 + ) — 6+t =t —t; + t, =ty , (18)

t'1122mn0 = (tl - t1 + t’Z) - t2 + (tm - t"n + to)

= ti - t1 + tmno = tilmno H (19)

where 1 > 1 for both equations, m > 2 for eq. (18), and t_,, > t, in the last
equation. In fact, the latter condition is always true in a 1D earth, because any
internal multiple traveltime t,,, is longer than the traveltime of the second
shallowest horizon. Thus, eqs. (18) and (19) demonstrate that these
combinations always result in the traveltime prediction of internal multiples
associated with the first horizon.

H1

H2

H3

Fig. 2. The three diagrams on the left represent the subevents combined to predict the internal
multiple on the right. In this example, the two internal multiples (black) with traveltimes t,;, and t,,,
are convolved together and crosscorrelated with the generating primary (green) with traveltime t,.
The combination results in the second-order internal multiple (purple) with traveltime ty,,,.
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One can conclude that operating with the primary P, as generator in IMP,
results in the prediction of all internal multiples generated at horizon H2, all
first-order internal multiples generated at H1 except for IMj,, and all
higher-order internal multiples generated with at least one downward reflection
at H1. Fig. 2 illustrates the prediction of an internal multiple using the result in

eq. (19).

The condition of subevents having an instance of +t, in their traveltime
is a sufficient but not necessary condition to predict the traveltime of a true
internal multiple with the primary generator P, using IMP (Fig. 3). In fact,
specifically for P, acting as generator, all events will have the opportunity to act
as subevents in the prediction except for the primary with time t, and the
predicted events will have the true internal multiple traveltimes (no artifacts in
1D or multi-D as long as the monotonicity condition is satisfied). Hence,

Gikom = @t — g +t) -t +t, (20)
where i1 can have any value, j > i, k > i, and m > 2, and
tiomo = (G — § + ) — 4 + (t, — t, + 1) (21)

where 1, j, and k satisfy the same condition as in eq. (20) and t,,, > t,
corresponds to traveltimes of true internal multiples.

H1

H2

H3

Fig. 3. Example of an internal multiple predicted using the generator P,. Observe that only the
generator contains explicitly an instance of traveltime t,, but the combination still produces the
traveltime of a true internal multiple, (ty3; = 3t; — t; — t,).
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For the next horizons t, (! = 3,4,...), eqs. (14) and (15) will predict
internal multiples for the selected generating horizon, H/, a set of internal
multiples associated with any horizon in the overburden of H/, and artifacts.
Fig. 4 illustrates the prediction of an artifact.

If one considers eq. (14), and selects an internal multiple subevent
satisfying:

(1)  ty > t, where i, j,and k are integers smaller or equal to / — 1, then we
predict an artifact. One example would be the combination of the internal
multiple t,;, with the primaries t, and t,, (m > 3),

biogm = (O =t + ) — 4+t =t + @, —t) , (22)

which creates an artifact. Note that the condition to predict this artifact is t,;, >
t;. This condition is not always satisfied. For example, if t,;, < t;, the top mute
in D, and D; would mute the event t,;, and the artifact in eq. (22) would not be
predicted. However, one can always find a subevent combination that creates
an artifact like this; for example, t,,,;, could have a longer traveltime than t, (the
artifact will be very weak in amplitude, though). If one considers eq. (15) with
[ > 2, then having an internal multiple subevent satisfying relationship (i) is not
a sufficient condition to predict an artifact. The artifact will be predicted when

H1

H2

H3

H4

Fig. 4. The artifact on the right is predicted with the subevent combination described in eq. (22)
with m = 4, only if the condition t,,, > t, is satisfied.
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both internal multiple subevents satisfy relation (i), or when one internal
multiple satisfies relationship (i) and the second one satisfies:

(ii)  t,,e > t, where n and o are integers smaller than or equal to / — 1 and
m is an integer larger than /.

Observe that true internal multiples will be predicted if one internal
multiple satisfies relationship (i) and the second one satisfies:

(iii)  tp,, > t, where n is an integer smaller than or equal to 1 — 1, and m and

o are integers bigger than or equal to /. An example of such an internal multiple
is:

i = (G — 4 + 1) — t; + (t4 -4+t

L=+t —t+t =1t - 23)

Polarity

If we assume that the data contain primaries (let them be positive) and
internal multiples (negative for first-order, positive for second-order, and so
forth) then, for horizon 1:

()  Eq. (13) will predict first-order internal multiples with positive polarity.
A diagrammatic example is displayed in Fig. 5.

(0 Eq. (14) will predict second-order internal multiples with negative
polarity. A diagrammatic example is displayed in Fig. 6.

(i) Eq. (15) will predict third-order internal multiples with positive polarity.

Fig. 5. The three diagrams on the left represent the primaries combined to predict the internal
multiple on the right. In this example, the red primary (first horizon) is used as the predicting
generator for the internal multiple on the right.
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Fig. 6. The three diagrams on the left represent the subevents (two primaries and one internal
multiple) combined to predict the internal multiple on the right. In this example, the green primary
(second horizon) is used as the predicting generator for the internal multiple on the right. Observe
that the predicted internal multiple has the same traveltime as the internal multiple predicted with
horizon 1 in Fig. 5. The polarity of the internal multiple predicted with horizon 2 is the opposite of
the polarity of the prediction using horizon 1.

When we run the algorithm for horizon 2, items (j)-(jjj) remain valid for internal
multiples generated at the second horizon; however, for internal multiples
related to the first horizon:

(jb) Eq. (14) will predict first-order internal multiples with negative polarity
because instead of three primary subevents, two primaries and one internal
multiple from the data are combined.

(ijb) Eq. (15) will predict second-order internal multiples with positive polarity
because the prediction uses two internal multiples and one primary from the
data.

Remember that IMP multiplies the prediction by a factor of —1 [see egs.
(1) and (2)]. Hence, the internal multiples corresponding to a given horizon, H,,
predicted using the primary representing H, will have the correct polarity.

DISCUSSION

Let’s examine the non-top-down approach a bit further. Once we generate
the internal multiple predictions (or models) for a set of n horizons using IMP
with an unchanged input dataset, we have to deal with n models. Assuming that
all generating horizons (up to a level of interest) were identified and used, then

1. The first model, H1, contains events corresponding to all orders of internal
multiples associated with the first horizon. The predictions have the correct
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polarity (correct means that it corresponds to the polarity of the true internal
multiples in the data). No artifacts and no internal multiples from other horizons
are present.

2. The second model, H2, contains events corresponding to all orders of internal
multiples generated by the second horizon with the correct polarity, and a set
of internal multiples with incorrect polarity (opposite to the true polarity)
corresponding to traveltimes of most of the multiples predicted in (1). No
artifacts are present.

3. The third horizon, H3, will contain the internal multiples related to H3, plus
a set of events corresponding to internal multiples from H2 and H1 with
opposite polarity. It will also have the possibility of containing artifacts
(although they are less common than the repeated predictions of internal
multiples).

4. This can be generalized to an arbitrary number of horizons.

If one decides to ignore the fact that each prediction (except for H1)
contains events with traveltimes corresponding to internal multiples generated
at earlier horizons, then we can imagine running a set of sequential adaptive
subtractions. The multiples from H1 will be attenuated by adaptive subtracting
the H1 model from the input data, but these same multiples (the residual left
after the first subtraction) will be enhanced when we attempt to subtract the
multiples from the second horizon. The problem with this path is that in each
model (except for the one corresponding to H1), there is a combination of
events with different polarities, some correct and some incorrect. This must be
dealt with during the adaptive subtraction process. For example, one can
imagine that the traveltime, amplitude, and polarity analysis provided here
(complemented by the traveltime and amplitude analyses done by Weglein and
Matson (1998), Ramirez and Weglein (2005a), Ramirez Pérez (2007), and
Zhang and Shaw (2010)) would be helpful in improving the removal of internal
multiples from the data. For example, when Baumstein (2008) analyzed the
prediction for the second horizon (as generator) in a non-top-down approach,
he proposed to use a curvelet-based adaptive subtraction method that is able to
adjust the polarity of events individually. An example of this adaptive
subtraction method is given by Neelamani et al. (2008).

To illustrate the theory and analysis in this manuscript, I used 3D finite
difference, 2-parameter acoustic synthetic data generated with the 2.5D velocity
model in Fig. 7 and the density model in Fig. 8. The internal multiples were
predicted using a 3D implementation of IMP, equation 2 in a non-top-down
approach. The zero-offset gather of the input data is shown in Fig. 9, where the
green arrow point at the direct wave (not used in this algorithm) and the red
arrows point at the three primaries; the rest of the events are internal multiples
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Fig. 7. Velocity model: 2D slice of a 2.5D model.
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Fig. 8. Density model: 2D slice of a 2.5D model.
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Fig. 9. Zero-offset gather of the input data: The green arrow points at the direct wave and the red
arrows point at the primaries.

as the data were generated without the effect of the free surface. Because there
are only three horizons in the model, there are two generating horizons
corresponding to the two shallowest horizons. Thus, the first two primaries in
Fig. 9 are the ones that will be used as generating primaries in the algorithm.

Fig. 10 shows the zero-offset gather of the predicted internal multiples
using the first primary as generator. The corresponding location of the first
primary in the zero-offset gather is displayed with the dark green line, the light
green line illustrates the location of the second primary. All internal multiples
generated with the shallowest primary as generator, have the correct kinematics
and the correct polarity. The polarity of the true internal multiples in the data
are represented by the overlayed dotted and dashed lines. The dotted lines are
polarities for internal multiples of different orders generated at the shallowest
horizon, while the dashed lines correspond to the polarities of the two most
prominent internal multiples generated at the second horizon. The lines are
overlayed with the predicted events to demonstrate that the polarity in the
predicted events is correct. The polarities were picked at the peak amplitude of
each event, the negative sign of the polarity are represented with the red lines,
and the positive polarity with blue ones. As expected from the theory and
analysis, all predicted internal multiples correspond to different orders of
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internal multiples generated at the shallowest horizon (there are no events under
the dashed lines). No artifacts are present, the kinematics and polarity are
correct. Only the amplitudes and the wavelet have to be corrected in the
adaptive subtraction step (not shown here).
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Fig. 10. Zero-offset gather of the predicted internal multiples for the first horizon: The dark green
and the light green lines illustrate the first and second primary location in the zero-offset gather. The
dotted and dashed lines are polarity indicators. They represent the polarity at the peak amplitudes
of the true internal multiples. A negative polarity is displayed in red and a positive polarity in blue.

Fig. 11 show the zero-offset gather of the predicted internal multiples
using the second primary as generator. The dotted/dashed lines in blue and red
are the same as the ones in Fig. 10, indicating polarity and generating horizon
of the true internal multiples in the data. As expected from the analysis of the
non-top-down approach, when this approach is followed, the prediction for the
second generator generates all internal multiples for that horizon with correct
kinematics and polarity, and also generates all internal multiples for the
shallowest horizon (except for the internal multiple with traveltime t,,,
illustrated by the shallowest blue dotted line) with correct kinematics and
incorrect polarity. Fig. 12 shows a zoom of the zero-offset gathers for the
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generated internal multiples. The leftmost side of the figure shows the predicted
internal multiples using the shallowest horizon, and the rightmost side shows the
multiples predicted with the second generator. It is easy to see that the repeated
multiples have opposite polarity; those correspond to true multiples generated
at the shallowest horizon. In this figure, only one multiple generated by the
second horizon is visible; it starts on the right at 1.9 seconds. This multiple has
the correct polarity, as it corresponds to a true multiple generated at the second
horizon and it was predicted using the second primary as a generator.

Lo TSI P TR T TS P T T TR T T T I TR S I T TR U T T TR T T R
mw‘::' L G S JBS S S A S S NS B S S BN B IS IS U e BN S BN S B S N S S M A S BN B '"'.
nam w0
ol Nt =
s __\H\H—_ e
[T e
100 1000
1t 1o

L 3 1000

bl 1m0
e

Ll 1000

LEd L

Fig. 11. Zero-offset gather of the predicted internal multiples for the second horizon: The dark green
and the light green lines illustrate the first and second primaries. The dotted and dashed lines in red
and blue are negative and positive polarity indicators. They represent the polarity at the peak
amplitudes of the true internal multiples. This prediction is a non-top down approach, and hence,
the internal multiples generated at the second horizon are predicted with correct polarity, while the
predicted internal multiples corresponding to the first generator have opposite polarity.

CONCLUSIONS

The practical application of the almost entirely data-driven internal
multiple prediction algorithm, IMP, can be expected to happen in a
non-top-down approach or in a combination of a partial top-down-approach with
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a non-top-down. One reason for this is related to the sparsity of real data. Most
of the computation time in the prediction of internal multiples is related to input
data selection and interpolation done at each run of the IMP algorithm.

There are several reasons not to follow the layer-stripping method; among
others, the high cost of the algorithm is a factor as well as the fact that not all
generating horizons can always be identified when working with complex real
data. Also, residual multiples in a layer-stripping approach would have a
non-top-down-type of approach contribution. Hence, it is important to
understand the output of IMP when it is applied in non-ideal conditions.

The analysis in this paper provides general formulas that can explain the
output of IMP. Stated succinctly, if the layer-stripping approach is followed,
and if for each prediction, there is a perfect subtraction, then IMP will always
predict internal multiples with correct polarities. Some artifacts will still be
predicted. For the non-top-down approach, the story is different: IMP will
predict true internal multiples associated with the horizon used as a generator
with correct polarity, internal multiples associated with all horizons in the
overburden of the generator, with opposite polarity, and some artifacts. Due to

| P [Multiple generated at H2 |
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Fig. 12. Zoom of the zero offset gathers in Fig. 10 (leftmost) and in Fig. 11. The predicted
multiples associated with the shallowest generator have opposite polarities. The polarities on the left
are correct. The event that appears on the right with no counterpart on the left is associated with the
second reflector and has the correct polarity.
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the fact that the prediction of artifacts requires internal multiple subevents, these
artifacts are weak in amplitude. Furthermore, there are specific conditions for
these artifacts to be predicted, which makes them a lot less common than the
prediction of events with the traveltime of a true internal multiple.
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