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ABSTRACT 
 
Dong, L., Zhang, M., Wang, D., Zhang, Y., Wang, C. and Jiang, Z., 2018. Multiple 
subtraction using a hybrid least-squares filtering, non-linear weighting and complex 
curvelet domain approach. Journal of Seismic Exploration, 27: 433-444. 
 
  The study of de-multiple methods is a very important task in seismic data 
processing. For the typical prediction-subtraction methods, predicted multiples usually 
are never perfect and need adaption. However, considering the absence of orthogonality 
between predicted multiples and the primaries in the data, standard matching or 
subtraction methods often do not provide satisfactory results. To resolve this issue, 
primary/multiple separation via the curvelet domain has been introduced. However, the 
threshold methods based on the real curvelet transform (RCT) are sensitive to event 
positioning errors. In case of a slight event mispositioning, the amplitude of the RCT’s 
coefficients change dramatically. For that reason, a primary and multiple separation 
scheme based on least-squares (LS) matching and complex curvelet transform (CCT) is 
introduced in this paper. Firstly, the LS matching method is applied to do a rough 
amplitude matching and global time shift correction, then an optimal problem can be built 
and solved to correct the residual misfit in the CCT domain by taking advantage of the 
amplitude shift invariance property of the CCT. In addition, a non-linear primary 
protection masking process preserves most primaries during the process. Validation of 
this hybrid procedure on synthetic and field data shows that the primaries can be correctly 
recovered from the original data. 
 
KEY WORDS: de-multiple, prediction-subtraction, least-squares, shift invariance,  
     complex curvelet transform, non-linear masking. 
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INTRODUCTION 
 
        In the seismic industry, the enhancement of the seismic imaging 
accuracy is an utmost goal for exploration geophysicists. However, in most 
cases, the existence of multiples seriously degrades the signal to noise ratio 
of seismic data, and causes difficulties for effective signal identification. 
Therefore, to effectively suppressing multiples is always a key task in 
seismic exploration. 
 
        In view of the differences of the dynamic features between the 
predicted multiple model and the actual one (Verschuur et al., 1992), a 
matching or correction method is usually adopted to separate primaries from 
multiples. Presently, conventional matching or separating methods mainly 
involve L2-based methods (Verschuur and Berkhout, 1997; Wang, 2003; 
Guitton, 2003; Dong et al., 2013), independent component analysis-based 
methods (Lu, 2006), regularized nonstationary regression-based methods 
(Fomel, 2009), curvelet domain threshold subtraction methods (Herrmann et 
al., 2007 and 2008; Rayan et al., 2007).  Each method can obtain a desirable 
de-multiple result under some given conditions. However, the above 
methods may fail when the non-orthogonality or the mis-positioning 
problems can not be effectively resolved. Therefore, a primary and multiple 
separation approach based on LS matching and the CCT is introduced in this 
paper. Firstly, the LS matching method is applied to correct the bulk 
amplitude and time shift errors (Herrmann et al., 2007). Then, an optimal 
problem is built and solved to correct the residual misfit in the CCT domain 
through using the amplitude shift invariance property of the CCT. In 
addition, for the purpose of protecting the primary events, a non-linear 
masking filter is applied in advance, which can preserve most of primary 
signals. Next, the residual primary data can be recovered using the proposed 
approach in the paper. 
 
 
Construction and properties of the CCT 
 
         The construction of the CCT is similar to that of the RCT (Candès and 
Donoho, 2004). We can obtain the RCT coefficients of a signal first, and 
then construct real and imaginary parts of the CCT using two RCT 
coefficients with identical dip, position, frequency, but different phases with 
90 degrees shift  (Neelamani et al., 2010). 
 
         The construction of the CCT has the following features: 
      
•   The CCT has properties that can be used for signal-noise separation 
similar to the RCT. For example, random noise removal (Kumar et al., 2009) 
and coherent noise suppression (Neelamani et al., 2008). 
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•    The special construction of the CCT overcomes the deficiency of shift 
variance of the RCT. To be precise, the CCT coefficients almost remain 
unchanged while the RCT coefficients change dramatically even if seismic 
event has a slight shift in time. Fig 1 shows the contrast of the coefficient 
changes of the RCT and the CCT. Fig 1a shows a flattened event (left) 
where the second event has a three points downward shift (right). Fig 1b 
denotes the RCT coefficients of Fig 1a respectively. From the corresponding 
color differences, we can see that the coefficients change dramatically at the 
same position. On the other hand, the corresponding CCT coefficients 
remain almost unchanged as shown in Fig 1c. 
 
•    The real and imaginary parts of the CCT have 90 degrees difference in 
phase. Like the Fourier transform, the event can be shifted by changing the 
phase of the CCT coefficients that represent the event. Note that the 90 
degrees phase-shift relationship between the CCT’s real and imaginary parts 
is similar to the relationship between the Fourier basis functions. If the event 
shifts in time by Δt , the phase will change by tΔω  while the magnitude 
remains unchanged. For similar reasons, if the phase of the CCT’s 
coefficients changes by tΔω , the event will also have a shift in time by tΔ , 
as shown in Fig 2.  
 
MULTIPLE SUBTRACTION METHOD AND FLOW 
 
 The LS matching method is one of the commonly used methods to solve 
an inverse problem, where it assumes that for an optimum subtraction the 
residual errors take a minimum, 
 
 2

2||||minarg Fmd −    ,                                                                           (1)                                                                                                                                                                              
 
where d and m are vectors containing the original dataset and  the multiple 
model, respectively, and F denotes an amplitude matching operator. 
 
 Due to the non-orthogonality of seismic events, there will be some 
residual misfit left between multiple model and the actual multiple after the 
LS matching method. The curvelet transform has the excellent features to 
sparsely represent seismic events and it can map the primaries and multiples 
into different sets of curvelet coefficients in terms of different frequency, dip 
and location. Therefore, the primary and multiple separation method based 
on the curvelet transform is proposed by Herrmann et al. (2007). 
Unfortunately, the conventional RCT-based adaptive subtraction approach 
suffers from the inherent weakness of amplitude shift variance even though a 
slight time shift exists. For that reason, better results are obtained using the 
CCT instead of the RCT.  
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Fig. 1. Time shift sensitivity contrast of the RCT and the CCT.  (a) 2D synthetic data with 
one event;   (b)  RCT coefficient representations of the corresponding data from  Fig.  (a);  
(c) CCT coefficient representations of the corresponding data from Fig. (a). 

 

 
  Based on the different frequency, dip and location between primaries 
and multiples, where the curvelet coefficients can be regarded as the weights, 
we build the following optimization problem in each sub-CCT domain: 
 
  2
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  In eq. (2), k

dc  represents CCT coefficients of the original data at the k-th 
scale. k

fmc  denotes CCT coefficients of the multiple model after the LS 
matching at the scale of k-th. N is the maximum CCT decomposition scales. 

kF denotes a shaping filter at the k-th scale. 

(a) 

(b) 

(c) 



 
Fig. 2. Effect of changing a CCT coefficient’s phase on the cross section of the seismic 
reflection piece that it represents. 
 
 
 To solve the above optimization problem, a threshold-based approach is 
adopted in each sub-CCT domain. The final recovered primary p is expressed 
as follows: 
 

∑
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where, CT represents the inverse of CCT, ),(λT  is a threshold function which 
can be chosen as hard threshold function, soft threshold function or some 
modified threshold functions (Donoho, 1995). Here, we choose the hard 
threshold function which can be expressed as  
 

|)|||,0max().sgn(),( yxxyxT −=λ     ,                                                       (4) 
 
where, y  is the threshold value. 
 
 In order to preserve primary reflections more effectively, a non-linear 
masking filter (Wang, 2003) is applied before the primary and multiple 
separation scheme, which can preserve most of primary energy denoted by 

d•Φ− )1( . In this way, only d•Φ  with multiples and some residual 
primary energy is involved in the following separation flow, with 
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where, • denotes point-by-point multiplication, imA _ and idA _  are the 
amplitudes at sample i of the multiple model and the original dataset, 
respectively, M denotes the smoothing value, and W represents the 
weighting value. 
 
 Based on the above theory, the workflow for multiple subtraction in the 
CCT domain can be designed as follows: 
• Apply the non-linear masking filter to preserve most of the primary events, 

and only the residual part is involved in the separation flow. 
• Apply the LS matching to correct the overall amplitude and positioning 

errors. 
• Transform the original dataset and the multiple model processed by the LS 

matching into the CCT domain. The residual primary energy can be 
recovered by solving eq. (3) by the threshold-based primary-multiple 
separation approach. 

• Combine the recovered residual primary energy with the primary data 
preserved by the non-linear masking filter, to get the final primary output 
without multiples. 

 
 
EXAMPLES 
 
 We first use a simulated data example to demonstrate the performance 
of the proposed approach. There are 101 shots and 101 receivers in this 
example. Each trace has 1000 time samples with 2 ms temporal sampling. 
Fig. 3a shows the original data, and the predicted multiple model is shown in 
Fig. 3b. Fig. 3c denotes the preserved primary energy by the non-linear 
filtering. The separated residual primary energy by the proposed approach is 
shown in Fig. 3d. Combining the data in Fig. 3c and Fig. 3d, the final de-
multiple result is displayed in Fig. 3f. Comparing this with the primary 
energy obtained by the expanded multi-channel LS subtraction approach 
(Wang, 2003), for which we choose the space-time windows of size 101*21, 
it confirms the fact that the proposed approach maintains the event 
continuity and reduces the effective primary energy loss, as shown in the 
elliptical and rectangular areas in Fig. 3e and Fig. 3f. Similarly, the common 
offset profile contrasts in Fig. 4 also demonstrate the effectiveness of the 
proposed approach. 
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Fig. 3. Synthetic data example: (a) original shot gather, (b) predicted multiple model, (c) 
preserved primary data, (d) recovered residual primary data, (e) primaries recovered by 
expanded multi-channel LS subtraction, and (f) primaries recovered by the proposed 
approach. 
 
 
 Next, a 2D field marine dataset is used to illustrate the advantages of the 
proposed approach over that of the expanded multi-channel LS subtraction 
approach. The total shots are 432 with 314 receivers for each shot. There are 
1751 time samples and the temporal sampling is 4ms. From Fig. 5a, we can 
see that the data is interfered with strong multiples, which seriously affects 
the identification of primary events. Fig. 5b denotes the predicted multiple 
model. Fig. 5c is the preserved primary by the non-linear masking filtering 
process. Fig. 5d represents the residual primary recovered by the proposed 
approach. Combining Fig. 5c with Fig. 5d, the final de-multiple result is 
obtained, as shown in Fig. 5f. Comparing this with the results derived from 
the expanded multi-channel LS subtraction approach in Fig. 5e (in this 
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example, we use the space-time windows of size 53*27), it demonstrates that 
the proposed approach can recover the primary events better while we still 
observe residual multiple energy after the expanded multi-channel LS 
subtraction approach. From the near-offset profile displays, especially in the 
rectangular areas in Fig. 6, the same conclusion can also be reached that the 
proposed approach can suppress the multiples from middle-deep layers and 
protect the weak primaries. 
 
 
 

 

   
 
 

    
 
 
 
Fig. 4. Multiple subtraction results displayed in common-offset profiles: (a) original near-
offset profile, (b) predicted multiple model, (c) primary data recovered by expanded 
multi-channel LS subtraction, and (d) primary data recovered by the proposed approach. 
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Fig. 5. Results for field data: (a) original shot gather, (b) predicted multiple model, (c) 
preserved primary data, (d) recovered residual primary data, (e) primaries recovered by 
expanded multi-channel LS subtraction, and (f) primaries recovered by the proposed 
approach. 
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Fig.  6.  Field data results in common-offset profiles:   (a)  original near-offset profile,  
(b) predicted multiple model, (c) primary data recovered by expanded multi-channel LS 
subtraction, and (d) primary data recovered by the proposed approach. 
 

 
CONCLUSIONS 
 
        Conventional LS-based matching methods often fail to provide 
satisfactory results since non-stationary and some non-orthogonality exist 
between the predicted multiples and the primaries in the data. In this paper, 
we propose a primary and multiple separation approach by cascading the LS 
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matching and a threshold procedure in the CCT domain. After a simple 
amplitude matching and global time shift correction via the LS matching, we 
can utilize the properties of the amplitude shift invariance of the CCT’s 
coefficients to correct the residual misfit between the predicted multiples 
and the actual ones by a threshold-based de-multiple approach in the CCT 
domain. In order to protect primary events in an effective fashion, we apply 
a non-linear masking filter in advance, which can preserve most of the 
primary energy in the data separation process. Finally, we demonstrate 
through synthetic and field data that the proposed approach works quite 
effectively, and outperforms the expanded multi-channel LS subtraction. 
 
 
ACKNOWLEDGMENTS 
 
 The authors would like to thank BGP for the permission to publish the 
work. We also thank Eric Verschuur for the constructive suggestions and 
recommendations that have strengthened the paper. Besides, we express the 
appreciation to the fund from the key laboratory of depositional 
mineralization and sedimentary mineral of the Shandong province. 
 
 
REFERENCES 
 
Candès, E.J. and Donoho, D.L., 2004. New tight frames of curvelets and optimal 
 representations of objects with C2 Singularities. Commun. Pure Appl. Math, 57(2): 
 219-266. 
Dong, L.Q., Li, Z.C., Yang, S.C., Wang, D.Y. and Wang, J., 2013. Non-causal matching 
 filter multiple elimination method based correlation and iteration. Chin. J. Geophys. 
 (in Chinese), 56: 3542-3551. 
Fomel, S., 2009. Adaptive multiple subtraction using regularized nonstationary 
 regression. Geophysics, 74(1), V25-V33. 
Donoho, D.L., 1995. Denoising via soft thresholding. IEEE Transact. Informat. Theory, 
 41: 613-627. 
Guitton, A., 2003. Multiple attenuation with multidimensional prediction-error filter. 
 Expanded Abstr., 73th Ann. Internat. SEG Mtg., Dallas: 57-74. 
Herrmann, F.J., Boeniger, U. and Verschuur, D.J., 2007. Nonlinear primary-multiple 
 separation with directional curvelet frames. Geophys. J. Internat., 170: 781-799. 
Herrmann, F.J., Wang, D.L. and Verschuur, D.J., 2008. Adaptive curvelet-domain 
 primary-multiple separation. Geophysics, 73(3): A17-A21. 
Kumar, V. and Herrmann, F.J.. 2009. Incoherent noise suppression with curvelet-domain 
 sparsity. Expanded Abstr., 79th Ann. Internat. SEG Mtg., Houston: 3356-3359. 
Lu, W.K., 2006. Adaptive multiple subtraction using independent component analysis. 
 Geophysics, 71(5): S179-S184. 
Neelamani, R., Baumstein, A.I., Gillard, D.G. and Hadidi, M.T., 2008. Coherent and 
 random noise attenuation using the curvelet transform. The Leading Edge, 27: 240-
 248. 

	443



 
Neelamani, R., Baumstein, A.I. and Ross, W.S., 2010. Adaptive subtraction using 
 complex-valued curvelet transforms. Geophysics, 75(4), V51–V60. 
Rayan, S., Wang, D. L., Yilmaz, O. And Herrmann, F.J., 2007. Curvelet-based primary-multiple 
 separation from a Bayesian perspective. Expanded Abstr., 77th Ann. Internat. SEG Mtg., 
 San Antonio: 2500-2504.  
Verschuur, D.J., Berkhout, A.J. and Wapenaar, C.P.A., 1992. Adaptive surface-related multiple 
 elimination. Geophysics, 59: 1166-1177.   
Verschuur, D.J. and Berkhout, A.J., 1997. Estimation of multiple scattering by iterative inversion, 
 PartⅡ: Practical aspects and examples. Geophysics, 62: 1596-1611. 
Wang, Y., 2003. Multiple subtraction using an expanded multi-channel matching filter. 
 Geophysics, 68: 346-354. 
 

	4 44


