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ABSTRACT 
 
Muhumuza, K., Jakobsen, M., Luostari, T. and Lähivaara, T., 2018. Seismic monitoring 
of CO2 injection using a distorted Born T-matrix approach in acoustic approximation. 
Journal of Seismic Exploration, 27: 403-431. 
	
		 Monitoring the injected CO2 distribution is at the core of any carbon capture and 
storage project. Waveform inversion methods can be used to obtain high-resolution 
images for monitoring the injected CO2 in the subsurface, but remains computationally 
challenging. Efficient modelling approximations are desirable for solving time-lapse 
inversion problems and to test the settings in which they give accurate predictions. We 
employed the distorted Born approximation (based on scattering integral equation) to 
simulate time-lapse synthetic data for a CO2 injection scenario with a single injector, and 
benchmarked it against the finite element and exact T-matrix approach. The distorted 
Born approximation presented, considers a general heterogeneous reference medium; and 
provides a framework for imaging of regions of time-lapse variation using the baseline 
survey as a reference and the monitor survey as perturbed to directly estimate the 
perturbation. 
 

 Based on our simplified velocity model of CO2 injection, synthetic testing 
demonstrated that the new distorted Born approximation provides accurate predictions of 
the difference data seismograms. We tested the distorted Born iterative T-matrix (DBIT) 
inversion method on a synthetic dataset generated using T-matrix forward modelling, and 
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we investigated three inversion approaches. The inversion results showed that the DBIT 
method sufficiently retrieves the time-lapse velocity changes even in the cases of 
relatively low signal-to-noise ratio. The inversion approach that focused on the time-
lapse data variation (perturbation only) gave improved results in noisy and noise free 
environments. We also applied DBIT inversion to a synthetic dataset generated using the 
finite element method, in order to avoid inverse crimes. The inversion recovered the 
trend of the velocity models, but with some inaccuracies in the estimates for the time-
lapse velocity changes. The DBIT method which considers a dynamic background media 
and T-matrix approach may be a potential tool in seismic characterisation of subsurface 
reservoirs and efficient for monitoring of CO2 sequestration. 
 
KEY WORDS: waveform inversion, inverse theory, time-lapse seismic, scattering theory, 
    wave propagation, computational seismology, CO2 sequestration. 
 
 
INTRODUCTION 
	
  The geological storage of carbon dioxide (CO2) is a promising 
strategy that can contribute to climate mitigation efforts (IPCC, 2014). The 
success of the strategy relies on the ability to securely isolate the stored CO2 
from oceans and the atmosphere. For this purpose, monitoring the injected 
CO2 distribution is at the core of any carbon capture and storage (CCS) 
project. Seismic methods have proven useful in monitoring the migration 
and accumulation of the injected CO2 in the subsurface (Shi et al., 2007; 
White et al., 2011; Chadwick et al., 2009; Couëslan et al., 2014; Ivandic et 
al., 2015; Pevzner et al., 2017). These methods are based on the fact that 
injection of CO2 into subsurface structures change their elastic properties, 
which in turn influence seismic wave propagation. 
 

 A common observation resulting from the injection process is an 
increase in reservoir pressure and a decrease in P-wave velocity of the 
reservoir formation (Carcione et al., 2006; Shi et al., 2007; Marston, 2013). 
Among the seismic monitoring methods, full waveform inversion (FWI) has 
received considerable attention for its advantage to properly map changes in 
CO2 distribution (Zhang et al., 2013; Romdhane and Querendez, 2014; 
Zhang et al., 2016). The FWI approach is preferred over other conventional 
seismic monitoring methods such as travel-time inversion and pre-stack 
Kirchhoff migration (Raknes et al., 2015; Kasahara and Hasada, 2016), 
because the FWI scheme can predict desired velocity changes from seismic 
data; providing more accurate estimates of CO2 saturation changes in the 
reservoir. 

 
 In principle, FWI is a non-linear data fitting procedure that aims at 

obtaining detailed estimates of subsurface properties from seismic data, by 
minimising the misfit between the observed and predicted data. It can be 
performed in the time-space domain (Tarantola, 1984; Sheen et al., 2006; 
Lähivaara et al., 2015) or in the frequency-space domain (Pratt, 1999; 
Jakobsen and Ursin, 2015). The frequency domain is considered less 
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computationally expensive, especially when relatively fewer frequencies are 
used to obtain accurate inversion results. This can be achieved by 
strategically selecting the frequencies used in the inversion (Sirgue and 
Pratt, 2004; Kim et al., 2011); finding a compromise between accuracy and 
computational cost. 

 
 Most successful applications of FWI for CO2 monitoring on both 

synthetic and real seismic data, are implemented with gradient-based local 
optimisation methods, or rather, more compute-intensive Newton-based 
methods (Zhang et al., 2013; Queißer and Singh, 2013; Raknes et al., 2013; 
Zhang et al., 2016). Current research efforts within FWI strive to reduce the 
computational cost by developing efficient approaches and testing the 
settings in which they give accurate predictions. One such approach is using 
scattering-integral-based methods (Haffinger et al., 2013; Jakobsen and 
Ursin, 2015). In relation to time-lapse imaging, the scattering theory 
provides a framework for imaging of regions of time-lapse variation using 
the baseline survey as a reference and the monitor survey as perturbed to 
directly estimate the perturbation (see Zhang, 2006; Innanen et al., 2014). 

 
 In this paper, we apply newly developed non-linear direct iterative T-

matrix method based on the distorted Born approximation (DBIT) (Jakobsen 
and Ursin, 2015), for time-lapse seismic monitoring of CO2 injection. We do 
this by generating synthetic data over layered media, before and after CO2 
injection. The target layer in the injection area is a few tens of meters deep. 
Shallow CO2 injection depths (<1000 m) are typical for many test sites (e.g., 
Gritto et al., 2004; Zhang et al., 2013; Nowroozi et al., 2016), where the 
objective is to have a controlled injection experiment to monitor migration 
and behaviour of gas plume. Our aim is to investigate the feasibility and 
efficiency of the DBIT, a new variant of distorted Born iterative methods, 
for solving time-lapse inversion problems. Contrary to adjoint-based FWI 
methods (Virieux and Operto, 2009; Liao, 2015), the DBIT method employs 
the use of Green’s functions to explicitly formulate the sensitivity matrix. 

 
 The recent proven success of waveform inversion applications in 

time-lapse problems has led to the development of different time-lapse data 
inversion approaches. These approaches that include parallel difference, 
sequential difference, and double-difference have been discussed in relation 
to FWI (Raknes et al., 2013; Zhang and Huang, 2013; Maharramov and 
Biondi, 2014; Asnaashari et al., 2015) and linearized waveform inversion 
(Ayeni et al., 2011). 

 
 Based on the aforementioned research, we investigate the feasibility 

of three inversion approaches for our synthetic data. In the first approach, 
the different seismic waveform data corresponding to baseline and monitor 
survey are inverted separately. We utilise the same starting model for the 
two separate inversions, then the difference between the inverted baseline 
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and inverted monitor models correspond to the time-lapse variation. In the 
second approach, we supply the inverted baseline model as the starting 
model for the monitor inversion known as the sequential difference 
(Asnaashari et al., 2015). This approach may be advantageous in that it is 
not affected too much by repeatability issues of the two acquisition surveys 
(baseline and monitor), and converges faster; however, artefacts may arise 
since the starting models are not consistent (Raknes et al., 2013). In the third 
approach, we apply double-difference waveform inversion (Raknes et al., 
2013; Zhang and Huang, 2013; Asnaashari et al., 2015), which is equivalent 
to inverting the time-lapse data variation (pertubation) only. Finally, we 
study the effects of noise to test which approach may maintain relatively 
low levels of image artefacts and provide accurate quantitative estimates of 
time-lapse velocity changes. Adding noise not only validates the stability 
but also makes the numerical experiments more realistic. 

 
 

METHODOLOGY 
 
The forward problem and distorted Born approximation 
 
 In many seismic experiments, modelling of reflection seismic data is 
achieved by assuming that the subsurface structure behave acoustically in 
order to simplify the algorithms and reduce the computational burden 
(Prieux et al., 2009; Ayeni and Biondi, 2010; Zhang et al., 2013; Romdhane 
and Querendez, 2014; Jakobsen and Ursin, 2015). In the acoustic 
approximation, only P-waves are modelled. If the density is constant in a 
region of domain Ω tot , the acoustic pressure field ( , , )sp ωx x  due to a source 
( , )s sf ωx  at position xs is governed by the Helmholtz equation: 

 

          ∇
2 +

ω 2

c 2 (x)

⎡

⎣
⎢

⎤

⎦
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where ( )c x  is the acoustic wave velocity as a function of position, ω  is the 
angular frequency, and δ  is the Dirac’s delta function. 
 

 We can separate the velocity model ( )c x  into a slowly varying 
background model (0) ( )c x   and a perturbation model m(x) 
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 For a finite range perturbation m(x), the Lippmann-Schwinger 
equation (e.g., Cohen and Bleistein, 1977; Ikelle and Amundsen, 2005; 
Colton and Kress, 2012) corresponding to eq. (1) can be expressed as 



	

 (0) 2 (0)
0( , , ) ( , , ) ( , , ) ( ) ( , , )ds s sp p k G m pω ω ω ωʹ ʹ ʹ ʹ= + ∫x x x x x x x x x x     ,           (3) 

 
where ( , , )sp ωx x  is the outgoing wavefield, (0)

0 /k cω= is the wave number and 
(0) ( , , )sp ωx x  is the incident wavefield for the known Green’s function 
(0) ( , , )sG ωx x  of the background model, expressed as  

 
 p (0) (x,x s ,ω) =G

(0) (x,x s ,ω) f s (ω)     .                                               (4) 
  
  The causal Green’s function (0) ( , , )G ωʹx x  in eq. (3) is the wavefield at 
point x due to a point source at ʹx in the background model and is a solution 
of the following equation 
 

 ∇2 + k 2⎡
⎣

⎤
⎦G

(0) (x, ʹx ,ω) = −δ(x − ʹx )     .                                              (5) 

 
 If the background model is homogeneous, explicit analytical solution 

of (0) ( , , )p ωʹx x  can be obtained; and the first-order Born approximation 
consists of replacing the total pressure wavefield by the incident wavefield. 
For inhomogeneous background models, characterised by a wave number 
that varies with position, the approximate Green’s function can be computed 
using ray theory (e.g., Thierry et al., 1998; Cerveny, 2005; Moser, 2012), if 
the model is a smoothly varying media with smooth interfaces. However, for 
any general heterogeneous background medium appropriate numerical 
methods such as the T-matrix (Jakobsen, 2012) and finite difference 
(Kirchner and Shapiro, 2001) can be used to compute the Green’s functions 
in the background model. In our work, we generate approximate Green’s 
function for a heterogeneous background medium using distorted Born 
approximation (DBA) based on the theory in Jakobsen and Ursin (2015). 
The theory establishes a connection between the Green’s functions ( , )G ʹx x  
and (0) ( , )G ʹx x  for the heterogeneous and homogeneous background media 
respectively through the so-called Dyson equation (Jakobsen and Ursin, 
2015) 
 (0) 2 (0)

0( , ) ( , ) ( , ) ( ) ( , )dG G k G m G
Ω

ʹ ʹ ʹ́ ʹ́ ʹ́ ʹ́= + ∫x x x x x x x x x x
  ,                (6) 

 
where Ω denotes the domain where the scattering potential is non-zero. 
 
  We can rewrite the Lippmann-Schwinger and Dyson eqs. (3) and (6) 
for the total wavefield in the form of a product of matrices for ease in 
discretization (Jakobsen and Ursin, 2015) such that 
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p (x) = p (0) (x)+ d
Ω∫ x1 G (0)

Ω∫ (x,x1) !V (x1,x2 ) p (x2 )dx2 ,           (7)

G (x, ʹx ) =G (0) (x, ʹx )+ d
Ω∫ x1 G (0)

Ω∫ (x,x1) !V (x1,x2 )G (x2 , ʹx )dx2 ,     (8) 
 

where !V (x1,x2 ) 	is the scattering potential with a (non-normalized) contrast 
function ( )m x 	compatible with the use of a general heterogeneous 
background media and is given by 
 

 !V (x1,x2 ) =m(x1)δ(x1 − x2 )    .           (9) 
 
Additionally, (0) ( , )G ʹx x 	is the modified Green’s function that incorporate 
the 2

0k  factor to allow for the spatial variation of the scattering potential on 
the remaining portion of the interaction (Kouri and Vijay, 2003) and is given 
by 
 
 (0) 2 (0)

0( , ) ( , ).G k Gʹ ʹ≡x x x x            (10) 
 

 The forward problem is to determine the pressure wavefield p(x), 
given a velocity model and knowledge of the source. 

 
 

Discretization and implementation 
	

 In order to implement any forward modelling and inversion, a suitable 
model discretization has to be carried out. Hence, the solving of the forward 
problem can be computationally achieved by discretizing the Lippmann-
Schwinger eq. (7) and Dyson eq. (8), using a discretization formulation 
given in Jakobsen and Ursin (2015). Since a typical acquisition geometry for 
a seismic survey consists of multiple sources with a given frequency band 
width and receivers, discretizing the data integral involves dividing the 
survey area into grid cells and getting discrete values for sources, receivers 
and frequency spectrum. 

 
 We assume that the seismic data is recorded at NR receivers 

{ }, 1,2,...,i RR i N∈ 	from NS	 sources { }, 1,2,...,j SS j N∈ . The survey area 
can be discretized into a set of NV grid cells representing the positions of 
scattering points { }, 1,2,..., .k Vx k N∈ 	Based on this discretization 
formulation, we can arrange the total and background wavefields at the 
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receiver positions (R)	 and scattering domain positions (V) into vectors 
(0)( )R RP P  and (0)( )V VP P . The discrete versions of eq. (7) become: 

 

      	PR = PR
(0) +GRV

(0)
VPV   ,         (11)																																																																														

       PV = PV
(0) +GVV

(0)
VPV   ,         (12) 

 
where V is a diagonal matrix with the scattering potential !V for a 
heterogeneous model at each scattering point. In a similar manner eq. (8) 
leads to 
 
        

(0) (0)
RV RV RV VV= +G G G VG ,                                     (13) 

and  
        

(0) (0)
.VV VV RV VV= +G G G VG                                                  (14) 

 
  The matrices considered in eqs. (11) - (14) are source-independent 
and contain the modified Green’s function introduced in eq. (10). 
 

Following eq. (11), the source-dependent relations for the data and 
domain equations can be expressed through source-receiver Green function 
matrices (0)

RSG 	and   RSG 	given by Jakobsen and Ursin (2015) 
 

       
(0)(0) ,RVRS RS VS= +G G G VG                          (15) 

 
where the corresponding matrices GRS and GVS as noted in eq. (12) are 
related by																											 

																							GVS =GVS
(0) +GVV

(0)
VGVS   .                  (16) 

 
 The formulas in eqs. (15) and (16) are referred to as the Dyson 
equations for the source-receiver and source-volume Green’s functions 
respectively (see Jakobsen and Ursin, 2015). The Dyson equations 
physically imply that there exists a connection between the Green’s 
functions for the background medium and actual (heterogeneous) medium 
through a multiple scattering process. From eq. (16), it follows that the 
source-volume Green’s function GVS	 for the heterogeneous media is 
computed by matrix inversion as 

        GVS = (I −VGVV
(0)
)−1GVS

(0)     .                      (17) 
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 We consider fN 	discrete frequency values 0jf jf= 	where 0f 	is the 

lowest frequency of the signal and 1,..., fj N= . Here, the value fN 	should be 
chosen such that aliasing is avoided and the size of each grid cell should be 
chosen small compared to the dominant wavelength. Let δd 	be a vector 
containing all the different frequency components of the scattered wavefield 
for all sources and all receivers. Using eq. (17) in conjunction with the 
Dyson eq. (15) we calculate the source-receiver Green’s function (for the 
heterogeneous background media) used for the forward modelling of the 
seismic data δd 	in the frequency domain 

 

 δd ≡ (GRS −GRS
(0) )f! =GRV

(0) VGVS f
!   ,        (18) 

 

where the S-dimensional vector f! 	contains information about the seismic 
source distribution. 
 

 In seismic time-lapse applications, we can estimate changes in seismic 
response corresponding to the same strata at different time intervals. This 
results into time-lapse (difference) seismograms that can be used to 
quantitatively study the changes in the subsurface properties. 

 
 

The inverse problem 
	

  The inverse problem involves finding the velocity model (scattering 
potential V) based on the seismic source information and the scattered 
pressure wavefield δd 	recorded by the receivers. A promising approach that 
provides high quality images of the subsurface is FWI. The approach uses 
the full information content including travel-times, amplitudes, converted 
waves, and multiples of the seismic data; to find a velocity model that 
matches the seismic wavefield. In general, FWI finds a model m that 
generates synthetic data (G(m)) that is close to observed (measured) data 
(d). The inverse problem can be formulated as a least-squares optimisation 
problem: 
 
  

2

2
Find such that ( ) ( )E = −m m G m d  is minimised,              (19) 

 
where E(m) is the objective function. 
 



	 411	

  We solve the inverse problem using an iterative method (discussed 
below) based on inverse scattering theory. Iterative inversion approaches 
have for long been used to perform full-wave non-linear seismic inversion in 
order to overcome the assumptions implicit in linear inversion (see Zhang et 
al., 2013; Liao, 2015; Jakobsen and Ursin, 2015). This is achieved by 
reducing a non-linear inverse problem into a sequence of linear inverse 
problems. Within the inverse scattering approach, it requires that the 
wavefield within the scattering domain is updated after each iteration. 

 
 

Distorted Born iterative T-matrix method 
 

  The distorted Born iterative T-matrix (DBIT) method, like any other 
method based on distorted Born iterative (DBI) approach, is motivated by 
expressing the field scattered by a medium relative to a heterogeneous 
assumed background. The underlying difference between DBIT and DBI is 
the use of the T-matrix for a dynamic background medium in the DBIT. 
This follows from combining the T-matrix approach (Jakobsen, 2012; 
Newton, 2013) with the distorted Born formulation. In the DBIT, the 
Green’s functions in the background medium are updated after each iteration 
using the T-matrix approach. The independence of the T-matrix on the 
source-receiver geometry suggests that the DBIT may have great potential in 
time-lapse seismics. We follow the treatment given in (Jakobsen and Ursin, 
2015) to deduce the formulas inherent in the DBIT inversion approach. 
 

 We begin by introducing the T-matrix perspective (Jakobsen, 2012) 
into the DBA. The source-independent Dyson eqs. (13) and (14) can be re-
written exactly by considering the fundamental definition of the T-matrix as 

 
                

(0) (0) (0)
,RV RV RV VV= +G G G TG                                                   (20) 

 
       

(0) (0) (0)
,VV VV RV VV= +G G G TG                                      (21) 

 
where the T-matrix T describes all the effects of scattering (Jakobsen, 2012) 
and is related to the scattering potential V through the equation 
 
                (0) 1( )VV

−= −T I VG V .                                                                     (22) 
 
  A similar treatment can be given to the source-independent Dyson 
eqs. (15) and (16) such that they can be rewritten exactly as 
 
               

(0)(0) (0) ,RVRS RS VS= +G G G TG                                                      (23) 
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(0)(0) (0) ,VVVS VS VS= +G G G TG              (24) 

 
 The formulation above allows us to use the T-matrix to compute and 
update Green’s functions in the background medium. 
 
 

 
 
Fig. 1. The DBIT method workflow for waveform inversion. 
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 Introducing a variation in the scattering potential δV and setting the 
background model to be equal to the model from the previous iteration, we 
can obtain a linear relation between the dynamic data residual δd for two 
iterations and the related variation in the scattering potential (Fig. 1). This 
makes it possible to avoid the inversion of a huge matrix at each iteration 
while introducing some approximations into the model updating procedure 
(Jakobsen and Ursin, 2015), and greatly reduces the computational cost. The 
waveform inversion is implemented in the frequency domain. Fig. 1 shows 
the work flow for the waveform inversion with the relevant formulas. 
 
  Details of the implementation for multiple sources and frequencies, 
and an explicit representation of the sensitivity matrix ( )iJ 	in terms of 
Green’s functions are discussed in (Jakobsen and Ursin, 2015). The 
inversion procedure shown in Fig. 1 reduces a non-linear inverse problem 
into a sequence of linear problems where the data residual vector ( )iδd  at 
iteration i  is 
 

 ( ) ( ) ( 1)i i iδ δ +=d J m ,                                                                  (25) 
 

where the vector ( 1)iδ +m 	represents the changes in all the model parameters 
between two successive iterations. For every grid block, the inversion 
process at each iteration i retrieves the components m(i) of the estimated 
model parameter vector m(i)		
	

											

2(0)
( )

2( )
1i

i

c
m

c

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟= −
⎜ ⎟⎡ ⎤⎣ ⎦⎝ ⎠

    ,                                        (26) 

 
where c and c(0) is the estimated wave-speed within each computational grid 
block for the actual and reference medium. The solution for ( 1)iδ +m 	results 
from minimising a regularised objective function: 
 

 
2 2( 1) ( ) ( ) ( 1) ( ) 2 ( 1)

2 2
( ) ( )i i i i iE δ δ δ λ δ+ + += − +im d J m m  .                         (27) 

 
 By constructing the Hessian matrix and gradient vector, we can use 

the conventional FWI notation provided in Virieux and Operto (2009) to 
write the model update formula that minimises the above objective function 
as 
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 ( ) 1( 1) ( ) ( ) ( ) 2 ( )( )i i i i iλ
−+ = + +m m H I g  .                                             (28) 

 
 In eq. (28), the vector g(i) and matrix H(i) represent the gradient vector 
and Hessian matrix at the i-th iteration, and are defined as (Jakobsen and 
Ursin, 2015) 

 ( )†( ) ( ) ( ) ,i i iδ⎡ ⎤=ℜ⎢ ⎥⎣ ⎦
g J d                                                                    (29) 

 

 ( )†( ) ( ) ( ) ,i i i⎡ ⎤=ℜ⎢ ⎥⎣ ⎦
H J J                                                                   (30) 

where †J  is the transpose of the Jacobian matrix and ℜ 	denotes the real part 
of a complex number. The data residual ( )iδd  at the i-th iteration is obtained 
by subtracting the quantity (0) ( )iJ m 	from the observed scattered wavefield 
relative to the initial model (0)

obsδd 	given as 
   
          ( ) (0) (0) ( ) .i i

obsδ δ= −d d J m 	 																																																																									(31) 
 
  The regularization parameter λ(i) stabilises the solution at each 
iteration i since the inversion problem is ill-posed. In this particular 
inversion scheme, λ(i) at the i-th iteration is chosen using (Farquharson and 
Oldenburg, 2004) 
 
 ( ) ( 1) *max( , )i iaλ λ λ−=  ,                                                                  (32) 

 
where *λ 	 is the optimal value of the regularization obtained using the L-
curve method and 0.1 < a < 0.9 (Jakobsen and Ursin, 2015). 
 
 
Time-lapse seismic inversion 
	

 Our goal is to apply FWI to time-lapse data; to invert time-lapse 
model changes. Hence, time-lapse inversion is a further step beyond 
inversion of a single survey dataset. It involves reconstructing the difference 
image of the subsurface between repeated survey datasets obtained at 
different time spans over a reservoir. Let us assume two different data sets 
(baseline db	 and monitor	 dm) corresponding to different time spans. We 
consider three inversion approaches to time-lapse seismic data, as illustrated 
in Fig. 2 and discussed below. 
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 In the first approach, we perform baseline model mb inversion and 
monitor model mm 	inversion separately by solving eq. (19), in order to 
obtain corresponding estimates est

bm 	and est
mm . We utilise the same starting 

model for the two separate inversions. The difference between the inverted 
baseline and inverted monitor models correspond to the time-lapse variation. 

 
 

 
 
Fig. 2. A graphical illustration of the general workflow of the first, second, and third 
inversion approach. 
 
 
  In the second approach, we supply the inverted baseline model as the 
starting model for the monitor inversion known as the sequential difference 
(e.g., see Asnaashari et al., 2015). The time-lapse model is obtained by 
subtracting the recovered baseline from the recovered monitor model. This 
approach may be advantageous in that it is not affected too much by 
repeatability issues of the two acquisition surveys (baseline and monitor). 
From the implementation point of view, this approach should reduce the 
number of iterations needed to reconstruct the monitor model since we are 
starting from the baseline model. We expect that if the baseline model is 
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close to the monitor model (as in most time-lapse problems), the 
reconstruction of time-lapse changes should be improved greatly. 

 
  In the third approach, also known as double-difference strategy 
(Raknes et al., 2013; Zhang and Huang, 2013; Asnaashari et al., 2015), we 
invert for the time-lapse data variation (perturbation only). This also 
involves using the recovered baseline model as the starting model for the 
inversion of the modified monitor dataset md 	
  

     ( )m s m b= + −d d d d    ,                                                                  (33) 
 

where sd 	is the synthetic data obtained using forward modelling in the last 
step of the recovered baseline model, and the quantity ( )m b−d d 	is the 
observed time-lapse data variation. To recover the time-lapse model, we 
subtract from the recovered model, the recovered baseline model. The 
double-difference strategy is expected to reduce artefacts in the recovered 
time-lapse model since possible inconsistencies in the baseline inversion 
have less effects on the time-lapse difference data reconstruction. We 
compare the three approaches to establish their robustness in reconstruction 
of time-lapse changes. 
 
 
NUMERICAL RESULTS 
 
  We examine the feasibility of distorted Born T-matrix approach for 
forward modelling and inversion; as a tool to monitor CO2 injection and 
identify zones of CO2 accumulation. For simplicity, we use a two-
dimensional acoustic approximation in our numerical experiments. It has 
been shown, for example, that acoustic FWI could be used for short-offset 
data (Barnes and Charara, 2009), and acoustic modelling is a potential 
approximation for time-lapse seismic modelling at the near and middle 
offsets (Shahin et al., 2011; Willemsen et al., 2016). 
 
 
The velocity model setup and CO2 injection 
	
  We created a two-dimensional velocity model in vertical cross-section 
corresponding to the geometry shown in Fig. 3. The successive layers 
1 2 3 4, , ,Ω Ω Ω Ω 	have velocities of 2200, 2500, 2400, and 2600 m/s. Red stars 

and blue dots in the diagram represent the source and receiver locations, 
respectively. The dimensions of the model are (length × depth) = 2400 m × 
960 m. In order to simulate a CO2 injection process in the model, we assume 
there is a single CO2 injector at a given depth in domain Ω 3. In this 
feasibility experiment, our injection point is at a depth of 500 m which is 
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100 m below the reservoir top. Shallow CO2 injection experiments (depth 
less than 1000 m) are typical for many test sites (e.g., Gritto et al., 2004; 
Zhang et al., 2013; Nowroozi et al., 2016). However, a larger depth of 
injection (greater than 1000 m) would ensure efficient utilisation of the pore 
spaces (since CO2 is in its supercritical state), and would enable a longer 
isolation of CO2 from the atmosphere. 

 

 
 
Fig. 3. Geological model geometries. (a) original model; (b) model with extended 
boundaries. The red stars show the positions of sources, blue dots show the positions of 
receivers on the surface, and the green dots show the positions of borehole receivers to 
the left and right edges of the original model. The black dotted line indicates the extent of 
the original model. 
 
 
  The baseline case corresponds to a model before CO2 injection (Fig. 
4a) and the monitor case (Fig. 4b) after two years of injection. We simulate 
the injection by a decrease in velocity values of the baseline model using a 
Gaussian model that simulates the injection of a fluid into a permeable 
reservoir layer. Although, the model has some limitations, mostly the 
simplified vertical distribution of the layers and unknown quantity of CO2 
injected, we obtain a reasonable picture of likely CO2 distribution in the 
reservoir layer. The velocity reduction is up to 100 m/s corresponding to 
about 5% decrease within the reservoir region (layer Ω 3). The velocity 
difference between the monitor and baseline (time-lapse model) are shown 
in Fig. 4c. 
 
 
Forward modelling of time-lapse data 
 
 We demonstrate the possibility of using distorted Born approximation 
eq. (8) for seismic forward modelling. The modelling parameters are shown 
in Table 1. We employed 50 sources, placed at intervals of 10 m from the x-
locations of 12 to 2364 m, and 101 receivers equally spaced at the surface 
along the lateral direction from x = 0 m to x = 2400 m. Our interest is to 
model the time-lapse seismograms corresponding to the difference structure 
accruing in the earth volume due to injection of CO2 and later reconstruct it 
within a non-linear inversion approach. The time-lapse synthetic data were 



	418	

generated by considering the baseline model (Fig. 4a) as the reference 
(heterogeneous background) medium and the monitor model as perturbed 
medium (see Zhang, 2006), such that the scattered field is directly connected 
to the difference data (time-lapse data).  For this case, the difference model 
correspond to the perturbation. 
 

 
 
Fig. 4. Time-lapse velocity models for CO2 monitoring: (a) baseline P-wave velocity 
model before injection; (b) monitor P-wave velocity model after injection; (c) time-lapse 
change of P-wave velocity (time-lapse model). 
 
 
Table 1. Modelling parameters for the 2D model. 
 
 
Number of grid-blocks    Grid size (m)   Sampling rate   Source function Record length 
________________________________________________________________________ 
 
           dz = 12 
     x x z = 200 x 80               0.01 s        Ricker wavelet           2s 
           dx = 12 
________________________________________________________________________ 
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 In order to make the numerical experiments more realistic, we add 
complex Gaussian white noise to each frequency component of clean 
synthetic data d using the formula (Jakobsen and Ursin, 2015): 
 

 

noisy

SNR
= + ⋅

d ed d
e  ,                                                                  (34) 

 
where SNR is the signal-to-noise ratio and 1 2( ) / 2i= +e e e 	is a vector of the 
white noise consisting of vectors 1e 	and 2e 	of same length as d, having 
random numbers taken from the zero-mean Gaussian distribution with unit 
standard deviation. The scaling in eq. (34) gives us the desired SNR, and the 
selected noise-level could be interpreted as the remaining noise level after 
removing all the acquisition-related effects from the seismic data. For our 
numerical experiments, we consider a noise level of 10% corresponding with 
a SNR equal to 20 dB. 
 
       Fig. 5 shows a common shot gather for the difference data (time-lapse 
data) due to the changes resulting from CO2 injection. The injection effects 
can be predicted in the difference sections. The effects of random noise on 
the seismograms are clearly manifested in the right panel of Fig. 5. The 
seismograms would not be visible at all with more noise added. 
 
 

 
 
Fig. 5. Time domain synthetic shot gathers of the scattered field corresponding to the 
difference data for baseline and monitoring models in Fig. 4. Left panel: noise-free 
seismograms; Right panel: noisy difference data (SNR = 6 dB), the time-lapse seismic 
events are blinded by a high level of random noise. 
 

 To understand how well the distorted Born performs for forward 
modelling of time-lapse data effects, we have compared, in Fig. 6, the time-
lapse seismograms calculated using the Born approximation, distorted-Born 
and exact T-matrix. The seismograms shown in Fig. 6 correspond to a 
source-receiver geometry at the surface, with a single source in the middle 
of the model, and 20 receivers equally distributed from x = 0 m to x = 2400 
m. Important differences exist especially with the predictions of the Born 
approximation. The CO2 injection model difference seismograms obtained 
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using the Born approximation are inaccurate and the CO2 effects on the 
velocity field is not well distinguished. This demonstrates yet another 
inadequacy of the Born approximation in distinguishing seismically the 
effects of CO2 injection on the seismic velocity field within the reservoir 
volume. Wrong predictions of the time-lapse time-shifts and amplitudes by 
the Born approximation are expected for reservoirs with large contrast 
volumes (Ikelle and Amundsen, 2005). Note that the spatial extension of the 
perturbation is large and the reservoir thickness is big. The distorted Born 
approximation still performs very well in predicting the time-lapse 
seismograms even when the thickness and depth of the reservoir increases. 
CO2 accumulation effects are associated with high amplitudes in the 
difference seismic section. The reflectivity due to the injection process is 
well imaged on the seismic data. 
 

 
(a) Shot gather for three predictions superimposed. 

 

(b) Seismogram comparison at receivers 3 (left) and 14 (right). 

Fig. 6. Comparison of time-lapse seismograms for the model shown in Fig. 4c as 
predicted by the Born approximation (blue), distorted Born (black) and exact T-matrix 
solution (red). The shot is located at the x-location of 1200 m. 
 
 
  Clearly, one sees that the distorted Born approximation and exact T-
matrix (Jakobsen, 2012) give similar results. In the real world, the reservoir 
is usually thin and therefore the distorted-Born approximation can be 
applicable for time-lapse seismics provided the reference model is close to 
the monitor model. Note that the only difference between the baseline and 
monitor models is the time-lapse velocity change in the third layer. 
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Generation of synthetic seismic waveform data 
 
  We generate synthetic seismic reflection data using the T-matrix 
solution (Jakobsen, 2012) in the frequency domain for a selection of 
frequencies used in the inversion. The background medium is isotropic and 
homogeneous with a P-wave velocity of 2000 m/s, and the survey 
parameters are similar to those used in the previous example. A Ricker 
wavelet with central frequency 7.5 Hz as source excitation for both baseline 
and monitor surveys is used. 
 
 
Inversion results and discussion 
	
		 We apply the non-linear inversion approach of the DBIT method to 
noiseless data to study the robustness and behaviour of this method in 
reconstructing the time-lapse structural changes for the velocity models 
shown in Fig. 4. We investigate the possibility of using this non-linear 
approach to noisy data, and to test which approach may maintain relatively 
low levels of image artefacts and provide accurate quantitative estimates of 
time-lapse velocity changes. 
 

 We solve the inverse problem using the three inversion approaches 
mentioned earlier. The objective is to estimate the change in the velocity 
values after the injection period of 2 years. For both approaches, the 
inversion was run for six frequencies distributed uniformly over the 
frequency spectrum of the source signature (1, 3, 7.5, 10, 15 and 18 Hz). 
These frequencies were chosen based on the strategy given in Sirgue and 
Pratt (2004) and experience from different numerical tests. As the inversion 
grid, we use a different uniform grid of size 24×24 m in order to partially 
avoid committing an inverse crime. The inversion is performed by inverting 
one frequency data at a time from the lowest to the highest frequency, with a 
maximum of 18 iterations per frequency to minimise the error function. The 
regularization is achieved using Tikhonov method in conjunction with the 
scheme in eq. (32). 

 
 In this synthetic inversion example, the same reference velocity model 

shown in Fig. 7a, which is a linearly increasing velocity model, is used for 
the independent inversion of the baseline and monitor in the first approach. 
The true reference model (baseline) and monitor model are shown in Figs. 
4a and 4b, respectively. Fig. 7 shows the result obtained using the first 
approach with two independent waveform inversions. Figs. 7c and 7e are the 
baseline and monitor inversion results for noise-free data. The recovered 
time-lapse difference model obtained using the first inversion approach is 
shown in Fig. 7d for noise-free data, and in Fig. 7f for noisy data. The 
inversion results using the first approach contain some artefacts outside the 
monitoring area of the reservoir as seen in Figs. 7d, even in the case of 
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noise-free data, and the time-lapse velocity changes are not accurately 
recovered for noisy data (Fig. 7f ). 

 
 

 

Fig. 7. Inversion of T-matrix generated data using the first approach: (a) the reference 
model used as starting velocity model; (b) the true time-lapse VP model; (c) recovered 
baseline model; (d) recovered time-lapse VP model (simple subtraction of the independent 
inversion results of baseline and monitor surveys) using noise-free data; (e) recovered 
monitor model; (f) recovered time-lapse VP model using noisy data. The signal-to noise 
ratio is 20 dB. 
 

 
 The time-lapse model recovered by the inversion from second 

approach is shown in Figs. 8d and 8f. The starting model (Fig. 8a) for the 
monitor inversion is the recovered baseline model from the first approach. 
The second inversion approach introduces artefacts in the time-lapse image. 
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This could be due to the inconsistent convergence of the monitor model 
inversion as it tries to recover the badly reconstructed events of the starting 
model (the recovered baseline model). Also, differences in the modelling 
engine used for modelling of measurement data and inversion could result 
into artefacts since the time-lapse model is obtained by raw subtraction. 
However, the second approach ably recovers time-lapse changes in the 
velocities even with noisy data. 

 
 

 
 
Fig. 8. Inversion of T-matrix generated data using the second approach: (a) the final 
recovered baseline model used as the starting velocity model; (b) recovered time-lapse   
VP model starting from the true baseline model (Fig. 4a), and using same discretization 
grid sizes for forward modelling and inversion (inverse crime); (c) the true monitor 
model; (d) inversion result of time-lapse VP model starting from the final recovered 
baseline model using noise-free data; (e) recovered monitor model; (f) recovered time-
lapse VP model using noisy data. The signal-to noise ratio is 20 dB. 
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Fig. 9. Inversion of T-matrix generated data using the third approach: (a) recovered time-
lapse VP model using noise-free data; (b) recovered time-lapse VP model using noisy 
data, signal-to noise ratio is 20 dB.  
 

 
 When using the true baseline model as the starting model for monitor 

inversion (Fig. 8b), the second approach gives better inversion results. This 
demonstrates the importance of an accurate recovered baseline model for 
improved reconstruction of time-lapse variations. When Figs. 8b and 8d are 
compared, we observe the influence of using different grid sizes for forward 
modelling and inversion (inverse crime) on time-lapse data reconstruction. 
The reconstruction has less noisy artefacts outside the monitoring zone 
when the same grid sizes are used. While it is important to first test an 
inversion method under an inverse crime, the resulting reconstructions from 
noise-free data, which are usually accurate should not be relied on because 
the method may fail when applied to real/experimental data or when noise is 
added. 

 
 Figs. 9a and 9b show the time-lapse model produced with the third 

approach, for noise-free and noisy data respectively. The velocity changes 
are well recovered, with minimal anomalies in the perturbation zone 
boundaries. The image of the reservoir in Figs. 9a and 9b is improved 
compared with that in Figs. 8d and 8f, because the third inversion approach 
focuses on the time-lapse data variation (perturbation) only. 
 

 Comparing Fig. 8f with Fig. 9b, we observe that addition of noise 
distorts the time-lapse inversion results in both approaches, however, we 
still obtain a relatively good image of the velocity changes. The noise 
robustness of DBIT makes it a practical time-lapse inversion method. From 
these numerical results, it is evident that the third approach to waveform 
inversion greatly improves the image of the time-lapse changes, and the 
magnitudes of velocity changes within the reservoir are better reconstructed 
than in the first and second approaches. The third approach also attenuates 
artefacts in the time-lapse velocity difference. Clearly, DBIT performs well 
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in this particular injection model, reconstructing the noise-free data with no 
artefacts outside the monitoring region and few artefacts for noisy data. The 
distribution of CO2 is therefore well imaged after injection and the 
quantitative characterization can be perfectly done. 

 
 

Application to a finite-element-generated data set 
	
	 We applied DBIT inversion to a data set that was generated using the 
frequency-domain acoustic finite-element package COMSOL Multiphysics. 
The baseline and monitor models, the source wavelet parameters together 
with the background properties of the model are similar to those used in the 
previous examples. For the grid size, we set a minimum of 7 elements per 
wavelength and the basis order was set to 3. Perfect Matched Layer (PML) 
absorbing boundaries were employed in COMSOL to prevent reflections 
from the boundaries. To reduce boundary effects when using T-matrix 
approach, the edges of the model were extended as shown in Fig. 3b. In the 
region of interest, we employed sources distributed uniformly from x = 12 to 
x = 2364 m as in the previous example, and studied two cases: 
 
Case 1: we used 181 receivers, 101 equally spaced from x = 0 to x = 2400 m 
along the lateral direction (at the surface), and 40 receiver equally spaced in 
the borehole from z = 2  to z = 960 m to the left and right edges of the 
model. 
 
Case 2: we used 101 receivers equally spaced from x = 0 to x = 2400 m 
along the lateral direction (at the surface). 
 

 Fig. 10 shows a comparison of the finite-element generated data and 
the T-matrix data. There are differences between the two data sets. This 
could be explained by various reasons, namely, lack of appropriate boundary 
conditions in the T-matrix approach that lead to inaccurate amplitudes as a 
result of artificial reflections from the boundaries of the model, 
discretization errors due to the differences in the discretization schemes, and 
the fact that the T-matrix approach is based on scattering theory which 
requires accurate knowledge of Green’s function. 

 
 Fig. 11 shows the DBIT inversion results for finite-element generated 

data, when the the first inversion approach is used. The inversion has 
recovered the general trend of VP velocity model and the values are not 
drastically different from the true VP values. However, its clear that the 
inverted results are not as good as those in the previous examples. We 
observe that the reconstruction is only improved when we use borehole 
receivers (case 1). In case 2, the total energy of the time-lapse perturbations 
is not well focussed, and velocity values have been greatly underestimated. 
This observation is due to the fact that down-hole receivers improves the 
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resolution of the images than surface seismic can provide. In general, in 
order to improve the accuracy of our results, there is perhaps a need to 
introduce an absorbing layer. This is a potential topic of study for the future. 

 
 In the DBIT inversion method, each iteration requires the solution of a 

forward scattering problem; thus appropriate absorbing boundary conditions 
might be needed to attenuate artificial unwanted edge reflections in the 
forward simulation. Since the current numerical example employs different 
forward modelling and inversion engines, these unwanted reflections 
introduce errors into the iterations of the inversion causing the final 
inversion results to contain errors. 
 
 

 
 
Fig. 10. Comparison between finite-element data (green) and T-matrix data (red) for the 
real part (Left panel), imaginary part (Middle panel) and absolute amplitude (Right 
panel). The shot is located at the x-location of 6 m for an offset: (a) 1932 m and (b) 
492m. 
 
 
CONCLUSIONS 
	
  In this paper, we implemented numerical modelling of seismic wave 
propagation using distorted Born approximation, an extension to the 
conventional Born method. We effectively modelled time-lapse waveforms 
by assuming only velocity is changed during the time-lapse acquisition and 
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benchmarked our results against an exact T-matrix solution. We show that 
with these methods in time-lapse seismics, we can easily visualise changes 
in waveforms between monitor survey and baseline survey by the data 
difference to detect variations in seismic velocities. The distorted Born 
performs well for our model with relatively large velocity and volume 
contrasts; thus improving the validity range of traditional Born 
approximation. The distorted Born approximation demonstrates sufficient 
accuracy in elucidating the CO2 injection effects on the seismic velocities, at 
least for the injection model considered. 
 
 

 
 
 
Fig. 11. Inversion of noise-free finite-element generated data using the first inversion 
approach: (a) the reference model used as starting velocity model; (b) recovered time-
lapse VP model for case 1; (c) recovered baseline model for case 1; (d) recovered time-
lapse VP model for case 2; (e) recovered monitor model for case 1; (f) recovered monitor 
model for case 2. 
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  We also discussed and implemented the non-linear distorted Born 
iterative T-matrix (DBIT) inversion method that utilises the T-matrix 
approach from quantum scattering theory. The performance of the method 
was demonstrated using a 2D CO2 injection model. The method performs 
well for the CO2 injection model and we are able to obtain good inversion 
results at a lower computational cost–using a small number of frequencies 
spanning the source spectrum. We at least expect the DBIT method to be 
potentially useful in seismic monitoring of CO2 sequestration and in 
modelling time-lapse models with relative large velocity contrasts. The 
resolution of the reconstructed images seems to depend directly on the 
ability to recover the high frequency content of the seismic data; and the 
accuracy of the reconstructions, on the time-lapse inversion approach 
selected. 
 

 Full-waveform inversion methods are normally limited to low 
frequencies but time-lapse variations are normally characterised as high-
frequency details in the model. This may be affecting our results but still, we 
are able to obtain high resolution images with surprisingly fewer frequencies 
we used in our inversion. It would be interesting to assess the method 
against real data and in the absence of low frequency data; and to assess the 
computation time cost in details. Since DBIT considers all multiple 
scattering effects, its application to real data, would only require preserving 
true amplitudes of the data during during processing, before it can be 
implemented on it. 

 
 Our current implementation of the inversion scheme does not use 

explicit boundary conditions. One of the main factors influencing the 
accuracy of the seismic modelling and inversion simulation can potentially 
be the boundary condition used to remove edge reflections generated at the 
finite boundaries. Implementing absorbing boundary conditions in the T-
matrix approach may be necessary to have modelling and inversion 
algorithms free from edge reflections. Additionally, using smaller grid 
blocks in the T-matrix approach would eliminate most errors related to 
discretization; however, limits can be imposed by computational 
capabilities. From the practical point of view, it would be important to 
understand how much injected CO2 can be detected by the proposed 
methodology. Next steps will potentially include the use of Born 
approximations in a context of Bayesian inversion (Kaipio and Somersalo, 
2006; Eikrem et al., 2016, 2017). 
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