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ABSTRACT 
 
Pérez, D.O. and Velis, D.R., 2018. Simple and fast gradient-based impedance inversion 
using total variation regularization. Journal of Seismis Exploration, 27: 473-486. 
 
 We present  an algorithm to  estimate blocky images of  the subsurface  acoustic 
impedance (AI) from poststack seismic data. We regularize the resulting inverse problem,  
which is inherently ill-posed and non-unique,  by means of the  total variation  semi-norm 
(TV). This allows us promote stable and blocky solutions which are, by virtue of the  
capability of TV to handle edges properly,  adequate to model layered earth models with 
sharp contrasts. The use of the TV leads to a convex objective function  easily minimized 
using a gradient-based algorithm that requires, in contrast to other AI inversion methods 
based on TV regularization, simple matrix-vector multiplications and no direct matrix 
inversion. The latter makes the algorithm numerically stable, easy to apply, and  
economic in terms of computational cost. Tests  on synthetic  and field  data  show that 
the proposed method, contrarily to conventional l2- or l1-norm regularized solutions is 
able to provide blocky AI images that preserve the subsurface layered structure with   
good  lateral continuity from  noisy observations. 
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INTRODUCTION 
 
 The inversion of poststack seismic data to estimate AI images is a 
common technique used to obtain information about the structure of the 
subsurface. It allows to establish relations between the recorded seismic data 
and the geology (Oldenburg et al., 1983). Inverse problems are usually 
solved by minimizing a cost function that measures the differences between 
the observed and the modeled data (Tarantola, 2005). Unfortunately, the 
solutions of most geophysical inverse problems are inherently non-unique, 
for there exists several solutions that honor the data equally well. 
Furthermore, seismic inversion is an ill-posed problem, meaning that little 
amounts of noise in the observed data lead to large errors in the estimated 
solutions. For the sake of stabilization, and to avoid meaningless solutions, 
an appropriate regularization must be used during the inversion process. A 
well-chosen regularization can also impart desirable characteristics to the 
estimated solution, as sparseness or blockiness (Ulrych and Sacchi, 2005). In 
addition, as consequence of the band-limited nature of the seismic data, there 
is a lack of low frequency information that must be incorporated into the 
inversion process to properly constrain the estimated AI solutions. The 
inversion strategy must overcome the aforementioned drawbacks in a 
computationally efficient way, as the amount of seismic data to process is 
usually large. 
 
 The AI inversion can be separated into reflectivity domain inversion 
and data domain inversion (Gholami, 2016). In the former the reflectivity is 
estimated from the seismic data via deconvolution, and then the AI is 
derived from the reflectivity by recursive integration. In the later the AI is 
directly estimated from the seismic data. Also, depending on if the source 
wavelet is known a priori or it is estimated during the inversion process, the 
inversion can be separated into non-blind and blind. In this sense, several 
authors have developed AI inversion techniques with very interesting results 
(Oldenburg et al., 1983; Cooke and Schneider, 1983, e.g.). In the context of 
blocky AI inversion, Velis (2005, 2008) proposed to use either a constrained 
inversion strategy based on Gibb's sampling, or the global optimization 
algorithm known as very fast simulated annealing for the non-blind AI 
inversion in the data and reflectivity domains, respectively. Also, in the 
reflectivity domain, Gholami and Sacchi (2013) derived an AI inversion 
algorithm based on the split Bregman iteration method (Goldstein and 
Osher, 2009). Based on the same strategy, Gholami (2015, 2016) and Li and 
Peng (2017) developed various techniques to perform both non-blind and 
blind AI inversions in the data domain. 
 
 In this work we propose an alternative algorithm for the non-blind 
multichannel AI inversion in the data domain. It relies on the TV semi-norm 
(Rudin et al., 1992; Chambolle, 2004) regularization to promote blocky 
solutions of the AI, which leads to a convex cost function that can be 
minimized using an efficient iterative gradient-based algorithm that requires 
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no matrix inversion (Beck and Teboulle, 2009a). It is worth mentioning that 
blocky solutions are desirable because they lead to sharply resolved 
discontinuities that overcome the band-limitation of classical l2-norm 
solutions. Based on impedance well logs information, one may argue that the 
real structure of the subsurface is continuous rather than layered (Cooke and 
Schneider, 1983). Nevertheless, it is known from well log data studies that 
the amplitudes of the reflection coefficients associated with the interfaces 
follow a non-Gaussian distribution (Walden and Hosken, 1986; Velis, 2003). 
This fact indicates that the main  lithological units can be represented by 
layers with certain properties. 
 
 Many blocky AI inversion methods, including the aforementioned 
ones, assume the validity of the convolutional model and rely on the 
minimization of some regularized cost function. As usual, the overall impact 
of the regularizations is controlled by trade-off parameters which must be 
chosen to make optimal use of the data observations. Given a regularized 
cost function, it is the algorithm used to carry out the minimization what 
distinguishes one method from the other. Ultimately, all AI solutions are 
very similar. Depending of the problem at hand, slightly improved solutions 
can be obtained using extra regularization terms or a debiasing step 
(Figueiredo et al., 2007), but at the expense of increasing the computational 
cost. For example, Li and Peng (2017) obtained blocky AI solutions 
minimizing a combination of l1 and l2-norms. Although successful, this 
approach leads to a complex mathematical scheme in which a system of 
equations must be solved in each step of an iterative process. This is to the 
detriment of numerical stability and computational efficiency, especially if 
the used solver requires matrix inversions. The method proposed in this 
paper uses the TV regularization and only requires matrix-vector  
multiplications, making it numerically stable, versatile, easy to apply and 
computationally efficient. Regarding other TV-related methods, authors such 
as Liu and Yin (2015), Li and Peng (2017), Wang and Gao (2017) and Wang 
et al. (2017) minimize the regularized cost functions by means of a split 
Bregman iteration scheme. Although this strategy leads to computationally 
efficient algorithms, the solutions often depend on several trade-off 
parameters which must be chosen appropriately. In contraposition, the 
strategy proposed in this work only depends on a single trade-off parameter 
easily tuned by means of the discrepancy principle and the Pareto or L-
curve. This implies a major advantage, especially when working with field 
data, as the trade-off parameters usually depend on the signal-to-noise ratio 
of the data at hand. Gholami (2015, 2016) developed a TV-related AI 
inversion strategy, also based in the split Bregman iteration, in which the 
discrete cosine transform (DCT) was used to improve the efficiency of the 
process. Although the algorithm is very efficient, it depends on three trade-
off parameters that must be calibrated beforehand to correctly estimate 
blocky AI solutions. One of these parameters is associated with the low-
frequency trend, which is incorporated into the iterative process as a 
constraint. Differently, we found out that the low-frequency trend can be 
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naturally incorporated into the inversion as the initial solution of the iterative 
process, thus avoiding the use of a difficult-to-tune trade-off parameter. 
Also, the proposed algorithm is simple from a mathematical and 
computational point of view. This makes it versatile and easy to apply in 
other seismic inversion problems (e.g., inversion of prestack seismic data). 
 
 This work is organized as follows. First, we explain the proposed 
method, we set up the necessary hypothesis and define all relevant 
equations. In addition, we provide a step-by-step description of the inversion 
algorithm. Next, we test the method on 2D synthetic poststack seismic data 
from the Marmousi2 model and analyze the corresponding results. Then, we 
test the algorithm using a 2D field data set. Also, we compare the estimated 
solutions with those obtained using the classical l2-norm smooth 
regularization and the l1-norm sparsity-promoting regularization. Finally, the 
obtained results are summarized in the conclusions. 
 
 
THEORY 
 
 Given a layered AI model represented by the matrix Z of dimension m 
x n, a source wavelet w, and assuming the validity of the convolutional 
model, the noisy seismic section can be expressed as 
 
  S = WDX + N   ,               (1) 
with 
  X = (1/2)log(Z)   ,              (2) 
   
where D is the first order difference matrix, W is the convolution matrix 
associated with the source wavelet w, and N is the additive noise term. Eq. 
(2) relies in the hypothesis that the contrasts of the AI across the boundaries 
of the layers are small compared to their absolute values. This assumption 
allows us to estimate the AI through a linear inverse problem (Cooke and 
Schneider, 1983). 
 
 Assuming that N contains uncorrelated Gaussian noise, the inversion 
is carried out minimizing the following cost function: 
 
  J(X) = (1/ σ2) ‖AX − S‖! + µTV(X)   ,           (3) 
 
where σ2 is the noise variance, µ is a trade-off parameter,  A = WD and 
 

𝑇𝑉 𝐗 =  
!!!

!!!

 
!!!

!!!

(𝑥!,! − 𝑥!!!,!)! + (𝑥!,! − 𝑥!,!!!)!       ,                       (4) 
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is the isotropic TV semi-norm (Rudin, 1987). 
 
 The cost function J(X) is composed of two terms, each one imposing a 
different constraint on X. The first term represents the misfit between the 
modeled and the observed data. Its minimization will ensure that the 
estimated solution honors the observed data, a constraint that must be 
satisfied. On the other hand, the second term represents the regularization 
term. Its minimization will impart desirable characteristics to the estimated 
solutions. The overall impact of the regularization is controlled by the trade-
off parameter µ. The TV is a regularization approach capable of handling 
edges properly. As the AI model is related to the lithology, the TV seems to 
be an adequate choice for layered earth models with sharp contrasts between 
adjacent layers. As we will show in the numerical examples this norm will 
impose sharpness and appropriate amplitude constraints for the estimated 
image X, and thus for Z. 
 
 The described inversion problem is viewed as the combination of a 
deconvolution problem and a TV denoising problem. The inherent large 
scales of the problems to be solved require the use of fast and simple 
numerical methods. For this reason, we minimize eq. (3) by means of the 
iterative gradient-based algorithm proposed by Beck and Teboulle (2009a). 
The algorithm is composed of two nested iterative processes. The outer 
process, detailed in Algorithm 1, performs the deconvolution of the traces 
and is based on the Fast Iterative Shrinkage-thresholding Algorithm (FISTA) 
developed by Beck and Teboulle (2009b), an algorithm that requires no 
matrix inversions. The inner iterative process, invoked in line 4 of Algorithm 
1, is detailed in Algorithm 2 and performs the TV denoising of the 
deconvolved image. The TV denoising problem does not lead to a closed-
form expression, then it is necessary to rely on an iterative algorithm. To this 
end we use the dual TV denoising iterative algorithm developed by 
Chambolle (2004). Like FISTA, this globally convergent TV denoising 
algorithm does not require any matrix inversion neither. Although the dual 
TV denoising algorithm seems to be appropriate in the current context, other 
methods can be used without loss of generality. We stress the fact that the 
resulting algorithm that we propose to minimize the cost function J(X) only 
requires matrix-vector multiplications, making it numerically stable, 
versatile, easy to apply and economic in computational terms. 
 
 Due to the band-limited nature of the seismic data, it is not possible to 
recover the low-frequency trend T of X (and thus of Z) during the inversion 
process. The low-frequency trend information must be obtained a priori from 
other sources (e.g. stacking velocities or well logs), and then incorporated 
into the inversion process by means of appropriate constraints. In this case, 
as indicated in the line 2 of Algorithm 1, we incorporate this information 
using T as the initial solution of the iterative process. 
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 The Lipschitz constant of ∇‖𝐀𝐗 − 𝐒‖! required in the line 1 of 
Algorithm 1, is given by 𝐿 = 2𝜆!(𝐀!𝐀) (Palomar and Eldar, 2010; 
Gramfort et al., 2013), where  𝜆!(⋅) denotes the maximum eigenvalue of its 
argument. In practice, we obtain the maximum eigenvalue using the power 
iteration method (Larson and Edwards, 1999, e.g.). 
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 Another important practical issue to take into account is the stopping 
condition of the  iterative process (line 8 of Algorithm 1). Ideally, the 
process should stop when the misfit is equal to the noise level. 
Unfortunately, depending on the selected trade-off parameter µ, the misfit 
often shows an asymptotic behavior towards the noise level and convergence 
is not achieved in a acceptable number of iterations. To overcome this 
problem we decided to stop the iterative process whenever the cost function 
does not show a significant variation for a given number of iterations. 
 
 
EXAMPLES 
 
Synthetic data example 
 
 In this example we test the proposed algorithm on 2D synthetic data 
generated from the Marmousi2 elastic model (Martin et al., 2006). Figs. 1a 
to 1d shows the AI of the model, the low-frequency trend obtained from 
smoothing the AI using a low-pass filter, and the corresponding noise-free 
and noisy seismic sections. For the sake of clarity, Figs. 1b and 1d shows 
one of every ten traces only. The data was generated using eqs. (1) and (2) 
with a sampling interval of 4 ms and a Ricker wavelet of central frequency f0 
= 30 Hz. We added uncorrelated band-limited Gaussian noise with 
𝜎 = 𝑚𝑎𝑥(|𝐒|)/10  (i.e. S/N = 10). 
 

 
 
Fig. 1. a) Actual AI model generated from the Marmousi2 elastic model, b) noise-free 
seismic section generated from the AI model using a Ricker wavelet with f0 = 30 Hz, c) 
low-frequency trend obtained from the AI model using a low-pass filter and d) noisy 
seismic section with S/N=10.  
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 To apply the proposed inversion algorithm to the dataset we first need 
to estimate the trade-off parameter µ. In general, the selection of this 
parameter depends on the noise level of the data at hand. If µ is too large the 
regularization term in eq. (3) will be predominant over the misfit term, 
leading to solutions that might not honor the observed data. Contrarily, if µ 
is too small the noisy data might be overfit and the solutions might be too 
smooth. It is important to note that the trade-off parameter is not unique, for 
there might exist a range of µ values for which the corresponding solutions 
honor the observed seismic data equally well. Often, the selection of a 
particular value is based on the analysis of the solutions and personal 
judgment, especially when the data noise level is unknown (Farquharson and 
Oldenburg, 2004). Even so, there are various methods reported in the 
literature that can be used as guide to choose a value of µ. For instance, one 
can adopt the so-called L-curve criterion, the discrepancy principle, the 
generalized cross-validation criterion or the empirical Bayes method 
(Farquharson and Oldenburg, 2004; Malinverno and Briggs, 2004; van den 
Berg and Friedlander, 2008; Hennenfent et al., 2008). 
 
 In this numerical example we estimate µ using the discrepancy 
principle and the L-curve. This formulation is preferred when an estimation 
of the noise level is available. To this end, we construct the L-curve of the 
data, also known as Pareto curve (van den Berg and Friedlander, 2008; 
Hennenfent et al., 2008), by carrying out the inversion using various trial µ 
values and plotting the resulting TV(X) versus misfit. Then, we choose the 
optimum µ as the one that minimizes the TV while the misfit remains less or 
equal than the noise level. Fig. 2 shows the Pareto curve corresponding to 
the inversion of the noisy seismic section shown in Fig. 1c. The blue vertical 
line indicates the TV associated with the actual AI image shown in Fig. 1a, 
the red horizontal line the noise level, and the black arrow the direction of 
increasing µ. As expected, the larger the µ, the smaller the TV and the larger 
the misfit, and vice versa. Following the discrepancy principle, we estimated 
the optimum value µ = 0.05 (yellow circle). 
 

 
 
Fig. 2. Pareto curve after the inversion of the noisy data shown in Fig. 1d using 
Algorithm 1, for various trial values of µ. See text for details.  
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 It is worth noting that the L-curve does not cross the intersection of 
the noise level and the actual TV of the AI, which would be the optimal 
solution of the problem. This behavior is expected because, as it is well-
known, the TV regularization tends to underestimate the amplitudes of the 
estimated solutions (Paragios et al., 2005). Several authors have developed 
strategies to improve the amplitudes, such as the L1 fitting (Nikolova, 2002) 
or the iterative refinement (Osher et al., 2005). Also, the use of a debiasing 
step to adjust the amplitudes after the iterative process was proposed in the 
context of other regularized inversion problems (Figueiredo et al., 2007; 
Pérez et al., 2013). In this work, as the underestimation of the amplitudes 
resulted to be small, we choose not to apply any correction in benefit of the 
efficiency of the method. 
 
 For comparison purposes, we also solve the inverse problem using the 
l2- and l1-norms as regularization terms. The corresponding cost functions 
become, respectively: 
 
 𝐽 𝐗 = !

!!
𝐀𝐗 − 𝐒‖! + 𝜆 𝐗 − 𝐓‖!     ,             (5)

   
 and 
           𝐽(𝐗) = !

!!
‖𝐀𝐗 − 𝐒‖! + 𝜆‖𝐗 − 𝐓‖! + 𝜇‖𝐃𝐗‖!    .            (6) 

   
 Eq. (5) corresponds to the classic Tikhonov regularization problem 
(Tikhonov and Arsenin, 1977), which leads to the least-squares solution. The 
second terms in the above two equations allow us to properly recover the 
low frequency trend and its impact is controlled by the trade-off parameter λ. 
In both cases we estimate λ via the discrepancy principle and the L-curve. 
The third term in eq. (6) is used to promote blocky solutions, as in the case 
of the TV semi-norm regularization. However, in the l1-norm case, no 
constraints regarding the lateral continuity of the solution are involved, a 
fact that will become evident in the following example. We minimize eq. (6) 
using FISTA (Beck and Teboulle, 2009b). 
 
 Fig. 3 shows the results of the inversion of the data depicted in Fig. 1d 
for the three types of regularization. The first, second, and third rows of Fig. 
3 show, respectively, the estimated impedances and data obtained using the 
l2-norm, l1-norm and TV regularizations. We observe that, in spite of 
honoring the observed data quite well, the three estimated  AI images show 
different characteristics. As expected, the solutions obtained using the l2-
norm regularization (Fig. 3a) is much less blocky than its counterparts. 
Clearly, and because blockiness is not promoted, the low resolution of the 
resulting AI image hampers the interpretation of the results, as it is difficult 
to resolve thinner structures. Moreover, we observe some high-frequency 
instabilities in the estimated amplitudes. We could have minimized this 
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undesired effect by increasing the trade-off parameter λ, but at the expense 
of decreasing the resolution even more. The l1-norm regularized solution 
(Fig. 3c), on the contrary, exhibits a structure that resembles the actual 
model more accurately, but shows a lack of lateral continuity because no 
lateral constraints are imposed during the inversion process. On the other 
hand, we observe that the TV solution is capable of estimating a consistent 
and sharp AI image (Fig. 3e) that clearly resembles the actual AI image 
shown in Fig. 1a. In contrast to the l1-norm solution, the TV AI image shows 
good lateral continuity, preserving both major geological structures and 
detail features such as thin beds, faults and other minor structures that were 
almost hidden by the noise present in the data. 
 
 

 
 

Fig. 3. Estimated AI from the seismic data shown in Fig. 1d using a) l2-norm 
regularization, c) l1-norm regularization and e) TV regularization. Estimated data from 
the b) l2- norm solution, d) l1-norm solution and f) TV solution.  
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Field data example 
 
 In this section we test the method using field data. Field data 
complicates the application of the method because not only the noise level is 
unknown, but also the source wavelet is often not available. We assume that 
the data has been properly processed to preserve amplitudes. The wavelet 
used in the inversion was estimated from the seismic section using the 
technique proposed by Gelpi et al. (2017). The low-frequency trend was 
estimated using well log data near to the area where the data was acquired. 
In this example we estimate the trade-off parameters by trial and error. The 
field dataset, shown in Fig. 4, consists of 260 traces with a sampling interval 
of 2 ms. The inversion was carried out in a time window of 1.0 s. 
 
  

 
 
Fig. 4. Field data used to test Algorithm 1. 
 
 
 The first row of Fig. 5 shows the estimated solutions using the l2-
norm, the l1-norm and the TV. As in the synthetic data example, the 
solutions obtained using the l2-norm regularization (Fig. 5a) is less blocky 
than the others. The solution estimated using the l1-norm (Fig. 5b) exhibits 
more blockiness, but with some lateral continuity issues. Finally, the 
solution estimated using the TV (Fig. 5c) overcomes the previous 
limitations, showing both well-defined blockiness and good lateral 
continuity. The second row of Fig. 5 shows the reconstructed data for each 
case, where we observe that the estimated solutions honor the observations 
very well in all cases. 
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Fig. 5. Estimated AI from the seismic data shown in Fig. 4 using a) l2-norm 
regularization, b) l1-norm regularization and c) TV regularization. Estimated data from 
the d) l2- norm solution, e) l1-norm solution and f) TV solution.� 
 
 
CONCLUSIONS 
 
 In this work we presented a multichannel inversion algorithm to 
estimate sharp images of the acoustic impedance from poststack seismic 
data. When dealing with noisy and band-limited data, and due to the ill-
posed nature of inverse problems, an appropriate regularization is needed to 
obtain meaningful solutions. To this end, we advocate the use of the total 
variation semi-norm, an adequate choice because it allows to handle edges 
properly. Because both the misfit between the calculated and observed data 
and the total variation semi-norm are convex function, the resulting cost 
function is convex and easily minimized using a gradient-based algorithm. 
In addition, since the proposed algorithm relies only on matrix-vector 
multiplications, the inversion method was computationally efficient and 
numerically stable. Contrarily to other TV-based methods described in the 
literature, the strategy that we propose is very versatile, simple, and efficient. 
One advantage is that it allows to easily incorporate the low frequency trend 



without the need to include an additional trade-off parameter. Thus, the 
proposed method depends, as opposed to other methods published in the 
literature, on a single trade-off parameter, which can be easily tuned by trial-
and-error. We tested the algorithm on 2D synthetic and field data and 
compared the results against the l2- and l1-norm solutions. We demonstrated 
that the TV algorithm is capable of obtaining sharp AI images that honor the 
observed data. In contrast to the l2- and l1-norm solutions, the TV AI images 
show good lateral continuity and properly estimated amplitudes, preserving 
the low frequency trend and overcoming their limitations. 
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