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ABSTRACT

Zhu, X., McMechan, G.A. and Gong, T., 2014. Linearized AVA inversion of PP and PS reflections
from low-velocity targets using Zoeppritz equations. Journal of Seismic Exploration, 23: 313-339.

The top of a reservoir is often a seismic interface of decreasing velocity. No critical angle
exists in reflections from such an interface, and so Zoeppritz reflection coefficients are closed-form
and accurate at all incident angles and frequencies. However, most existing AVO methods use
approximations to the Zoeppritz equations. These approximations assume small contrasts and small
angles, and the number of invertible parameters is usually limited to two or three (the so-called two-
or three-term AVO). We propose using the Zoeppritz equations for amplitude inversion of target
reflections without critical angles. The Fréchet derivatives are calculated analytically. We use a
linearized iterative least-squares inversion scheme. This algorithm is applicable to PP, PS, SS, and
SP reflections. We demonstrate that PP amplitude data can be invertéd for four parameters (three
velocity ratios and the density ratio), although joint inversion of PP and PS reflections can greatly
improve the robustness. The algorithm is superior to conventional approximations in that it works

for any large (decreasing) contrasts at any large angles; it is accurate and can invert for more
parameters.

KEY WORDS: AVA, joint inversion, reflection coefficients.

INTRODUCTION

Amplitude variation with offset (AVO), or with angle (AVA), have been
used to invert for elastic parameters and to predict rock and fluid properties.
The inversion usually minimizes the difference between the observed and
synthetic (predicted) AVA data by least-squares fitting. Before input to the
inversion, the observed amplitude data must be properly preprocessed. Ideally,
all amplitude effects other than the reflection coefficients (RCs) should be
compensated; these include geometrical spreading, attenuation, dispersion, and
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transmission losses (Deng and McMechan, 2007). In conventional AVA
inversion, the predicted amplitude data are calculated with various
approximations to the Zoeppritz equations (Russell et al., 2011).

Classic approximations to the Zoeppritz equations include those of
Bortfeld (1961), Aki and Richards (1980), and Shuey (1985). These linear
approximations decouple the elastic parameters and facilitate intuitive
understanding of how the parameter changes affect the reflection amplitudes
Russell et al. (2011). They are also easily applied to inversion problems thanks
to the simpler equations. However, the derivation of these approximations
assumes weak elastic contrasts and small incident angles. Higher-order
approximations (Ursin and Dahl, 1992; Wang, 1999; Ursenbach, 2002) push the
accuracy to larger angles. All these approximations break down as angles
increase, especially for large elastic contrasts.

Surveys with wide acquisition apertures, such as ocean-bottom nodes
(Beaudoin, 2010) and dual coil shooting (Moldoveanu et al., 2012), record large
incident-angle reflections from deep structures, so provide extra independent
data for AVA analysis, and make density inversion promising. Considering the
accuracy limits of the approximations, the Zoeppritz equations have been
explored for such large-angle AVA analysis (Zhu and McMechan, 2012a;
Lehocki et al., 2013). Ma et al. (2013) use the full Zoeppritz equation in
Bayesian generalized linear inversion. Zhi et al. (2013) solve the nonlinear
optimization problem of using the Zoeppritz equations with a trust-region
reflective Newton method (Coleman and Li, 1994).

Although more accurate than the approximations, the Zoeppritz equations
also have assumptions, such as plane waves, a sharp planar interface, and
infinite frequency. They do not work for spherical-wave reflections near the
critical angle. The Zoeppritz RCs do not include the propagation effects in
overburden (e.g., spreading, attenuation, and transmission losses), and effects
of the interface dip and curvature. Before using Zoeppritz equations, we need
to make sure that the model satisfies these assumptions and the observed AVA
data have been properly processed to compensate for these effects.

This paper is a continuation and extension, of our work in Zhu and
McMechan (2012a), to do target-oriented linearized Zoeppritz inversion. The
main innovations include choosing the Zoeppritz equations over the
approximations, parameterization of three velocity ratios and the density ratio,
justification of applying plane-wave RCs to spherical non-critical reflections,
linearization of the nonlinear Zoeppritz equations, and developing the analytical
Fréchet derivatives. The system of linear equations is solved by least-squares.
To invert for all the four ratios, additional independent data are required. We
investigate two options: using PP alone within wide angle ranges, and using
both PP and PS within less wide angle ranges. The first option requires
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ultra-long offsets, while the second option requires longer recording times (to
acquire the slower PS reflections).

This paper has two main sections: AVA modeling and AVA inversion. In
the modeling section, we give the equations of Zoeppritz RCs and their
approximations, and compare their model parameterizations. In the inversion
section, we introduce the linear system: structure, calculation, and conditioning.

Finally we present some inversion examples which demonstrate the new
capability of our algorithm to inverting for four parameters.

AVA MODELING
Zoeppritz equations

Assume an elastic model of two half spaces in welded contact. The
P-wave velocity, S-wave velocity, and density in the upper half space are
denoted as o, B,, and p;; and in the lower half space, as o,, 3,, and p,. The
plane-wave RCs for such a model are given by the Zoeppritz equations. The

explicit forms for PP and PS reflection amplitudes are given by Cerveny et al.
(1977) as:

Rpp = [Q? — 1, T, T; + r,T\T, — (1+Q)?T,T,
+ (r,—Q)?T\T; — (r,—Q—1)2T,T,T,T;]
nQ? + r,T,T; + r,T|T, + (1+Q)*T,T,
+ (r,—Q)?T\T; + (r,—Q—1)2T,T,T,T,] , (1)
for the PP reflections, and
Rps = 2r;'TLIQ01 + Q) + (1, — Q@4 — Q — DT, T,
nQ* + r,T,T; + r,T,T, + (1+Q)2T,T,
+ (r,—Q)?T\T; + (r,—Q—1)2T,T,T,T,] , )

for the PS reflections, where

Q = 2sin20(r,r3 — 13) (3a)
Ty = r1osinf/+/(1 — r2sin20) (3b)
T, = r;sin6/~/(1 — r?sin2) , (3c)
T, = 1,sin0/~/(1 — risin2f) |, (3d)
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and

T, = rysinf/+/(1 — risin?f) , 3e)
in which

Iy = ay/oy, 1) = oploy, 1, = Bi/ay, 13 = Byloy, and 1, = pylp, - )

In egs. (3) and (4), r, = 1 and T, = tanf are for internal consistency and
symmetry of the formulation, which leaves only five independent variables: the
incident angle (6) and four ratios (r;, 1,, 13, 1,). Thus, the Zoeppritz RCs

Rzprz = f(e’ rl’ I'2, I'3, 1'4) . (5)

At normal incidence (f = 0°), the elastic Ry, reduces to the acoustic reflection
coefficient (Zhu and McMechan, 2012b), and no PS reflection is generated (Rpg
= 0).

It is well-known that the (plane-wave) Zoeppritz RCs do not apply near
the critical angle (Alhussain et al., 2008). Therefore, we assume o, < o,
meaning r; < 1. All o, 8, and p are positive, which means the four ratios are
always positive. The fact that Lamé constants are always positive requires 3/
< 1/4/2, which means r, < 0.707 and r; < r,. This way all the square roots
in eq. (3) are real numbers. To summarize these constraints,

0<r <1, (6a)

0<r =<0.707 , (6b)

0<r<r <1, (6¢)
and

0<r, . (6d)

Approximations to Zoeppritz

Although precise, egs. (1) and (2) have often been considered to be too
cumbersome for application, and various approximations have been derived and
widely used in the conventional AVO analysis. Most practical applications are
focused on the Rpp, thus in this subsection we only discuss the approximations
to eq. (1). The most well-known approximations are the linearized versions
(e.g., Aki and Richards, 1980; Shuey, 1985), for which Russell et al. (2011)
give a comprehensive review. Desires for higher accuracy have been partly
satisfied by the fourth-order Taylor expansion (see eq. (B-10) of Ursin and
Dahl, 1992), the quadratic approximation [see eq. (10) of Wang, 1999], and the
pseudo-linear approximation (see eq. (2) of Ursenbach, 2002). These
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approximations are derived by assuming small contrasts and small angles and
thus dropping higher-order terms in the Taylor expansion of eq. (1).

For the purpose of comparison, consider only the linear approximation
(Aki and Richards, 1980; p. 153),

R,(0) = (sec?0/2)(Aa/a) — 4sin20(B/a)*(AB/B)
+ [¥% — 2sin?0(B/@)?(Ap/p) - (7)

and the quadratic approximation (Wang, 1999),

R,(0) = R,(6) + cosbsin?0(B/a)’[(Ap/p) + 2(AB/B)TF . ®)
In egs. (7) and (8), 6 is the average of the incident and refracted angles,

a=(q+ a)2, B=@B +B)2 and p = (o, + p;)/2 ©)
are the average elastic values across the interface, and

Aa = (0 — o), AB = (B, = By, and Ap = (o, — py) (10)
are the elastic contrasts across the interface.

The Shuey’s, quadratic, and pseudo-linear approximations are all based

on eq. (7). Thus their parameterizations are the same. The RCs corresponding
to the approximations

R, = f10,(A/@),(AB/B),(B/@),(Ap/p)] = f(B,F,,E5 858 - (11)

This classic parameterization [eq. (11)] is transformable from the ratio
parameterization [eq. (5)], using

f1/2 = (I’l - 1)/(1'1 + 1), f2/2 = (I'3 - rz)/(r3 + 1'2),
=@ +)(n+ 1), &W2=(@—- Di,+1), (12)

as expected, as both are based on the six elastic parameters across the interface.

Numerical examples

The purpose of this section is to compare the accuracy of the Zoeppritz
equation 1 and the approximate eqs. (7) and (8). To generate the "observed"
AVA as a benchmark, we choose elastic finite-difference (FD) modeling. FD
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solution of the heterogeneous wave equation with a point source simulates
spherical waves and includes full-wave effects (Kelly et al., 1976). The
well-known reflectivity method (e.g., Kennett, 1980) is not used because, as an
integral method, its integration kernel contains the Zoeppritz RCs.

We use an eighth-order staggered-grid FD solution of the elastodynamic
equations (Virieux, 1986), to produce the benchmark data for testing the
inversions. The model has only two layers, and the values of («,, o,, 8, 85, 1,
and p,) are (5.72, 2.87, 2.93, 1.61, 2.86, and 2.14). The units for velocity and
density are km/s and g/cm?, respectively. These numbers are consistent with an
anhydrite seal over a hydrocarbon-saturated sandstone reservoir (Martin et al.,
2006). The velocities are decreasing from the upper to the lower layer, so there
is no critical angle for either the PP or PS reflections. The explosive point
source is a Ricker wavelet. The sources and receivers are in the upper layer and
1 km above the layer interface. The receivers record the (multi-component)
vectors of particle velocity. The algorithm in Zhu et al. (2014a) is used to
extract the benchmark AVA from the t-x domain seismogram data. The
extracted amplitudes are corrected for geometrical spreading, and normalized
by the amplitude of the source wavelet. The source normalization (Zhu and
McMechan, 2014a) removes the source effects (including the frequency
dependency), similar to a deconvolution.

Fig. 1 shows the PP/PS AVAs modeled by the FD, the Zoeppritz
equations, and the linear and quadratic approximations, by crosses, red, green
and blue lines, respectively. The red line fits the crosses closely, indicating that
the Zoeppritz plane-wave RCs work well for the noncritical spherical-wave
reflections. For this model (of such large contrasts), the linear approximation
predicts higher amplitudes; the quadratic approximation is more precise at larger
angles (as expected), but both are not as precise as the Zoeppritz equation. This
is the main reason that we propose using the Zoeppritz equations for large

(decreasing) velocity contrasts and large angles; it is theoretically correct for
this case.

AVA INVERSION
System of linearized equations

From eq. (5), a maximum of four parameters can be estimated from the
plane-wave RCs (Ursin and Tjaland, 1996). They are the three velocity ratios
(r, 1y, 13) and one density ratio (r,), as further defined in eqs. (4). Our inversion
aims to invert for all the four ratios. It is currently common practice to derive
rock properties from the old model parameterization [eq. (11)], which can be
easily derived from the four ratios [eq. (12)]; if one has confidence in the o
and p, values, then o, 3,, 8, and p, can also be derived from the four ratios.
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Fig. 1. AVAs of Ry (a) and Ry (b) from different modeling methods. The red, green, and blue
lines are from the Zoeppritz equations, and the linear and quadratic approximations, respectively.
The crosses are the benchmark from the FD method.
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The inversion solves the system of linearized equations

ALX, = b, , (13)
where n = 4 is the number of unknowns (the parameter ratios), and m is the
number of AVA data points. The x is the model (ratio) update vector, and b
contains the differences between the predicted and observed AVA data. The
(synthetic) predicted AVA are modeled by the Zoeppritz equations, and the
observed AVA should be corrected for polarization, spreading, attenuation,
transmission losses, etc. In this paper, we use the FD benchmark AVAs (the
crosses in Fig. 1) as the observed AVA. A is the Jacobian matrix containing the
Fréchet derivatives, which are calculated analytically (see the following section).

To make the system over-determined, the number of independent data
must be m = 4. Then we use least squares to solve the system [eq. (13)] for the
model updates. After the model is updated, it is used as the starting model for
the next iteration. Iteration proceeds until convergence is reached, by the
criterion that the norm of data residual vector b cannot be reduced, or that the
norm of model update vector x is below a threshold value.

Fréchet derivatives

Wang (1999) notes that an immediate advantage of wusing the
approximations, rather than the Zoeppritz equations, is that the sensitivity matrix
of Fréchet derivatives of amplitudes with respect to elastic parameters can be
computed analytically from egs. (7) or (8); it is not necessary to compute these
numerically. However, since the Zoeppritz R;, and Rpg have explicit expressions
[egs. (1) and (2)], their Fréchet derivatives can also be derived analytically. We
use the symbolic manipulation tool in Mathematica® for this task (Zhu and
McMechan, 2012a).

Appendix A contains the Mathematica® script, and Appendix B contains
representative results for the analytic Fréchet derivatives of Ry, with respect to
I, I,, I3, and r,. These are straightforward to use after coded to computer
programs. To illustrate, we use the same elastic model as in the modeling
section: (o, o, By, B,, py, and p,) are (5.72, 2.87, 2.93, 1.61, 2.86, and 2.14).
The actual input parameters to the equations are the four unitless ratios (r;, 1,
13, and r,) set to (0.502, 0.512, 0.281, and 0.748), according to eq. (4). All the
examples in this paper use this as the true model, thus it is not repeated in the
following sections. Figs. 2 and 3 show the analytic derivatives of Ryp and Ry,
at incident angles of 10°, 30°, and 50°, by red, green, and blue lines,
respectively. We cross-check the analytic equations by also calculating the
derivatives numerically, by the three-step procedure of model perturbation,
Zoeppritz modeling, and differentiation. The squares, circles, and triangles in
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Figs. 2 and 3 are calculated numerically at 10°, 30°, and 50° incident angles.
The overlap of the points and lines validates both approaches. For both R, and
Rps, the three velocity ratios (r;, r,, r3) generally have higher derivatives at
larger incident angles, which means that the AVA curves have larger gradients,
or sensitivities to the elastic parameter ratios at larger angles.

In numerical calculation of the derivatives, an optimal parameter
perturbation needs to be decided. It needs to be small enough for the
differentiation to capture the local gradient,but not so small as to cause
round-off errors. The perturbation used is 0.001 for all four ratios. The analytic
method, of course, does not have this issue.
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Fig. 2. Fréchet derivatives of Ry with respect to the four ratios. The red, green, and blue liqes are
analytically calculated at incident angles of 10°, 30°, and 50°, respectively. The squares, circles,
and triangles are numerically calculated at 10°, 30°, and 50° incident angles.
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Condition number

The condition number is a property of the Jacobian matrix (A) in eq. (13).
It is defined as the ratio of the largest to smallest eigenvalues [if A is a square
matrix (i.e., m = n)] or the ratio of the largest to smallest singular values [if
A is nonsquare (i.e., m # n)]. The system is typically over-determined (m >
n), so we use singular value decomposition (SVD) to calculate the condition
number. If the condition number is high, the system is ill-conditioned, which
means that a small error in b may cause a large error in x. If the condition
number is low, the system is well-conditioned and the error in x will not be
much larger than the error in b.

To build the Jacobian matrix A, we define a maximum available incident
angle 6, and set the number of incident angles m = 10. The 10 angles are
sampled uniformly from 1° to 6,. The number of unknowns is four (n = 4), so
the dimension of A is 10 X 4 if only Rypp is considered. The elements of A (i.e.,
the Fréchet derivatives) are calculated analytically. The condition number of A
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is then calculated by SVD. Repeating this procedure for different 6, gives the
solid line in Fig. 4. If we use jointly Ry, and Ry, each angle has two data
points so the dimension of A becomes 20 X 4; the dashed line in Fig. 4
corresponds to this scenario. The condition number is much smaller when PP
and PS data are combined.

The oscillation of the solid line at 6, < 15° is mainly because the
smallest singular values are very small and oscillating, which indicates that it
is highly ill-conditioned to invert for the 4 ratios using R;p only at such narrow
angles. For both the solid and dashed lines, the condition number decreases with
increasing 6,,, which indicates a wider angle aperture stabilizes the inversion
system. We use a constant number of angles (m = 10) in all angle apertures.
As long as the system is over-determined (m = n), the factor that matters is not
simply the number of angles, but the angle aperture, which in turn indicates the
independence of the information in the data. Ry is another kind of independent
data, which, after being added to the system, reduces the condition number by
more than half (Fig. 4).
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Fig. 4. The condition numbers of the Jacobian matrices. The solid line is for using Ry, alone, and
the dashed line is for using Rp, and Ry jointly.
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Besides increasing the number of independent data (m), another way to
improve the conditioning is to reduce the number of unknowns (n). Examples
include using the linear approximation to invert for only two elastic parameters
(usually the impedances ap and (p), or using the quadratic approximation to
invert for only three parameters (i.e., Aa/a, AB/B, B/a), by assuming the third
and/or fourth parameters known a priori (Wang, 1999). These constraints may
come from different (independent) data types (e.g., well, lab, or lithology).

Inversion examples

As outlined above, we propose using the Zoeppritz equations and their
analytic Fréchet derivatives to do linearized iterative AVA inversion. First, we
compare PP inversions by Zoeppritz and by its approximations. Then, we show
numerical examples of inverting PP alone and PP/PS jointly, to explore the
effects of starting models, angle ranges, and noise. The constraints [eq. (6)] are
applied at each iteration of the inversions using the Zoeppritz equations.
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Fig. 5. AVAs of the PP RCs. The crosses are the observed AVA from FD modeling. The dashed
and solid lines are predicted AVAs from the starting and inverted models, respectively. The red,
green, and blue lines are for the Zoeppritz equation, and the linear and quadratic approximations,
respectively.
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Zoeppritz vs. approximations

We compare PP inversions of using the Zoeppritz eq. (1), the linear
approximation [eq. (7)], and the quadratic approximation [eq. (8)]. The
inversion system is the same for all three; the only difference is that the
Zoeppritz inverts for (r,, r,, 15, and r,), while the approximations invert for
(r,,r,,15, and 1,). The Fréchet derivatives of the approximations are easily
derived from eqs. (7) and ().

The crosses from FD modeling (in Fig. 1) are used as the observed AVA.
We choose a starting model close to the true model: (r,, 1, 3, and r,) are (0.6,
0.5, 0.3, and 0.7), or equivalently (¥,, t,, T5, and t,) are (—=0.5, —0.5, 0.5,
and —0.353). The incident angles used are from 0° to 40° sampled every 1°.
Fig. 5 shows the AVAs of the PP RCs. The crosses are the observed AVA (the
same as in Fig. 1). The dashed and solid lines are predicted AVAs from the
starting and inverted (at the 50th iteration) models, respectively. The red, green,
and blue lines are for the Zoeppritz equation, and the linear and quadratic
approximations, respectively. Fig. 6 shows the relative errors of the inverted
ratios, and Fig. 7 shows the total data residual errors.

From Fig. 7, both inversions using approximations are diverging, which
is confirmed by the ratios in Fig. 6. After 100 iterations (not shown), the
divergence continues. This demonstrates that the linear and quadratic
approximations are incapable of inverting for four parameters. With the same
angle range, the Zoeppritz inversion, in contrast, converges to the true model
within 6 iterations and stays there (Figs. 6c and 7). This demonstrates the
superiority of inversion using Zoeppritz to those using approximations; thus, for
the rest of the examples below, we do only Zoeppritz-based inversions.

Starting model test

In the previous example, we use a starting model close to the true model.
In this example, we test two starting models farther from the true model. We
compare inversions using PP alone and PP/PS jointly. The joint PP/PS inversion
has the same inversion system as PP-alone inversion, except the number of data
(m) is twice that of the latter, by adding the PS AVAs.

Fig. 8 shows the inversion results with the starting ratios (0.753, 0.768,
0.422, and 1.122) deviated from the true ratios by 50%. The incident angles
used are from 0° to 50° sampled every 1°. Both inversions (PP alone and
PP/PS jointly) converge to the true model within 20 iterations, while the
convergence path of the joint inversion is a little shorter.
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Fig. 9 shows the inversion results with the starting ratios (0.99, 0.50,
0.50, and 1.00). In this starting model, r; = 0.99 means almost no V, contrast.
The r, = 0.5 means the §,/a; = 0.5 which is a typical value in sedimentary
rocks. The r; = r, means no Vg contrast, and the r, = 1.0 means no density
contrast. The incident angles used are from 0° to 70° sampled every 1°. From
the same starting model, the inversion using PP data alone (Fig. 9a) falls into
a local minimum, while the joint PP/PS inversion (Fig. 9b) converges to the
true model at about 23 iterations.

Angle range test

Next we test the effects of the incident angle range on the inversion. In
Fig. 10, one maximum incident angle (6, corresponds to one inversion result
at the 50th iteration. The incident angles used in each inversion are from 0° to
6, sampled every 1°. The starting ratios (0.753, 0.768, 0.422, and 1.122)
deviate from the true ratios by 50%. For the relative errors to converge to
zeros, the PP-alone inversion (Fig. 10a) needs a angle range larger than 25°,
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alone, and (b) uses PP and PS data jointly.
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while the joint inversion (Fig. 10b) converges all four ratios to very small
relative errors (less than +0.06%) even with 6, = 4°, i.e., data at four angles
of 0°, 1°, 2°,and 3°. In Fig. 11, everything is the same as in Fig. 10, except
that the starting ratios are (0.99, 0.50, 0.50, and 1.00). The PP-alone inversion
(Fig. 11a) falls into local minima, while the joint inversion (Fig. 11b) converges
all four relative errors to less than +0.09% even with 6,, = 4°. In both Figs.
10b and 11b, all four relative errors are reduced to near zeros if the angle
apertures are wider than 12°.

Every linearized inversion (of a nonlinear problem) suffers the issue of
local minima, and thus requires that the starting model be "sufficiently close"
to the global minimum or the true model. For a given starting model, Fig. 10a
demonstrates that a wider angle range (more independent data) can help reduce
the local minima. However, the inversion may still fail even with ultra wide
angle ranges, if we use PP data alone (as in Fig. 11a). In contrast, the joint
inversion (Fig. 11b) works surprisingly well even with a very narrow angle
range. The robustness of the joint PP/PS inversion is much higher than that of
PP-alone inversion; this is consistent with Zhi et al. (2013). We have done
similar tests with many other true models (not shown); all the results support the
same conclusions.

Random noise test

We add some random noise to the benchmark AVA from FD modeling
(the crosses in Fig. 1), as the observed data (the pluses in Fig. 12). We test the
joint PP/PS inversion using Zoeppritz equations. The starting ratios are (0.99,
0.50, 0.50, and 1.00). The incident angle apertures used range from 20° to 70°
with observations spaced every 1°.The AVAs corresponding to the inverted
ratios are shown as red solid lines in Fig. 12, which exhibit good least-squares
fitting to the noisy observed data. The residual errors of the four ratios are
reduced from (97.31%, —2.39%, 77.64%, and 33.64%) to (0.55%, 1.24%,
4.84%, and —2.35%); the remaining errors are caused by the biased observed
data (the pluses in Fig. 12), because the noise added are not perfectly random.
The green, blue, and purple lines in Fig. 12 correspond to the same experiment
but using angle apertures of 60°, 40°, and 20°. It is obvious that a wider angle
aperture can also compensate for noise in the data. Coherent noise such as
multiples or P-S converted waves, or waves produced by cultural sources, may
contaminate the observations where they overlap in time and space with the
target data. This overlap will be more detrimental where the slowness of the
noise is also close to that of the target reflection. However, the data for each
reflection point are in common-reflection-point gathers, so each trace is from a
different source and receiver pair,which reduces the probability of unaliased
coherence over large offset apertures. Local interference will affect only the
local data.
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random noise. The dashed lines are the AV As from the starting ratios (0.99, 0.50, 0.50, and 1.00),
and the solid lines are from the inverted ratios. The red, green, blue, and purple colors correspond
to using angle apertures of 70°, 60°, 40°, and 20°. Compare with the correct solution in Fig. 1.
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DISCUSSION

We assume no critical angle (r; < 1) at the target reflector, so the
analytic Fréchet derivatives are derived knowing that all the square roots in eq.
(3) are real and thus that the Ry, and Rpg are real, and there is no phase
variation with angle (PVA). Such interfaces of decreasing V; (or r; < 1) are not
uncommon in hydrocarbon exploration. Examples include over-pressure zones
and reservoirs (such as gas sand) trapped beneath tight carbonates, salts, or
volcanics (which all have high V;). The underlying reservoir rocks have lower
V; because of their porosity and fluid saturation.

What if the target does have a critical angle? As they assume plane waves,
the Zoeppritz RCs fail near the critical angle. If the angle range considered is
below the first Fresnel zone of the critical angle, the algorithm may still be
applied. For near- and post-critical angles, one option is to use spherical-wave
RCs (Skopintseva et al., 2011; Zhu and McMechan, 2012b). Another option is
to decompose the spherical wavefield into plane waves (e.g., by the 7-p
transform) and still use the Zoeppritz RCs (Zhu and McMechan, 2014).

Now compare the Zoeppritz equations and the consequences of their
approximations. At large angles (excluding the neighborhood of the critical
angle), in models with large velocity or density contrasts, the approximations
to the Zoeppritz equations break down, while the Zoeppritz equations are
analytically accurate. If approximations give AVA sufficiently close to that of
the Zoeppritz RCs, they can be used in inversion; if not, the Zoeppritz
equations have to be used [instead of the approximations (Figs. 5, 6, and 7)].

Russell et al. (2011) give two arguments for AVA using linearized
approximations rather than the Zoeppritz equations; these provide an intuitive
understanding of the amplitude effects of the parameter changes, and instability
of nonlinear inversion by the Zoeppritz equation. Linearizing the nonlinear
Zoeppritz equation does provide simpler (and thus, easier) algebra, but at the
cost of accuracy (Fig. 1). We have shown that Zoeppritz modeling can be
integrated into a linearized inversion system and good stability is achieved.

Wang (1999) argues that analytic Fréchet derivatives are available for
approximations. We have shown that Fréchet derivatives can also be analytically
calculated from the Zoeppritz equations, by using symbolic manipulation
software to overcome the complexity of the algebra. The same strategy can be
applied to SS and SP reflections, thus the full elastic wavefield can be exploited.

Various parameterizations (besides eq. (11)] have been developed in
conventional AVA analysis, including the use of Poisson’s ratio and impedance
contrasts. Different parameterizations have different AVA sensitivities. Our
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algorithm uses the ratios [eq. (5)], for which the Fréchet derivatives are
available analytically. Besides, the ratios are more natural and intuitive than the
parameterization in eq. (11) which mixes the parameters across the interface.

The analytic accuracy of Zoeppritz RCs enables inclusion of larger angles
and to invert for four parameters, compared to conventional two- and three-term
AVO inversions. The four-parameter inversion may fall into a local minimum
if we use PP alone and the starting model is far from the true model. Wider
angle ranges of PP help but not as much as using the joint PP/PS data.
Numerical tests show that the joint PP/PS can reliably invert all four ratios from
PP/PS data with a narrow angle range and a starting model that is far from the
correct one (Figs. 10b and 11b). Long-offset surveys are preferred in that they
provide wide-angle apertures thus more independent AVA data constraints. For
even more robust AVA inversion, we recommend acquiring PS reflections with
multi-component receivers and longer recording times (than if we only acquire
PP reflections). The observed AVA can be extracted from either the data
domain (Zhu and McMechan, 2014), or the image domain via true-amplitude
prestack migration (Arntsen et al., 2013).

CONCLUSIONS

We propose a new AVA algorithm by using the Zoeppritz equations,
rather than the various approximations, for target-oriented inversion of
reservoirs whose velocities decrease at their tops. We use a parameterization in
terms of elastic parameter ratios, calculate the Fréchet derivatives analytically,
and solve the linearized system by least-squares. With this algorithm, we can
invert for four ratios with PP data alone; the joint PP/PS inversion can reliably
invert four ratios from data within a relatively narrow angle range and with a
starting model that is far from the correct model. A wider angle aperture is
necessary to offset noise in the data. This algorithm is particularly useful for
target-oriented AVA inversion of long-offset multi-component seismic data.

ACKNOWLEDGEMENTS

The research leading to this paper is supported by the Sponsors of the
UT-Dallas Geophysical Consortium. This paper is Contribution No. 1260 from
the Department of Geosciences at.the University of Texas at Dallas.

REFERENCES

Aki, K.T. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods, W.H.
Freeman, San Francisco.



336 ZHU, MCMECHAN & GONG

Alhussain, M., Gurevich B. and Urosevic, M., 2008. Experimental verification of spherical wave
effect on the AVO response and implications for three-term inversion. Geophysics, 73(2):
C7-Cl12.

Arntsen, B., Kritski, A., Ursin, B. and Amundsen, L., 2013. Shot-profile true amplitude
crosscorrelation imaging condition. Geophysics, 78(4): S221-S231.

Beaudoin, G., 2010. Imaging the invisible - BP’s path to OBS nodes. Expanded Abstr., 80th Ann.
Internat. SEG Mtg., Denver: 3734-3739.

Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of plane
longitudinal and transverse waves. Geophys. Prosp., 9: 482-502.

Cerveny, V., Molotkov, I.A. and Psencik, 1977. Ray Method in Seismology. Charles University
Press, Prague.

Coleman, T.F. and Li, Y., 1994. On the convergence of interior-reflective Newton methods for
nonlinear minimization subject to bounds. Mathemat. Program., 67: 189-224.

Deng, F. and McMechan, G.A., 2007. True-amplitude prestack depth migration, Geophysics, 72(3):
S155-S166.

Kelly, K.R., Ward, R.W., Treitel, S. and Alford, R.M., 1976. Synthetic seismograms: A
finite-difference approach. Geophysics, 41: 2-27.

Kennett, B.L.N., 1981. Seismic waves in a stratified half space - II. Theoretical seismograms.
Geophys. J. Roy. Astron. Soc., 61: 1-10.

Lehocki, I., Avseth, P. and Veggeland, T., 2013. Exact Zoeppritz-inversion of Vp/Vs ratio -
application to a Barents Sea gas reservoir. Extended Abstr., 75th EAGE Conf., London: Th
P15 0s.

Ma, J., Fu, G.P., Geng, J. and Guo, T.L., 2013. Full Zoeppritz equation-based elastic parameters
Bayesian generalized linear inversion. Extended Abstr., 75th EAGE Conf., London: Tu 10
14.

Martin, G.S., Wiley, R. and Marfurt, K.J., 2006. Marmousi2: An elastic upgrade for Marmousi.
The Leading Edge, 25: 156-166.

Moldoveanu, N., Ji, Y. and Beasley, C., 2012. Multivessel coil shooting acquisition with
simultaneous sources. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas,
doi:10.1190/segam2012-1526.1

Russell, B.R., Gray, D. and Hampson, D.P., 2012. Linearized AVO and poroelasticity. Geophysics,
76(3): C19-C29.

Shuey, R.T., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.

Skopintseva, L., Ayzenberg, M., Landre, M., Nefedkina, T. and Aizenberg, A.M., 2011.
Long-offset AVO inversion of PP reflections from plane interfaces using effective reflection
coefficients. Geophysics, 76: C65-C79.

Ursenbach, C.P., 2002. Optimal Zoeppritz approximations. Expanded Abstr., 72nd Ann. Internat.
SEG Mtg., Salt Lake City: 1897-1900.

Ursin, B. and Dahl, T., 1992. Seismic reflection amplitudes. Geophys. Prosp., 40: 483-512.

Ursin, B. and Tjaland, E., 1996. The information content of the elastic reflection matrix. Geophys.
J. Internat., 125: 214-228.

Virieux, J., 1986. P-SV wave propagation in heterogeneous media: velocity-stress finite difference
method. Geophysics, 51: 889-901.

Wang, Y., 1999. Approximation to the Zeoppritz equations and their use in AVO analysis.
Geophysics, 64: 1920-1927.

Zhi, L., Chen, S. and Li, X., 2013. Joint AVO inversion of PP and PS waves using exact Zoeppritz
equation. Expanded Abstr., 83rd Ann. Internat. SEG Mtg., Houston: 457-461.

Zhu, X. and McMechan, G.A., 2012a. AVO inversion using the Zoeppritz equation for PP
reflections. Expanded Abstr., 82nd Ann. Internat. SEG Mtg., Las Vegas.
doi:10.1190/segam2012-0160.1

Zhu, X. and McMechan, G.A., 2012b. Elastic inversion of near- and post-critical reflections using
phase variation with angle. Geophysics, 77(4): R149-R159. v

Zhu, X. and McMechan, G.A., 2014. Amplitude and phase versus angle for elastic wide-angle
reflections in the 7-p domain. Geophysics, 79(4): submitted.



LINEARIZED AVA INVERSION 337

APPENDIX A
SCRIPT TO DERIVE THE FRECHET DERIVATIVES

Mathematica® provides a symbolic manipulation tool. Running the
following script in Mathematica gives analytic expressions of the Fréchet
derivatives of the exact Zoeppritz equations for PP and PS reflections. Appendix
B contains the derivatives of PP with respect to r,, r,, r; and 1,.

Q = 2*Sin[theta] “2* (r4*r3*2-r2"2)

TO = Tan/[theta]

Tl = ri1*Sin[theta)/Sqrt[1-r1”2+*Sin[theta] *2]

T2 = r2*Sin(theta] /Sqrt[1-r2”2*Sin[theta] “2]

T3 = r3*Sin[theta] /Sqrt[1-r3”2*Sin[theta] *2]

Fl = QA2+r4*T1*T2+(r4-Q)A2*T1*T3

F2 = r4*TO*T3+ (14Q) "2*TO*T2+ (r4-Q-1) "2*TO*T1*T2*T3
F3 = 2/r2*T2*% (Q* (1+Q) + (r4-Q) * (r4-Q-1) *T1*T3)

Rpp (F1-F2) / (F1+F2)

Rps = F3/(F1+4F2)

Dt [Rpp, rl,Constant->{r2,r3,r4, theta
Dt [Rpp, r2,Constant->{rl,r3,r4, theta
Dt [Rpp, r3,Constant->{rl,r2,r4, theta
Dt [Rpp, r4,Constant->{r1l,r2,r3, theta
Dt [Rps, rl,Constant->{r2,r3,r4, theta
Dt [Rps, r2,Constant->{rl,r3,r4, theta
Dt [Rps, r3,Constant->{rl,r2,r4, theta
Dt [Rps, r4,Constant->{r1l,r2,r3, theta

e e e e e e e

APPENDIX B
CALCULATION OF THE FRECHET DERIVATIVES

This Appendix contains the Fortran codes for the four representative
Fréchet derivatives of Ry, with respect to ry, 1,, 15 and 1,.

This is the Fortran code to calculate the Fréchet derivative of Ry, with respect
to r;.

cl = (1 + Q )**2

c2 = (r4 - Q )**2

c3 = (r4 - Q - 1 )**2

dl = r4 / rl * T1**3 * T2

d2 = r4 / rl * T1 * T2

d3 = c2 / rl * T1**3 * T3

d4 = c2 / rl * T1 * T3

d5 = ¢3 / rl * TO * T1l**3 * T2 * T3
dé = c3 / rl * TO * Tl * T2 * T3
d7 = Q**2 + r4 * T1 * T2

d8 = c2 * T1L * T3 - r4 * TO * T3
d9 = - ¢3 * TO * T1 * T2 * T3
dl0 = - cl1 * TO * T2

dll = c2 * T1 * T3 + r4 * TO * T3
el =dl + d2 + d3 + d4 + d5 + dé
e2 = d7 + d8 + d9 + dio

e3 = d7 + d11 - 49 - dio0

e4 = dl + d2 + d3 + d4 - d5 - d6
fl1 = - el * e2

f2 = e3%%*2

f3 = e4 / e3

rpprl = f1 / £2 + £3
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This is the Fortran code to calculate the Fréchet derivative of R;, with respect
to r,.

ca=(1+0Q)

cb = (r4d - Q)

cc = (r4 -Q-1)

cl = (1 4+ Q )**2

c2 = ((r4 - Q )**2

c3 = ((r4 - Q - 1 )**2

c4 = 8 * r2 * gin(theta)**2

dl = - c4 *Q

d2 = r4 / r2 * T1 * T2%*3

d3 = r4 / xr2 * Tl * T224

d4 = cb * c4 * TL * T3

d5 = cc * c4 * TO * Tl * T2 * T3

dé = c3 / xr2 * TO * Tl * T2**3 * T3
d7 = ¢3 / xr2 * TO * T1L * T2 * T3

d8 = - ca * c4 * TO * T2

d9 = cl / xr2 * TO * T2*%*3

dl0 = cl1 / r2 * TO * T2

dll = Q**2 + r4 * Tl * T2

dl2 = ¢c2 * Tl * T3

dl3 = - r4 * TO * T3

dl4 = - ¢3 * TO * Tl * T2 * T3

dl5 = - ¢l * TO * T2

el =dl + d2 + d3 + d4 + d5 + d6 + d7 + d8 + d9 + dio
e2 = di1l + di2 + di13 + dl4 + dis

e3 = dil1 + di12 - di13 - di4 - dis

e4 =dl + d2 + d3 + d4 - d5 - d6 - d7 - d8 - d9 - dio
fl = - el * e2

f2 = e3**2

f3 = e4 / e3

rppr2 = £f1 / £2 + £3

This is the Fortran code to calculate the Fréchet derivative of Ry, with respect
to 1.

ca=(1+09Q)

cb = (r4 - Q)

cc = (r4 -Q-1)

cl = (1 + Q )**2

c2 = ((r4 - Q )**2

c3 = (r4 - Q - 1 )**2

c4 = 8 * r3 * r4 * gin(theta)**2

dl = c4 * Q

d2 = - cb * c4 * T1L * T3

d3 = c2 / r3 * T1 * T3%%3

d4 = c2 / r3 * T1L * T3

d5 = r4 / r3 * TO * T3%%3

dé6 = r4 / ¥r3 * TO * T3

d7 = - cc * c4 *x TO * T1 * T2 * T3
d8 = c3 / xr3 * TO * Tl * T2 * T3%%3
d9 = c3 / r3 *x TO * T1 * T2 * T325
dl0 = ca * c4 * TO * T2

dll = Q**2 + r4 * Tl * T2

dl2 = c2 * Tl * T3

dl3 = - r4 * TO * T3 .

dl4 = - ¢c3 * TO * T1 * T2 * T3

dlS = - ¢l * TO * T2

el =dl + d2 +d3 + d4 + d5 + d6 + d7 + d8 + d9 + di10
e2 = dl1 + di2 + di13 + di4 + dis

e3 = dill1 + di12 - d13 - di14 - dis

€4 =dl + d2 + d3 + d4 - d5 - d6 - d7 - d8 - d9 - di0
fl = - el * e2

f2 = e3**2

f3 = e4 / e3

rppr3 = f1 / £2 + £3
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This is the Fortran code to calculate the Fréchet derivative of Ry, with respect
to r,.

ca=(1+0Q)

cb = (r4 - Q)

cc = (r4 - Q- 1)

cl = (1 + Q )**2

c2 = (r4 - Q )**2

c3 = (r4 - Q - 1 )**2

c4 = 4 * r3**2 * gin(theta)**2
c5 =2 * (1 - 2 * r3**2 * gin(theta)**2 )
dl = c4 * Q

d2 = Tl * T2

d3 = cb * ¢c5 * T1L * T3

d4 = TO * T3

ds5 = cc * ¢c5 * TO * Tl * T2 * T3
dé6 = ca * c4 * TO * T2

d7 = Q**2 + r4 * T1 * T2

d8 = ¢c2 * Tl * T3

d9 = - x4 * TO * T3

dl0 = - ¢3 * TO * Tl * T2 * T3
dll = - ¢l * TO * T2

el =dl + d2 + d3 + d4 + d5 + de
e2 = d7 + d8 + d9 + d10 + di1l

e3 = d7 + d8 - d9 - di0o - dii

e4 =dl + d2 + d3 - d4 - d5 - de
fl = - el * e2

f2 = e3**2

f3 = e4 / e3

rpprd = £1 / £2 + £3





