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ABSTRACT 
 
Duan, C., Zhang, F., Han, L., Chang, X. and Yang, F., 2017. Journal of Seismic 
Exploration, 26: 561-585. 
 
 Full waveform inversion (FWI) is a high quality seismic imaging method. It is a 
nonlinear inversion problem which usually needs the monotone line search method to  
be solved. However, the speed of convergence for such a simple search technique is 
relatively slow. In this paper, we combine the non-monotone line search technique 
with the LBFGS method and apply them to the frequency-domain FWI. We test this 
new method on a two-dimensional Marmousi model. The results show that the 
method is robust. Comparing with the monotone line search method, the new method 
could improve the convergence rate of FWI. We also test the new method with a 
two-dimensional conventional streamer data set and the results show some 
improvements compared with the conventional FWI method. 
 
KEY WORDS: full waveform inversion (FWI), LBFGS method,  
      non-monotone line search, principal component analysis. 
                                   
INTRODUCTION 
 
 Full waveform inversion (FWI) could provide a high-quality model 
and help to obtain a better image in the complicated geologic structures. 
It is a data-fitting procedure based on the amplitude and phase 
information of seismic data. We define the l2 norm of the difference 
between the calculated wave-field and observed wave-field as the 
objective function, then update the velocity model by minimizing it. The 
method was first introduced by Tarantola (1984) and developed by many 
others later (Benhadjali, 2011; Brossier, 2011; Schiemenz, 2013). 
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 Tarantola proposed the time domain FWI based on the generalized 
least-square method. In his approach, the gradient was calculated by 
cross-correlating the forward wave-field and back-propagation residual 
wave-field which avoid to directly solve the Fréchet derivative matrix. 
Pratt (1999) proposed the frequency domain FWI in the 1990s which 
reduced the computational work by using less frequencies during the 
inversion.  
 
 Realization of FWI depends on the optimization methods such as the 
steepest-descent method, the Newton method, the quasi-Newton method, 
the conjugate-gradient method and so on. The quasi Newton method is 
less computational intensive than the Newton method since it only 
updates the approximation of the Hessian matrix at each iteration of the 
inversion, which avoids the calculation of the Fréchet derivative matrix. 
On the other hand, the quasi Newton method has inherited the advantages 
from the Newton method, which has a faster convergence speed 
compared with the steepest- descent method. The famous quasi Newton 
calibration formulas include R1(Broyden, 1965), SR1(Broyden , 1967) 
DFP，BFGS, PSB and so on. Among all the formulas above, The BFGS 
(Broyden–Fletcher–Goldfarb–Shanno algorithm) method is generally 
regarded as the most effective quasi Newton method for the optimization 
problems and has been widely used in the recent years (Ma, 2012; Cheng, 
2010). It requires lower precision for line search when compared with the 
conjugated-gradient method (Byrd, 1989). However, the BFGS method 
has to store an N order matrix, which will cost lots of the internal storage 
with large model size. Necoda (1980) proposed the limited memory 
BFGS method（LBFGS method) which avoids to store the iterative matrix. 
The LBFGS method produces searching direction by utilizing the current 
negative gradient and m vector pairs ( , )(i) (i)s y  generated by the BFGS 
method. Here i = k − m + 1, … k. Thus, the LBFGS method can save the 
internal storage and also accepts the unit step-length. The most 
commonly used search technique at present is monotone line search. The 
monotone line search technique requires monotonically decreased values 
of the objective function, which reduces the convergence rate of the 
iterative sequence (Sun, 2002). Grippo (1986) first proposed the 
non-monotone line search technique in 1986 and provided a broader 
means for the inexact line search. It requires no monotonically decreased 
values of the objective function, resulting a more flexible step-length and 
faster convergence rate. It could also avoid the local minimum point 
during the iteration and overcome the Maratos effect (Panier, 1991). Han 
et. al. (1997) modified the non-monotone line search technique proposed 
by Grippo and demonstrated the global convergence of the BFGS method 
in aspect to the convex objective function under the modified 
non-monotone Wolfe search. There are also some new non-monotone line 
search techniques have been proposed by many others in this century 
such as Zhang et al. (2004) and Shi et al. (2006). 
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 The application of FWI in field data is dramatically limited by the 
prohibitively high computational costs. To solve this problem, this paper 
adopt the principal component analysis (PCA) to reduce the model 
dimension (Liu et al., 2012). The main steps of the PCA method are 
singular value decomposition (SVD) of the misfit matrix, cumulative 
energy analysis and projection of the original data sets onto a 
lower-dimensional data space. 
 
 The non-monotone line search technique does not require the 
objective function to decrease monotonically but within M steps. This 
paper combined the non-monotone line search technique and LBFGS 
method in FWI. The new method is tested by using numerical examples 
based on the two-dimensional Marmousi model. The results show that 
FWI based on the non-monotone line search technique converge faster 
than the monotone line search FWI. The new method is also tested on a 
two-dimensional conventional streamer data. It improves the velocity 
model in the shallow parts compared with the conventional FWI method. 
 
 
METHOD 
 
FWI with principal component analysis 
  
Theory of FWI 

 
 FWI is a data-fitting procedure which minimizes the residuals 
between the observed wave-field and calculated wave-field to achieve the 
physical parameters of underground medium. FWI is widely used as it 
could provide a high precision model and help to obtain a better image in 
the complicated geologic structures. In this study, we use the frequency 
domain acoustic FWI method. Here we summarize the method for the 
sake of completeness. The two-dimensional frequency domain acoustic 
wave equation can be expressed as below:  

         
2

2
2(x, ) (x, ) (x, )
(x)p

u u s
v
ω

ω ω ω∇ + = −    ,       (1) 

where vP is the P-wave velocity, ω is the angle frequency，u(x,ω) and 
s(x,ω) are the wave-field in the frequency domain and the source term, 
respectively. Eq. (1) could be rewritten as a linear equation in the 
following matrix form: 
 

        (x, ) u(x, ) (x, )A sω ω ω=   ,                  (2) 
 

where A(x,ω) denotes the sparse impedance matrix. The seismic wave- 
field u(x,ω) can be achieved by solving eq. (2) given the velocity model 
and the source term. 
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 We define the 2l  norm of the residual as an objective function: 
 

            
2 2

2 2

1 1
2 2 cal obsE D d dδ= = −   ,            (3) 

where dobs and dcal indicate the observed wave-field and the calculated 
wave-field. The updated model can be expressed as the sum of the initial 
model m0 plus a perturbation model δm under Born approximation. 

        0m m mδ= +   ,                              (4)                             

            
1 ( )am H E mδ −= − ∇   .                         (5) 

  
 In eq. (5)，Ha indicates the approximate Hessian matrix and ( )E m∇  
denotes the gradient of the objective function, which can be achieved by 
cross-correlation between the forward wave-field and the back- 
propagation residual wave-field: 
 

            ( ) [( ) ( ) ]T T H
cal

AE m d m B
m
∂

∇ = −ℜ
∂

   .         (6) 

FWI is carried out by the iterative inversion based on eqs. (4), (5) and (6). 
 
  
Principal component analysis 
  
 Principal component analysis (PCA) is a classical mathematic and 
statistics method. It usually used in the data sets’ analysis and 
compression (Moore, 1981; Abdi et al., 2010). It can reduce the data 
dimension and increasing the calculation speed. In general, it could be 
divided into three steps when applying to FWI (Liu et al., 2012). (1) 
singular value decomposition (SVD) of the misfit matrix, (2) cumulative 
energy analysis and (3) projection of the original data sets onto a 
lower-dimensional data space.  
 
 The singular value decomposition (SVD) of the misfit matrix δD in 
eq. (3) can be expressed as following 
 
      δD = LXRH   ,                   (7) 
   
where L and R are complex unitary matrixes X is an Nr× Ns rectangular 
diagonal matrix of singular values σi = Xi,i. Then we compute the 
cumulative energy and select a suitable threshold χ to control the size of  
the projection matrix used for data reduction according to the equation 
below 
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 We can receive a sN k×  projection matrix Rk by saving the first k 
columns of matrix R. The k here in the PCA method is cross-ponding 
with source number. Projecting the original source matrix S observed 
data matrix dobs and calculated data matrix dcal onto the low-dimensional 
space using the projection matrix Rk, we can get the dimension-reduced 
source matrix Sk = SRk, the observed data matrix dobsk = dobsRk and the 
calculated data matrix dcalk. Thus the objective function in eq. (3) can be 
written as: 

    E = 1
2
dcalk − dobsk 2

2

   .               （9） 

 Replace eq. (3) by eq. (9) and iteratively update model m, we can get 
the final results of the FWI. Where the gradient is expressed as the 
following form after projecting into the low-dimensional space.               

        ( ) [( ) ( ) ]T T H
calk k

AE m d m B
m
∂

∇ = −ℜ
∂    .        (10) 

By using the principal component analysis method we can greatly 
increase the calculation speed without a great loss of inversion accuracy. 
 
 
Non-monotone line search 
  
 The monotone line search technique requires the object function 
monotonically decreases which tends to reduce the convergence rate of 
iterative sequence. The non-monotone line search technique only requires 
the objective function to decrease within limited steps, which not only 
increases the convergence rate but also avoids the local minimum, thus 
overcome the Maratos effect. It has been widely used since 1980s 
(Grippo, 1989; Raydan, 1997; Zhu, 2003; Zhao, 2005; Huang, 2009). 
 
Given the initial iteration point x0 and the positive integer m, M, m0 = 0, 
α > 0，0 < ρ < 1，δ > 0. 
 
 The non-monotone line search technique should satisfy the following 
condition: 

             kh
kα αρ=   ,                          (11)                      

  
0 ( )

(x ) max { (x )} T
k k k k j k k kj m k

f d f d gα δα−
≤ ≤

+ ≤ +   ,         (12) 
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where hk is the first non-negative integer which ensures step-length ak 
satisfies eq.（12, and m(k) = min{ m(k −1) + 1,M}. 
 

 
 
Fig. 1. Sketch for the non-monotone line search. 
 
 
 Fig. 1 shows an illustration of how the non-monotone line search 
technique may avoid the local minimum. x denotes the model，x1 is the 
initial iteration point, f (x) indicates the objective function，Xm1 is a local 
minimum point and Xm2 is a global minimum point .The inversion may 
easily plunged into the local minimum point when using the monotone 
line search technique. This is because the monotone line search technique 
requires the values of the objective function to decrease monotonically, 
that is f (x1) > f (x2) > f (x3) > f (x4). For the non-monotone line search 
technique only requires the values of the objective function to decrease in 
the limited steps, that is max{f (x1), f (x2), f (x3)} > f (x4). This allows the 
inversion to have more chance to avoid the local minimum point and 
reach the global minimum. 
 
 
FWI with NLBFGS 
 
 In this paper, we integrate the LBFGS method and the non-monotone 
line search technique into the FWI method. This will help to improve the 
ability of the FWI method in solving large-scale optimization problems 
and speeding up the convergence rate of the inversion. The inversion 
work-flow diagram is shown in Fig. 2. The whole work-flow could be 
divided into 5 steps: 
  
(1)  Choose initial parameters α，ρ，δ, M； 
(2)  Calculate model gradient gk based on the objective function; 
(3)  Determine step length α; 
(4)  Update the velocity model 
(5)  Repeat step 2 until the result satisfy the iteration stop criteria. 



 567 

 

 

Fig. 2. The NLBFGS FWI work-flow. 
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NUMERICAL EXAMPLE 

   
 In this section, we use a synthetic data set to test this method. We also 
discuss the effects of inversion results by using different initial 
parameters. 
  
 
Synthetic data set and general inversion work flow 
 
 The synthetic data set is generated from a modified Marmousi model 
shown in Fig. 1(a). The speed range of this model is from 1500 m/s to 
5000 m/s. The model size is 128×384 with 24 m gird size. The recording 
geometry consists 384 shots and 384 receivers with both 24 m shot and 
receiver interval. The source wavelet is 15 Hz Ricker wavelet. The range 
of used frequency in the inversion is from 2.9 to 27.9 Hz. We divide the 
inversion into two parts, lower and higher than 15 Hz. For the part lower 
than 15 Hz, we use the principal component analysis method to select 10 
to 20 shots from the whole data set for the inversion. For the part higher 
than 15 Hz, we use 19 super shots with 480 m interval. The frequency has 
been divided into 10 groups with a 0.6 Hz interval and each group has 10 
frequencies. Each group has been iterated for at least 25 times. The true 
model is shown in Fig. 3(a).  At the beginning, the smooth version of the  
 

 
(a) True model 

 
(b) Initial starting model 

 

Fig. 3. The initial starting velocity model. 
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true model is used as the starting model as shown in Fig. 3(b). The result 
from lower frequency group is used as the starting model for the higher 
frequency group. 
 
 
Initial parameters for the NLBFGS based FWI 
 
 The initial parameters play an important role in the NLBFGS base 
FWI. The choice of α , ρ ,M will greatly affect the results of the inversion. 
We will discuss the effects of these parameters to the inversion results. 
 
1. α is the initial step length and in theory the inversion only needs 0α > . 
Here we take 0.1α = ， 2α =  and 10α =  as an example to discuss the  
influence of α  on the inversion results. 
 
Table 1 illustrates some information of the NLBFGS FWI method with 
different α . It shows the whole inversion time, total iteration number 
and the error between the results and true models. The precision of 
inversion is quantitatively expressed by error function 
 

  2

2

100%inv true
res

true

m m
E

m
−

= × .  

 
The smaller Eres, the higher the precision. In order to determine the 
impact of the value of α on the inversion results, we use the fixed value 
for M and ρ  ( 2M = , 0.2ρ = ). Fig. 4 shows the inversion results when 
different α is used. From Table 1 and Fig. 4 we could find that when α  
is small ( 0.1α = ), αk is also small. This makes the model update to be 
very slow and needs a lot of iterations to achieve relative good results. 
When α is large（α = 10), it needs to calculate many times to find a 
suitable αk. This also needs a lot time and reduces the convergence rate of 
the inversion. According to our tests，we find that we could get a relative 
reasonable results when α is between 1 and 5. 
 
 
Table 1. The influence of α on the inversion results. 

 

 
α  

Time(s) Total iteration number      (%)resE   

0.1α =  161166           618      13.35 

2α =     119578           285      10.52 

10α =  157826           280      11.33 
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(a) Inversion result with 0.1α =  
 
 

 
(b) Inversion result with 2α =  

 
 

 
(c) Inversion result with α = 10 

 
 
Fig. 4. Inversion results with (a) α = 0.1, (b) α = 2, and (c) α = 10. 
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2. ρ  is the attenuation coefficient of α，in general we need 0 < ρ < 1.  
In this section, we discuss the influence of ρ  on the inversion results. 
Here we use 0.01ρ = ， 0.2ρ =  and 0.99ρ =  as an example. 
 
Table 2. The influence of ρ  on the inversion results. 

 
Table 2 illustrates some information of the FWI method with different ρ . 
In the test we used fixed value for M  and α  ( 2M = , 2α = ) only ρ is 
changed. Fig. 5 shows the inversion results with different ρ . From Table 
2 and Fig. 5 we could find that when ρ is very small ( 0.01ρ = ). As 

kh
kα αρ= , αk is also small. This will make the model update is very small 

for each iteration and reduce the calculation efficiency. When ρ is too 
large ( 0.99ρ = ), αk is almost unchanged during the iteration. If α0 did not 
satisfy the convergence condition，αk will not update during the whole 
inversion. This will lead to a failure to the inversion. According to our 
test, we could get a relative good result when ρ is between 0.1 and 0.7. 
 
3. δ is just a constrain parameter to avoid the very large and small update. 
It needs to be larger than zero. Usually we could choose a suitableδ based 
on the update value. In this test we choose 410δ −= . 
 
4. The choice of M  plays an important role for the success of NLBFGS 
based FWI. In this section, we discuss the influence of M  on the 
inversion. During the test we use fixed values for the other parameters 
( 2α = ， 0.2ρ = ， 410δ −= ). 
 
Table 3 illustrates some information of the FWI method with different 
M . Fig. 6 shows the inversion results for different M . When 0M = , we 
could find ( ) 0m k =  and 0j = ，the equation 
  
  

0 ( )
( ) max { ( )} T
k k k k j k k kj m k

f x d f x d gα δα−
≤ ≤

+ ≤ +  
 
could be written as ( ) ( ) T

k k k k k k kf x d f x d gα δα+ ≤ + . In this case we will 
change NLBFGS based FWI to LBFGS based FWI. From Table 3 we 
could find that as the value of M increased, the iteration time is reduced 
and the inversion precision is also increased. But when M is too large 
(M=6), it may not be suitable for the linear search condition. According 
to our test, M = 2 is a good start value. 

 
  ρ 

    Time(s)      Total iteration number    (%)resE   

  ρ = 0.01  157642             583      13.36 

  ρ = 0.2     119578             285      10.52 

  ρ = 0.99  239719            2500      ------ 
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(a) Inversion result with ρ = 0.01 

 

 
 
(b) Inversion result with ρ = 0.02 
 

 
 

      (c) Inversion result with ρ = 0.99 
 

 
Fig. 5. Inversion results with (a) ρ = 0.01, (b) ρ = 0.2, and (c) ρ = 0.99. 
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(a) Inversion result with M=0 

 
 

 
(b) Inversion result with M=1 

 
 

 
(c) Inversion result with M=2 

 

Fig. 6. Inversion results with M=0(a), M=1(b) and M=2(c). 
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Table 3. The influence of M on the inversion results. 
 
 

 
 
 As shown in Figs. 6(a) and 6(c), these represents the FWI results for 
the LBFGS and NLBFGS method. Comparing them with the true model, 
we can find the main structures of the model are well reconstructed for 
both methods. The NLBFGS method gives better result compared with 
the LBFGS one. It gives better structure reconstruction in both shallow 
and deep parts of the model. This is because it avoids the local minimum 
point by using the non-monotone line search technique. 
 
 Fig. 7 is the comparison between the true model and the results of the 
FWI based on the LBFGS and NLBFGS method at receiver number 205. 
From Fig. 7 we could find that at the depth less than 3 km both methods 
give similar results compared with true model. However, the NLBFGS 
method gives slightly better results when the depth is more than 3 km. 

 

 
 
Fig. 7. Velocity comparison at receiver number 205. 

 

 

M
（ 2α = ，

0.2ρ = ） 

   Time(s)     Total iteration number     (%)resE   

M=0    123079             408      11.98 

M=1    122878             326      10.83 

M=2    119578             285      10.52 

M=6    236762            2500      ------- 
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Fig. 8. Relative model error vs. frequency batch. 

 

 Fig. 8 shows the relative model errors plotting with frequency. This 
figure gives a comparison between the results based on the LBFGS (M=0, 
red dots) and NLBFGS (M=2, blue circles) method. Comparing with the 
monotone line search, the non-monotone line search has a better 
convergence rate. 
 
 
STREAMER DATA EXAMPLE 
  
 We also test our FWI method on a two-dimensional conventional 
streamer data. The length of the towline is about 8.1 km and the recording 
geometry consists of 500 shots and 81000 receivers. The shot position is 
100 m from the first receiver and the distance between each receiver is 50 
m. The data is prepossessed by using standard marine data processing 
steps. The key processing steps include low pass filtering, amplitude 
compensation and de-multiple. We also apply a 3D to 2D correction to 
the data sets which is necessary processing step for the FWI (Wang, 
2009). As the amplitude between the synthetic and real data set is quite 
different. We apply an amplitude correction to normalize both the 
synthetic and real data amplitude to 1. This means we basically do the 
phase only FWI here. Fig. 9 shows an example processed shot gather with 
different frequency filter. Based on that we determine the initial inversion 
frequency is 3.5 Hz. The inversion frequency range is from 3.5 to 15 Hz 
with 0.6 Hz interval. After several tests, we decide to not use frequency 
group and invert each frequency separately. In total, 19 frequencies are 
used and 60 iterations are done for each frequency. The inversion model 
size is 376×2327 and the grid size is 25 m. For the initial parameters for 
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the NLBFGS FWI we use 2α = ， 0.2ρ = ， 410δ −= , 2M = . 

 

 
 
Fig. 9. Example shot gather with different frequency range. (a) Processed shot gather, 
(b) low pass filter to 3.5 Hz, (c) low pass filter to 3 Hz, (d) low pass filter to 2.5 Hz.  
 
 
 The starting model is also key aspect for the success of the FWI 
problem since we only use the local optimization algorithm. To avoid 
cycle-skipping problem we need a relative good starting model. In this 
paper, we use a starting velocity model got by combine the migration 
velocity and the traveltime tomography as shown in Fig. 10. Fig. 11 
shows the synthetic shot gather generated by the starting model. We 
could find that it somehow reproduce the first several cycles of the real 
shot gather which gives us some confidence of the starting model. 
 
   

 
 

Fig. 10. The starting model. 
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Fig. 11. Shot gather comparison between real data (upper) and synthetic data 
generated by the starting model (bottom). 
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(a) The result of the LBFGS based FWI 

 

 

 
(b) The result of the NLBFGS based FWI 

 
 
 

Fig. 12. The results of the LBFGS based and NLBFGS based FWI. 
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(a) The velocity update for the LBFGS based FWI 

 

 

 
(b) The velocity update for the NLBFGS based FWI 

 
 

Fig. 13. The velocity updates of the LBFGS based and NLBFGS based FWI. 
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Fig. 14. Shot gather comparison between real data (upper) and synthetic data 
generated by the NLBFGS FWI final model (bottom).  
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(a) True checker pattern for the checker board test. 

 

 
(b) Recovered checker pattern. 

 
Fig. 15. Checker board test for the NLBFGS FWI. 
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(

(a) The migrated section based on the starting model 
 

 
(b) The migrated section based on the LBFGS based FWI result model 

 
(c) The migrated section based on the NLBFGS FWI result model 

 

Fig. 16. The Kirchhoff pre-stack depth migration results based on (a) the starting 
model, (b) the LBFGS based FWI and (c) the NLBFGS FWI. 
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Fig. 17. Two common image gather examples from different parts (upper and low 
figure) of the profile using different velocity model. 
 
 Fig. 12 shows the comparison of the FWI results between the LBFGS 
and the NLBFGS method. Fig. 13 shows the velocity updates of both 
inversion method. Both methods improve the model resolution and the 
main improvement is located in the shallow parts (from 0 to 3 km). We 
could also find that the NLBFGS method gives some different structure 
updates compared with the conventional LBFGS method. Fig. 14 shows 
the shot gather comparison between the real shot gather and synthetic 
shot gather generated by the final result model with the NLBFGS method. 
The synthetic shot gather shows some similarities with the real shot 
gather in early arrival waveforms. Although it is not a perfect match, this 
provides us a quality control of the final results. We also run a checker 
board test to check the resolution of the NLBFGS method. This is carried 
out by perturbing the velocity model by +2-5% with a 1650 by 1650 m 
checker. The checker pattern and recovered checker pattern is shown in 
Fig. 15. We could clearly see that the checker is well recovered in the 
shallow parts of the model (from 0 to 3 km). This gives us some 
confidences of our final velocity model at least in the shallow parts. 
Fig.16 shows the Kirchhoff pre-stack depth migration results of the 
starting model, the conventional LBFGS based FWI method and the 
NLBFGS based FWI method. From the results we could find the 
NLBFGS result model gives best migration image. It improves the 
migration image and removes some artifacts structures. Fig. 17 shows 
two common image gather examples from different parts of the profile 
using different velocity model. Some reflections are more coherent and 
flatter in the gathers using NLBFGS FWI velocity model compared with 
the one using LBFGS FWI model. This is consistent with the differences 
between the migration sections obtained using the LBFGS and NLGFGS 
FWI velocity models. 
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CONCLUSIONS    
 
 The non-monotone line search technique could increase the 
convergence speed of FWI and avoid the local minimum point. The 
LBFGS method is generally regarded as the most effective quasi Newton 
method for optimization problems because of its stability, convergence 
and limited internal storage use. In this paper, we combine the 
non-monotone line search technique and the LBFGS method into the FWI 
method. We test the new method with both synthetic data and real 
streamer data. The synthetic example shows that the new method could 
provide higher accuracy and faster converge rate of the inversion. We 
also discuss the influence of initial parameters on the inversion results for 
our method. Try to give some general guideline for this method. The 
streamer data example shows the feasibility of applying the NLBFGS 
FWI method on the real data. The new method gives similar results 
compared with the conventional method but with less artifacts. It also 
improves the migration image in the shallow and even some deeper parts.  
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