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ABSTRACT

Guo, Q., Zhang, H.B., Liang, L., Shang, Z.P. and Huang, G.J., 2018. Density-sensitivity
study about nonlinear multiparameter prestack inversion based on the exact Zoeppritz
equation. Journal of Seismic Exploration, 27: 277-300.

Density information is of critical in identifying the presence and estimating the
saturation of hydrocarbon in the reservoir. However, density is difficult to estimate based
on conventional prestack inversion approach. In addition, prestack inversion is a nonlinear
and ill-posed problem. In order to alleviate the ill-posedness and obtain reliable density
information, we propose a nonlinear multiparameter prestack inversion method by
constructing the edge-preserving regularized objective function based on anisotropic
Markov random fields; we make an attempt to directly use the exact Zeoppritz equation
and employ fast simulated annealing algorithm to solve the nonlinear optimization
problem. Numerical analysis indicates that density parameter contributes relatively greater
on altering the reflectivity magnitude at small incidence angle. In 2D synthetic test, we
employ different gathers with specified angle range to test the inverted results and analyze
the sensitivity of density. The synthetic results demonstrate that we can obtain reliable
density result with small incidence angle by the proposed inversion method. In addition,
density results can be improved by scaling the regularization term of density. The inverted
density from the field data reveals detailed structural information and shows good
agreement with the logging curves; the satisfactory density inverted results from small
angle gather validates the conclusion from the numerical results.

KEY WORDS: density-sensitivity, prestack seismic inversion, exact Zoeppritz equation,
edge-preserving regularization, Markov random field.
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INTRODUCTION

Prestack seismic inversion methods based on amplitude variation with
offset (AVO) theory (Ostrander, 1984; Downton and Ursenbach, 2006;
Chapman et al., 2006) has already established itself as one of the most
powerful methods for estimating subsurface petrophysical properties.
Compared to conventional post-stack inversion, prestack inversion can
overcome the limited information of stacked seismic data from vertical
incidence and it can simultaneously obtain multiple elastic parameters, such
as P-wave velocity (Vp), S-wave velocity (Vs), and density (p). In particular,
density has long been recognized as a potential seismic indicator of fluid
saturation because of its linear relationship with porosity. In addition, given
its dependence on mineral composition, density can also be a diagnostic for
lithology. Therefore, a robust methods of density estimation based on
prestack seismic inversion is of great importance for oil and gas exploration.

The intrinsic nonlinearity of the Zoeppritz equation makes it less
pragmatic in practical application. Consequently, its linearized
approximations (e.g., Bortfeld, 1961; Aki and Richards, 1980; Shuey, 1985;
Fatti et al., 1994) have been derived and utilized instead. However, these
linearized approximations are restricted to weak-contrast boundaries and not-
too-large-offset cases (Aki and Richards, 1980), reducing the accuracy of
inverted results. In particular, Grossman (2003) pointed out that the
linearized approximations of the Zoeppritz equation for P-wave reflectivity
are relatively insensitive to changes in density, especially for limited-aperture
experiments (Lines, 1998; Ursenbach, 2002). Therefore, using the exact
Zoeppritz equations would be able to obtain density information with more
accuracy (Downton, 2005; Zhi et al., 2016). In addition, the complex operator
relating the model and data of prestack inversion remains a highly nonlinear
problem. In order to alleviate the nonlinearity and obtain a unique solution,
regularization strategy has often been used (Tarantola, 2005; Sacchi et al.,
2006). In particular, edge-preserving regularization (EPR) (Youzwishen and
Sacchi, 2006; Misra and Sacchi, 2008; Zhang et al., 2009; Theune et al., 2010;
Guo et al., 2016), by which the inverted results are regularized while the
geological edges or structures (e.g., faults, channel, and fractures etc.) are
preserved, has proved to be an effective technique. Moreover, model
nonuniqueness also cause local minima in the inversion. In such cases,
linearized or gradient-based optimization approaches (Tarantola and Vallete,
1982; Tarantola, 2005) usually highly depend on the initial model and fail to
reach the global minimum. In absence of sufficient prior information, global-
optimization techniques could obtain better results, such as simulated
annealing algorithm (Sen and Stoffa, 1996; Ma, 2002; Chen et al., 2006),
particle swarm optimization (Yan and Gu, 2013; Paasche and Tronicke,
2014), and genetic algorithm (Ji et al., 2000; Aleardi and Mazzotti, 2017). In
particular, the fast simulated annealing (FSA) algorithm (Varela et al., 2006;
Zhang et al.,, 2009; Sen and Stoffa, 2013) has been widely applied in
geophysical inversion problem because it can obtain a global optimum result
without depending on the initial model.



279

Difference between inverted parameters can significantly destabilize
the results of multiparameter inversion. This comes down to the sensitivity of
elastic parameters to seismic amplitude variations. Zong et al. (2012, 2013)
proposed that the density term embedded in the fluid or Young’s modulus is
difficult to estimate because it is less sensitive to seismic amplitude
variations, and the indirect way can create more uncertainty for the
estimation of Young’s modulus and Poisson’s ratio. Ji et al. (2000) developed
the sensitivity study of elastic parameters, in which amplitude variation with
slowness for small- and large-offset seismic data is presented, in order to
handle the non-linearity beyond the critical slowness. For the sensitivity of
density, it is commonly believed that, compared with velocity parameters,
density is relatively difficult to be accurately estimated because of its
insensitivity to amplitude variations based on the linearized approximations
(Downton, 2005; Zhi et al., 2016). In order to obtain reliable density
information, scholars have made great efforts. Liang et al. (2017) proposed
the improved Fatti’s equation in which the sensitivity of the coefficient
associated with density to angle variation is enhanced. Huang et al. (2011)
analyzed the consistency of multiparameter in prestack inversion and
proposed a constrained inversion approaches which improves the accuracy of
the three parameters. In a word, it is worthwhile to conduct further analysis
on the sensitivity of density and the associated prestack inversion method to
obtain density information, especially based on the exact Zoeppritz equation.

In this paper, we propose a nonlinear prestack inversion method by
constructing the objective function including edge-preserving regularization
based on anisotropic Markov random fields; we employed FSA algorithm to
solve the nonlinear optimization problem and we make an attempt to directly
use the exact Zoeppritz equation. In particular, we focus our attention on the
sensitivity of density by investigating its contribution on altering the
reflectivity magnitude at different incidence angles. We test the inverted
results by using different gathers with specific angle range; we improve
density results by adjusting the weighting coefficient of the corresponding
regularization term. Aided by the proposed inversion method, we can obtain
satisfactory density results by using small angle range.

This paper mainly consists of three parts. First, we build the objective
function with edge-preserving regularization. Then, we analyze the density-
sensitivity by investigating the angle-dependent contribution on altering the
reflectivity magnitude. Finally, we demonstrate our method and conclusion
by both synthetic data test and field data example.

METHODOLOGIES

Forward operator

The Zoeppritz equation mathematically depicts the exact reflection and
transmission coefficients as a function of incidence angle and six seismic
parameters (i.e., P- and S-wave velocities, and density of the upper and lower
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medium) when plane wave strikes an elastic boundary. The matrix form of
the exact Zoeppritz expression can be written as (Aki and Richards, 1980)

Rpp —sing,
Ros sin6,
Ml = : (1)
PP —cos2g,
Tps sin2g,
[ sin g, cos@, -sing, - Cos @,
cos6, —sin g, cos 6, -sing,
M = |cos2¢, - Y51 gin 29, - £2 V2 oo 2, £ V52 gin 20, ?)
Vel Py RS P Vp 2
sin 26, mcosZcp, &%sin 26, &VLZV""COSZw2
Vsi P VsiVe2 P Vs

where M is the coefficient matrix; R is the reflection coefficient; 7 is the
transmission coefficient; v is the velocity; p is the density; subscripts P and S
denote P-wave and S-waves, respectively; subscripts 1 and 2 denote the
upper and lower media across the interface, respectively; 6, and 6, are P-
wave incidence and transmission angles, respectively; ¢, and ¢, are S-wave
reflective and transmission angles, respectively. We directly used eq. (1) as
the forward operator to calculate Rpp in the inversion. By introducing the
exact Zoeppritz equation, instead of inverting the velocity and density
contrasts (or reflectivities) as done in most linearized prestack inversions
(Kabir et al.,, 2006; Ma, 2002), we directly inverted the three parameter
values (P- and S-wave velocities and density) in order to reduce the
accumulation error and analyze the sensitivity of density parameters.

Objective function

We based our prestack seismic inversion on the convolutional model
between the reflectivities and source wavelet. Assuming that earth structure
is represented by a series of lateral layers with constant material properties
separated by planar interfaces, the earth model can be represented by a
discretized model parameter vector m. Therefore, for an one-dimension Earth
model, a seismogram d in discrete form can be expressed as

d(9)=w(9)*r(m,9)+e R (3)

where d(0) is the observed data (angle gather) corresponding to incidence
angle 0; m is the discretized unknown model parameters, i.e., m=[Vp, Vp, ...
Vens Vsi Vsa oo Vans p1 p2 ... pni)s #(0, Z) is PP reflection coefficient of
incidence angle which can be calculated by eq. (1); w(0) is the source wavelet
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of incidence angle; e is the random noise that is assumed to follow a zero-
mean Gaussian distribution with variance ¢°, and * denotes the convolution
operator.

Seismic inversion problem is defined as an optimization procedure
aiming at finding the model parameters that best fits with the observed data,
which is expressed as a measurement of the misfit between the observed and
the modelled data

1

Fy(m)= =

a’(@)— w(@)* r(m, 8]|2 . (4)

However, seismic inversion is usually an ill-posed problem which is
highly nonlinear and unstable. To alleviate the nonlinearity and make the
problem well-posed, we incorporated prior constraints to regularize the
inversion problem. By introducing the prior information or constraints to a
maximum a posterior (MAP) framework (Charbonnier et al., 1997), the
regularized objective function F can be rewritten as

F(m) = F(m)+ 2, F,(m)+ A, - Fy(m)

2(')2 d(e)-w(e)*r(m,a)"‘+A1-Z¢(D§.(m)/5)+4-Z¢(D§.(m)/5), (5)
where F, is the fidelity term; F;is the prior (regularization) term; Fj is the
constraint term from the logging data; m includes the inverted parameters
(i.e., Vp, Vs, and density); D"c(*) is the gradient function calculating the
model gradient; and ¢ is a potential (regularization) function. Note that F>
and F; introduce the penalty of the model parameter and the logging data,
respectively. In Eq. (5), three regularization parameters are employed, i.e.,
trade-off parameters A, and 4, which control the weight of the three terms,
and scaling parameter 6 which tunes the model gradient D(m) value above
which a discontinuity is detected. According to Markov random field (MRF)
approach (Charbonnier et al., 1997), k (k= 1, 2, and 3) denotes the MRF
order which controls the smoothness of the model parameter; C, and Cy
denote data cliques in MRF neighbourhoods which correspond to first-order,
second-order, and kth-order neighbourhoods. We will focus on discussing
data cliques (Cjx and C) and MRF order (k) in the next section. For
multiparameter inversion, the prior term F; takes the form of

F, =2, F,p(0)+ Fp (V) + Fys(Vs) > (6)

where Fsp, Fys, and F>p are the prior (regularization) terms of Vp, Vs, and p,
respectively. Note we add a weighting coefficient Ap to scale the prior term of
density (we will demonstrate that density result can be improved by properly
adjusting Ap in the synthetic test). Then F, can be rewritten as
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Fy=2y 2 8(DE(0) /8, )+ 2(DEW,) 18, )+ D o(DEVD1S) | (1)

C Cix Cii

where the scaling parameters ¢ corresponding to the three parameters (Jp, Js,
and Jp) are different, respectively. Note that the constraint term F5 is only
used along the traces where logging data are available.

In particular, the prior information or constraints imposed on the
objective function in eq. (5) is expressed through the form of potential
function, which assigns a penalty to every value of the model gradient
(discontinuity). Table 1 lists several commonly used potential functions and
Fig. 1 shows their prior probability distributions to illustrate the edge-
preserving properties. In Fig. 1, non-quadratic function @gy has the highest
and widest two wings of the prior probability distribution, which indicates
that the probability of accepting a large gradient for ¢gy is maximal.
Therefore, ¢gy can preserve edges or boundaries well. On the other hand,
quadratic function @gauss has the narrowest wings of distribution and thus
indicating the minimal probability of accepting gradients, therefore it usually
causes inverted results over-smoothed.
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Fig. 1. The prior probability distributions of the potential functions listed in Table 1. They
represent the gradient of velocity for example.
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Table 1. Potential functions (¢Gm, PGauss, and Pcauchy) and their associated weighting
functions.

Potential function Expression
¢Gmul ,2
".‘
¢(;.u 5 ,3
¢('uwly_r log(1+¢ %)

Anisotropic Markov Random Field neighborhoods

Now we discuss the MRF order & and the data cliques C (C, or () in
MRF neighborhoods in eq. (5). The prior term F; is the A-th order smoothness
on the prior information (Geman and Reynolds, 1992). For the central point S
shown in Fig. 2, the points numbered with 1, 2, and 3 are the first- (k= 1), the
second- (k = 2), and the third- (k = 3) order MRF neighborhoods, respectively,
and they correspond to piecewise constant, planar, and quadratic models,
respectively. For k= 1, 2, and 3, C) represent three types of the first-order
cliques (including diagonal adjacent points, involving two points), three types
of the second-order cliques (involving three or four points), and four types of
the third-order cliques (involving four or six points), respectively. The details
of calculating the gradient functions D*¢(m) for the cliques Cyy (k= 1,2,3) can
be referred to Geman and Yang (1995) and Zhang et al. (2007). Note that Cy
includes horizontal, vertical, and diagonal directions, and Cy for the
constraint term of logging data only contains vertical direction along the
wells available. Obviously, the order of the neighborhoods determines the
ranges affected by the constraint data. By analyzing the results of field
logging data, Zhang et al., (2007) pointed out that low-order neighborhood
keeps most feature (high-frequency components) of logging curve, while
high-order neighborhood roughly depicts the edges with large gradients (only
leaving low-frequency trend). Therefore, we take consideration of this
characteristic and we adopt multiple MRF orders strategy in the inversion,
i.e., making use of high order neighborhoods to wide-range search at early
stage and low order neighborhoods to locally search at late iterations.

However, the MRF neighborhoods introduced above are aimed at
isotropic media. In our case, we propose to properly select the cliques of the
neighborhoods in anisotropic media. Considering transversal continuity in
layered formation, we use all cliques of the first-order neighborhoods and all
horizontal cliques of the second- or third- order neighborhoods; however, we
cautiously use vertical cliques of the second- or third-order neighborhoods
because those may lead to instabilities. Then we propose the anisotropic
Markov random field (AMRF) neighborhoods, and the prior term F, can be
rewritten as

ﬂ(m)=}jaf--¢(Dé(m>/5) , )
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where ¢ are the weighting coefficients which adjusts the model gradient
value D(m) in different directions for AMRF neighborhoods. In eq. (8), the
coefficients a“c influence the role of gradient functions directionally. For the
transverse isotropic layered formation, we need to adjust o*c values in the
four directions in order to balance horizontal and vertical gradient functions.
Large value of a*c in horizontal direction can only allow small gradients to
be accepted, thus preserving lateral continuity of the layered formation; in
contrast, small value of ac in vertical direction permits large gradients across
interface to be accepted, which is helpful to large longitudinal gradient of
interlayers.

Fig. 2. The neighborhood system of Markov random field for the point S. The first-order
neighborhood consists of four points labeled by 1. The nth order neighborhood consists of
the points labeled by the numbers smaller than or equal to n. Note horizontal adjacent
points are adjacent traces and vertical adjacent points are adjacent samples.

Optimization approach

The inversion procedure is an optimization approach which minimizes
the objective function F in eq. (5). Considering the highly nonlinear
relationship between the observed data and the model parameters, we employ
FSA algorithm to achieve the global optimum. Compared to linearized
inversion methods, FSA can achieve globally optimal solution without
depending on initial model or being trapped into local minimal. We follow
the FSA procedure proposed by (Ingber, 1989). The perturbation of the next
candidate point of inverted parameters is expressed as

m) = m® T sign(y 0.5} [0+ YT =1 (my - ), 9)
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where m® and m*" are the current and perturbed value, respectively; [min,

mmax] are the range to which the model values are limited; y represents
random numbers of [0, 1]; sign(-) is the sign function; 7% is the current
temperature, starting with the initial temperature 7, which follows the
cooling schedule as

T® =T exp(-ck"") | (10)

where ¢ is the damping coefficient; and » is the dimension of the inverted
parameters. The initial temperature 7" is determined by the empirical
equation

exp(—%)=X ; (11)

where AE is the average increment of the energy; X is the initial acceptance
probability, which is closed to but not equal to 1, (e.g., X = 0.9). In each
iteration, the perturbed value is conditionally accepted according to the
acceptance probability P, which is expressed as

AE 1/(1-k)
; (12)

P=[1—(l—h)-m

where AE is the energy difference between the current and perturbed model
of the objective function in the &-th iteration, and 4 is a constant.

According to the acceptance criterion, the perturbed value is
unconditionally accepted if the cost function is small (negative variation)
relative to the previous point. If the perturbed value results in a higher cost
function (positive variation), then the perturbed value may still be accepted.
In the next section, we will discuss the angle-dependent contribution of
density on altering the reflectivity magnitude and the corresponding influence
on the acceptance probability at different incidence angles.

DENSITY-SENSITIVITY ANALYSIS

In this part, inspired by the work conducted by Kabir et al. (2006), we
numerically analyzed the sensitivity of density based on its contribution on
altering the reflectivity magnitude at different incidence angles (angle-
dependent reflectivity contribution). However, in our work, we directly
analyzed the three elastic parameters by using the exact Zoeppritz equation,
instead of their reflectivities; we also extended the analysis to three AVO
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classification models to gain confidence in the conclusion. Three models of
typical (Hilterman, 2001) (listed in Table 2) are employed for the analysis.

Table 2. Model parameters for three AVO classification (Hilterman, 2001).

Vp (m/s) Vs (m/s) l()g'jz:?)/
Moge].1 Ovetlying 2191 818 2.16
(Class III Shale
AVO) Gas Sand 1542 901 1.88
Model 2 Overlying
2642 1166 2.29
(Class I Shale
AVO) Gas Sand 2781 1665 2.08
Model 3 Oyerlying 3093 1515 2.40
(Class 1 Shale
AVO) Gas Sand 4050 2526 2.21

Fig. 3(a)—(i) shows the distribution curves for analyzing the sensitivity
(reflectivity contribution) for the three elastic parameters. In each sensitivity
analysis, we vary the value of the parameter of interest and set the values of
other two parameters fixed. We can find that density (Figs. 3(a), 3(d), and
3(g)) contributes greater on altering the reflectivity magnitude at small
incidence angle, because the divergence of the (five) distribution curves
(generated by varying the density value) is most significant at small
incidence angle and these curves gradually converge when increasing the
incidence angle. This trend can be observed in all the three models. In
contrast, velocities generally demonstrate the opposite trend, i.e., they
contribute less on altering the reflectivity magnitude at small incidence angle
and the contribution increases at large incidence angle. This is particularly
true for Vs (Figs. 3(c), 3(f), and 3(i)) in the three models and Vp [Figs. 3(e)
and 3(h)] (except for Model 1, in which the corresponding contribution is
similar at different angles). Therefore, based on the analysis of angle-
dependent reflectivity contribution, density parameter is sensitive at small
incidence angle and velocity parameters are sensitive at moderate or large
incidence angle.

Furthermore, the property of density’s angle-dependent reflectivity
contribution will effect the inversion results based on the proposed inversion
method. During the nonlinear inversion procedure, the perturbed density is
randomly generated according to eq. (9), because of the larger reflectivity
contribution at small incidence angle for density, the perturbed density will
consequently generate large energy difference AE in eq. (12) and increase the
probability to be accepted (or rejected). Therefore, we can obtain fine and
stable result of density by inverting the angle gather with small incidence

angle. Next, we need to verify the numerical results by testing synthetic and
field data.
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Fig. 3. The distribution curves for analyzing the sensitivity (reflectivity contribution) of
density (a, d, and g), Vp (b, e, and h), and Vs (c, f, and i). The red solid lines represent the
distribution curves for the three models listed in Table 2, respectively. The dash lines are
generated by varying the corresponding analyzed parameter. The units of velocities and
density are m/s and g/cm’, respectively.

SYNTHETIC DATA TEST

In this section, we demonstrated the proposed inversion method by
inverting the three parameters (Vp, Vs, and density) for synthetic data. In
particular, we tested the inverted density results by using different incidence
angles and by adjusting the weighting coefficient of the density prior term.
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The synthetic data for a 2D faulted anticline is prepared for the test (its

true models are shown in Figs. 4(a)—(c)). There are 61 CDPs and 175 samples
(2 ms sampling rate). Every CDP (angle gather) has 17 angle traces ranging
from 0° to 48° with an angle interval of 3°. Three angle wavelets,
corresponding to the near-, middle-, and large-offset, are zero-phase Ricker
wavelets with dominant frequencies of 35, 33, and 31 Hz, respectively. Fig.
4(d) shows the initial model of Vp. The initial model of Vs and density are
built as a function of Vp. In order to introduce the constraint term /3 in the
synthetic test, we took the 15th and 45th traces of the model as pseudo-wells
and extract their parameters as logging data.
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Fig. 4. The true models of (a) density, (b) Vp, (c) Vs, and (d) the initial ¥p model starting
for the inversion.

In the test, the initial values of A, and 4, were set to be 0.3 and 0.6,
respectively, and the initial values of J corresponding to Vp, Vs, and density
were set to be 250, 200, and 0.18, respectlvelx The optimization approach
was the FSA with an initial temperature 7% = 0.05 and a temperature
damping coefficient ¢ = 0.9 (annealing until reaching the threshold
temperature of 0. 00001). We adaptively adjusted the regularization
parameters (4 and 0) in the inversion, i.e., gradually decreasing 4 values and
increasing o values during the annealmg process. The regularization
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parameters were estimated by the maximum likelihood method which was
given by Zhang et al. (2007) in detail. Here only the first-order MRF
neighborhoods are tested.

Testing the results of density with different angle gathers

The angle gathers (corresponding to small, moderate, and large
incidence angle) prepared for the test are 1) from 0° to 12°, 2) from 21° to
33°, and 3) from 36° to 48°. Figs. 5(a)—(i) shows the inverted results of
density, Vp, and Vs by using the (three) angle gathers, respectively, and Figs.
6(a)—(1) show the residuals of the inverted results with the corresponding true
models, respectively.

For the inverted results of density (Figs. 5(a)~(c)), we find the result by
using the small incidence angle is better after comparing the three.

CcoP coP copP
0 : 30 3 0

Fig. 5. The inverted results for (a) p, (d) Vp, and (g) Vs by using the angle gather of 0°—
12°; for (b) p, (e) Vp, and (h) Vs by using the angle gather of 21°-33°; and for (c) p, (f) V»,
and (i) Vs by using the angle gather of 36°—48°.
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More relative residuals of inverted density are observed (Figs. 6(a)—
(c)) when increasing the incidence angle, particularly for these along the fault
and near the interfaces. However, for the inverted results of Vp (Figs. 5(d)-
(f) and Vs (Figs. 5(g)(i)), we find that they have a little discrepancy
between each other for a given angle gather, due to the relatively strong
correlation between Vp and Vs. Moreover, the inverted Vpand Vs by using the
angle gather of 21.0°-33.0° (Figs. 5(e) and 5(h)) and 36.0°-48.0° (Figs. 6(f)
and 6(i)) are better, in which the features along the fault is clearly revealed,
and this is also demonstrated by comparing the residuals shown in Figs. 6(d)—
(i). Therefore, because of density’s larger reflectivity contribution at small
incidence angle, we can obtain fine density results by using small incidence
angle based on the proposed inversion method. In addition, for inverting
velocities, moderate or large incidence angle gather is recommended.

Fig. 6. Relative residuals of (a) p, (d) Vp, and (g) Vs by using the angle gather of 0°—12°;
for (b) p, (e) Vp, and (h) Vs by using the angle gather of 21°-33°; and for (c) p, (f) Vp, and
(i) Vs by using the angle gather of 36°-48°, with the corresponding true models (in Figs.
4a—c), respectively. Note the relatively small residuals, particularly for those along the
fault and near the interface by using the small incidence angle for the density results.
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Velocity (m/s)

Fig. 7. The inverted results for (a) p, (d) Vp, and (g) Vs by multiplying density’s (J2p)
weighting coefficient of 0.6; for (b) p, (e) Vp, and (h) Vs by multiplying density’s (Jap)
weighting coefficient of 0.8; and for (c) p, (f) Vp, and (i) Vs by multiplying density’s (J2p)
weighting coefficient of 1.2.

Improving the results of density by adjusting the prior term

In the previous inverted results, the results of density are relatively
worse than those of Vpor Vs. Furthermore, we attempt to improve the result
of density by adjusting the scaling parameter o, of the density prior term J,,
in eq. (7), i.e., increasing the value of J;,. But it only produces little effect on
the result of density because over-larger d, value adversely leads an unstable
result. Therefore, we attempt to improve the result of density by directly
scaling the prior term J,,, i.e., adjusting the density prior term by
multiplying a weighting coefficient 4, in eq. (7).
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Fig. 8. Relative residuals of (a) p, (d) Vp, and (g) Vs by multiplying density’s (Jap)
weighting coefficient of 0.6; for (b) p, (e) Vp, and (h) Vs by multiplying density’s (J2p)
weighting coefficient of 0.8; and for (c) p, (f) Vp, and (i) Vs by multiplying density’s (J2p)
weighting coefficient of 12 with the corresponding true models (in Figs. 4a—c),
respectively. Note the decreased residuals along the fault and near the interface with
increasing the weighting coefficient for the density results.

Here, we tested the synthetic data by varying the weighting
coefficients of the density prior term, which are 0.6, 0.8, and 1.2,
respectively. Figs. 7(a)—(i) shows the inverted results of density, Vp, and Vs
by using the (three) weighting coefficients of .J5p, respectively, and Figs.
8(a)—(i) shows the residuals of the inverted results with the corresponding
true models, respectively. For the inverted results of density (Figs. 7(a)—(c)),
we find that the inverted density by using the larger weighting coefficient
(Fig. 7(c)) is better; this is also demonstrated by comparing the three
residuals in Figs. 8(a)—(c), since the inverted results of the density become
closer to the true model with increasing the weighting coefficient. However,
the inverted results of Vp and Vs show the opposite trend. Those indicated
we can improve the density results by scaling the corresponding prior term;
however, it is difficult to simultaneously gain fine results of the three
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parameters. The improvement of the result of density is usually at a sacrifice
of the results of Vp or Vs.

Time Depth (ms)

Reflection

S3rd CDP 601st COP 1745th CDP
Angle()3 9 1521273339 3 9 1521273339 3 9 1521 27 33 39
1600}
e __
g 31
< 1700 ﬁ
5 B, ‘
e SEEECC
£
F 1800
———— S
1900k

(b)

Fig. 9. (a) The stacked seismic section of the field data. This section has three wells
%ocating at 53rd, 601st, and 1745th CDP; (b) The original angle gathers at the well
ocation.

FIELD DATA EXAMPLE

We further tested the inverted density result on 2D field data from the
South China Sea to gain confidence in our conclusion. The 2D prestack
seismic data has 1981 CDPs with an interval of 12.5 m and 165 samples
with a sampling rate of 2 ms, and has three logs (Wells 1, 2, and 3) which
are located at 53rd, 601st, and 1745th CDPs, respectively. Fig. 9(a) depicts
the stacked seismic section of the field data and Fig. 9(b) shows the
corresponding angle gathers near the three Wells. The incidence angles for
each angle gather are from 3° to 42° with an angle interval of 3°. We
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estimated three angle wavelets by the constrained least-squares method, with
zero-phase and the dominant frequencies of 30-35 Hz, shown in Fig. 10. In
addition, the initial models of ¥ and density (see Fig. 11) are built by using
the parameter values of several main layers extracted from the well logs, and
the 1nitial value of Vs is built as a function of Vp. There is a low correlation
value of 0.477 between the synthetic seismogram of the initial models and
the original prestack seismic data. The optimization approach and the
selected regularization parameter values are the same as those used in the
synthetic data test. In addition, we used multiple MRF order neighbourhoods
during the annealing process, i.e., using first-order when annealing
temperature 7 < 0.001, second-order when 0.001 < 7 < 0.005, and third-
order when 7> 0.005.

2.0 4

1.5

near

----=- middle

Amplitude

1.0 : r . ’ . r v .
-100 -50 0 50 100

Time (ms)

Fig. 10. The estimated source wavelets at Well 3 location by the constrained least-squares
method. These are the zero-phase wavelets with the peak frequencies of 30-35 Hz.

Figs. 12—-14 show the multiparameter inverted results by using the three
angle gathers of 3°-15°, 21°-30°, and 30°-36°, respectively. Comparing the
density results shown in Figs. 13(a)—(c), in which we can identify most of the
main structures. In particular, the one by using the small angle gather
demonstrates better performance in resolving the structural details (marked
by the arrow in Fig. 12(a)). Comparing the Vpresults show in Figs. 13(a)—(c),
it seems that the one by using the moderate angle gather shows better
resolution in revealing the top of the target layer (marked by the arrows in
Fig. 13(b)). Similarly, the Vs result by using the moderate angle gather
demonstrates better resolution (marked by the arrows in Fig. 14(b)). The
unsatisfactory inverted velocity results by using large angle gather may result
from the NMO stretch and offset-dependent tuning occurred in the far-offset
prestack data.



Time Depth (ms)

() ®) Velocity (mis)

Fig. 11. The initial models of (a) density and (b) Vp, built by smoothing the logging data of
several main layers.

Furthermore, Fig. 15 shows the comparison between the inverted
results (shown in Figs. 12—-14) in 1745th CDP and the logging curves in Well
3. We can observe that the general shape of the inverted results and the
logging curves shows good agreement and the structural boundaries are
revealed. The agreement for inverted Vpand Vs, by using the angle gather
from 21° to 30° (middle chart in Figs. 15(a)—(b)), are better than those of
others. In the agreement for inverted density, the one by using the angle
gather from 3° to 15° (upper chart in Fig. 15(c)) is better, especially between
the section of 1780-1810 ms. This, once again, demonstrated that we can
obtain satisfactory density results by using small angle gather; in order to
invert the velocity models, using moderate angle gather is a good choice.
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Fig. 12. The inverted density model by using the angle gather (a) from 3° to 15°, (b) from
21° to 30°, and (c) from 30° to 36°, respectively. The arrow indicates the structural detail
within the target layer.
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Fig. 13. The inverted Vp model by using the angle gather (a) from 3° to 15°, (b) from 21°
to 30°, and (c) from 30° to 36°, respectively. The arrows indicate the top of the target
layer.

Fig. 14. The inverted Vs model by using the angle gather (a) from 3° to 15°, (b) from 21°
to 30°, and (c) from 30° to 36°, respectively. The arrow indicates the structural detail
within the target layer.
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Fig. 15. Comparison between the inverted results (red lines) of (a) Vp, (b) Vs, (c) and

density and the corresponding logging curves (black lines) of Well 3. The range of angle
gather are from 3° to 15°, from 21° to 30°, and from 30° to 36°, respectively.
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CONCLUSION

In this paper, we proposed a nonlinear multiparameter prestack seismic
inversion method in order to handle the nonlinearity of prestack inversion
and obtain reliable density information. We directly used the exact Zoeppritz
equation as the forward operator and constructed the edge-preserving
regularized objective function based on the anisotropic Markov random field,
together aided with FSA as optimization approach. Special attenuation is
focused on the density-sensitivity study based on the angle-dependent
contribution on altering the reflectivity magnitude. We demonstrated the
proposed inversion method and the conclusion on both 2D synthetic test and
field data example.

Numerical analysis indicated that, based on the angle-dependent
reflectivity contribution, density is sensitive around small incidence angle
and its sensitivity decreases with increasing the incidence angle for all the
three AVO models; P- and S-wave velocity are sensitive at moderate or large
incidence angle for most of the AVO models.

The test of the synthetic data indicated that better inverted density can
be obtained by using small incidence angle; the results of both Vpand Vs, by
using the moderate or large incidence angle, are better. Moreover, the
inverted result can be improved by adjusting the weighting coefficient of
density prior term, i.e., the results of the density become accurate and stable
when appropriately increasing the weighting coefficient. However, it is very
difficult to simultaneously gain the satisfied results of the three parameters.
The attempt to obtain better density results is usually at the cost of the results
of S- and P-wave velocity.

In the field data example, we simultaneously obtained the inverted
models of Vp Vs, and density with structural details. Comparing the inverted
results with the corresponding logging curves, we see that they show good
agreement for most parts. In particular, the density result by using the small
angle gather shows better resolution in revealing structural detail.

ACKNOWLEDGMENTS

The authors would like to appreciate the JSE editor and the anonymous
reviewer for their valuable comments that led to great improvements in this
paper. The authors gratefully appreciate the sponsorship of the National
Natural Science Foundation of China (41674113 and 41374116), the project
of CNOOC (CNOOC-KIJ 125 ZDXM 07 LTD NFGC 2014-04), and the
Fundamental Research Funds for the Central Universities (2017B12014).



299

REFERENCES

Aki, K. and Richards, P.G., 1980. Quantitative Seismology: Theory and Methods. W.H.
Freeman and Co., San Francisco.

Aleardi, M. and Mazzotti, A., 2017. 1D elastic full-waveform inversion and uncertainty
estimation by means of a hybrid genetic algorithm—Gibbs sampler approach.
Geophys. Prosp., 65: 64-85.

Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of plane
longitudinal and transverse wave. Geophys. Prosp., 9: 485-502.

Chapman, M., Liu, E. and Liu, X.Y., 2006. The influence of fluid sensitive dispersion
and attenuation on AVO analysis. Geophys. J. Internat., 167: 89-105.

Charbonnier, P., Blanc-Féraud, L. and Aubert, G., 1997. Deterministic edge-preserving
regularization in computed imaging. [EEE Transactions on Image Processing, 6:
298-311.

Chen, J., Zhang, Z. and Liu, E., 2006. Anisotropic inversion of traveltimes and
polarization of wide-angle seismic data using simulated annealing. J. Seismic
Explor., 15: 101-118.

Downton, J. E., 2005. Seismic parameter estimation from AVO inversion. Ph.D. Thesis,
University of Calgary.

Downton, J.E. and Ursenbach, C., 2006. Linearized amplitude variation with offset (AVO)
inversion with supercritical angles. Geophysics, 71: E49-ESS.

Fatti, J.L., Smith, G.C. and Vail, P.J., 1994. Detection of gas in sandstone reservoirs using
AVO analysis: A 3-D seismic case history using the Geostack technique.
Geophysics, 59: 1362—1376.

Geman, D. and Reynolds, G., 1992. Constrained restoration and the recovery of
discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence,
14: 367-383.

Geman, D. and Yang, C., 1995. Nonlinear image recovery with half-quadratic
regularization. IEEE Transactions on Image Processing, 4: 932-946.

Grossman, J.P., 2003. AVO and AVA inversion challenges: a conceptual overview.
CREWES Research Report, 15.

Guo, Q., Zhang, H., Saeed, W. and Shang, Z., 2016. Features of Markov random field
about simultaneous inversion of pre-stack seismic data in transversely isotropic
media. Extended Abstr., 78th EAGE Conf., Vienna: Th P6 04.

Hilterman, F.J., 2001. Seismic Amplitude Interpretation. Distinguished Instructor Short
Course. SEG/EAGE.

Huang, H., Zhang, R., Shen, G., Guo, F. and Wang, J., 2011. Study of prestack elastic
parameter consistency inversion methods. Appl. Geophys., 8: 311-318.

Ingber, L., 1989. Very fast simulated re-annealing. Mathemat. Comput. Model., 12: 967-
993.

Ji, Y., Singh, S.C. and Hornby, B.E., 2000. Sensitivity study using a genetic algorithm:
inversion of amplitude variations with slowness. Geophys. Prosp., 48: 1053-1073.

Kabir, N., Crider, R., Ramkhelawan, R. and Baynes, C., 2006. Can hydrocarbon saturation
be estimated using density contrast parameter. CSEG Recorder, 31: 31-37.

Liang, L., Zhang, H., Dan, Z., Xu, Zi, Liu, X. and Cao, C., 2017. Prestack density
inversion using the Fatti equation constrained by the P- and S-wave impedance and
density. Appl. Geophys., 14: 133-141.

Lines, L.R., 1998. Density contrast is difficult to determine from AVO. CREWES
Research Report, 10.

Ma, X.Q., 2002. Simultaneous inversion of prestack seismic data for rock properties using
simulated annealing. Geophysics, 67: 1877-1885.

Misra, S. and Sacchi, M.D., 2008. Global optimization with modelspace preconditioning:
Application to AVO inversion. Geophysics, 73: R71-R82.

Ostrander, W.J., 1984. Plane-wave reflection coefficients for gas sands at nonnormal
angles of incidence. Geophysics, 49: 1637-1648.



300

Paasche, H. and Tronicke, J., 2014. Nonlinear joint inversion of tomographic data using
swarm intelligence. Geophysics, 79: R133-R149.

Sacchi, M.D., Wang, J. and Kuehl, H., 2006. Regularized migration/inversion: new
generation of imaging algorithms. CSEG Recorder, 31: 54-59.

Sen, M.K. and Stoffa, P.L., 1996. Bayesian inference, Gibbs' sampler and uncertainty
estimation in geophysical inversion. Geophys. Prosp., 44: 313-350.

Sen, M.K. and Stoffa, P.L., 2013. Global Optimization Methods in Geophysical Inversion,
Second Ed. Cambridge University Press, Cambridge, UK.

Shuey, R.T., 1985. A simplification of the Zoeppritz equations. Geophysics, 50: 609-614.

Tarantola, A. and Valette, B., 1982. Generalized nonlinear inverse problems solved using
the least squares criterion. Rev.Geophys. Space Phys., 20: 219-232.

Tarantola, A., 2005. Inverse Problem Theory and Model Parameter Estimation. SIAM.

Theune, U., Jensas, I. and Eidsvik, J., 2010. Analysis of prior models for a blocky
inversion of seismic AVA data. Geophysics, 75: C25-C35.

Ursenbach, C., 2002. Optimal Zoeppritz approximations. Expanded Abstr., 72nd Ann.
Internat. SEG Mtg., Salt Lake City:1897-1900.

Varela, O.J., Torres-Verdin, C. and Sen, M.K., 2006. Enforcing smoothness and assessing
uncertainty in non-linear one-dimensional prestack seismic inversion. Geophys.
Prosp., 54: 239-259.

Yan, Z. and Gu, H., 2013. Non-linear prestack seismic inversion with global optimization
using an edge-preserving smoothing filter. Geophys. Prosp., 61: 747-760.

Youzwishen, C.g. and Sacchi, M.D., 2006. Edge preserving imaging, J. Seismic Explor..
15: 45-58.

Zhang, H., Shang, Z. and Yang, C., 2007. A non-linear regularized constrained impedance
inversion. Geophys. Prosp., 55: 819-833.

Zhang, H., Shang, Z. and Yang, C., 2009. Adaptive reconstruction method of impedance
model with absolute and relative constraints. J. Appl. Geophys., 67: 114-124.

Zhi, L., Chen, S. and Li, X.Y., 2016. Amplitude variation with angle inversion using the
exact Zoeppritz equations - Theory and methodology. Geophysics, 81: N1-N15.

Zong, Z., Yin, X. and Wu, G., 2012. AVO inversion and poroelasticity with P- and S-
wave moduli. Geophysics, 77: N17-N24.

Zong, Z., Yin, X. and Wu, G., 2013. Elastic impedance parameterization and inversion
with Young’s modulus and Poisson’s ratio. Geophysics, 78: N35-N42.



