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ABSTRACT 
 
Kang, S.-G., Jang, U., Kim, H.-J., Jou, H.-T., Shin, C.S., Hong, J.K. and Jin, Y.K., 
2018. Acoustic-elastic coupled full-waveform inversion in the Laplace domain with 
scaled gradient for improved density recovery. Journal of Seismic Exploration, 27: 
487-504. 
  
 Acoustic-elastic coupled full-waveform inversion in the Laplace domain is well 
suited for recovering P- and S-wave velocity (VP and VS, respectively), and density 
from marine seismic data because it can simulate waves that are generated in the fluid 
(sea water) and propagate into the solid (seafloor). However, density is not recovered 
as reliably as VP and VS. In this study, we show that the density recovery procedure 
using full-waveform inversion for acoustic-elastic coupled media can be improved by 
scaling the gradient for the steepest descent operation. Gradient scaling is a heuristic 
approach that multiplies the gradient by the square of the gradient summed in the 
depth direction. We found that this scaling scheme resulted in more accurate density 
as well as attenuated numerical artefacts. To validate the scaling scheme, we illustrate 
both synthetic and real data examples. 
 
KEY WORDS: Laplace domain, full-waveform inversion, density, gradient scaling, 
      acoustic-elastic coupled wave equation. 
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INTRODUCTION 
 
   Full-waveform inversion (FWI) computes the physical properties of the 
complicated subsurface from information brought to the surface by seismic 
waves which are recorded at the surface. Classical FWI includes the 
minimization of an objective function of the difference between the 
observed and modelled data. The minimization of the objective function is 
commonly performed using the steepest descent method (e.g., Shipp and 
Singh, 2002). 
 

 For reflection data, the narrow range of reflection angle apertures only 
allows the recovery of short wavelengths, resulting in insufficient low-
frequency information (e.g., Symes, 2008). In addition, FWI is limited by 
local minima encountered during optimization. The Laplace-domain FWI, 
which uses the zero-frequency component of a damped wavefield, provides 
one possible solution for these limitations (Shin and Cha, 2008). Bae et al. 
(2010) derived an acoustic-elastic coupled FWI in the Laplace domain. Their 
method enables accurate computation of the subsurface from marine seismic 
data because it can deal with density as well as the S-wave generated below 
the seafloor. The velocities of P- and S-waves, given by VP and VS, 
respectively, are properly reconstructed by FWI. Compared with VP and VS, 
however, density is more difficult to reconstruct (Bae et al., 2010; Kang et 
al., 2012). Kang et al., (2016) proposed the gradient scaling function for 
FWI for acoustic-elastic coupled media in the Laplace domain and shows 
that a gradient scaling function can be used to construct more suitable P- and 
S-wave velocity inverted velocity model than previous method. Scaled 
Laplace gradient direction of the P- and S-wave velocities which were 
generated by the accumulated sum of the squares of the conventional 
gradient with respect to depth can improve the image of high-velocity 
structures and remove the numerical artifacts near the seafloor. However, 
they did not refer to the density inverse problems. 

 
  In this study, we demonstrate that the accuracy of reconstructed 
density can be improved by modifying the gradient direction of the objective 
function using scaling method (Kang et al., 2016) for acoustic-elastic 
coupled FWI in the Laplace domain. The density gradient was empirically 
modified and optimized through numerical tests. From the results of these 
tests, we infer that the density reconstruction is improved using the gradient 
scaled method, which proposed by Kang et al. (2016) for density only. Our 
discussion involves examples with both synthetic and real data. 

 
 
FWI for acoustic-elastic coupled media in the Laplace domain 

 
 In this acoustic-elastic system, the wave propagation in water column 

(fluid media) is described in the acoustic wave equation, whereas the wave 
propagation under the seafloor (solid media) is described in the elastic wave 
equation. Two-dimensional acoustic wave equation in the Laplace domain 
can be defined as 
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where !p = !p x , z ,s( )  is the Laplace domain pressure-field in water 
column (fluid media); s is the damping coefficient of the Laplace transform, 
c x , z( ) = k / ρA  is velocity in water column (fluid media); k  and Aρ  
are the bulk modulus and density of water column (fluid media), 
respectively; and !f = !f x , z ,s( )  is a source term. 
 

 In heterogeneous and isotropic solid media, two-dimensional elastic 
wave equation in the Laplace domain is written as 

 

   −ρE s
2 !h = ∂

∂x
(λ +2µ)∂

!h
∂x

+λ
∂ !v
∂z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+

∂
∂z

µ
∂ !v
∂x

+
∂ !h
∂z

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   ,        (2)            

−ρE s
2 !v = ∂

∂x
µ
∂ !v
∂x

+
∂ !h
∂z

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟+

∂
∂z

λ
∂ !h
∂x

+ (λ +2µ)∂ !v
∂z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟   ,        (3) 

 
where Eρ  is the density in solid media; λ  and µ  are the Lamé constants; 

and !h = !h x , z ,s( )  and !v = !v x , z ,s( )  are the horizontal and vertical 
displacements, respectively. 
  

 In acoustic-elastic coupled media, pressure fields generated in water 
column are converted to horizontal and vertical particle displacements at the 
seafloor, which propagate through the seafloor as the elastic medium. The 
interface boundaries between fluid and solid media should meet the 
continuity conditions (Zienkiewicz et al., 2005; Komatitsch et al., 2000) as 
follows: 

 
   ∇ !p ⋅n = −ρA !!uE ⋅n  ,                           (4) 

and                 
   

 σ ⋅n = − !pn  ,                            (5) 
 
where !!uE  is the second derivative of the displacement vector with respect 
to time, n is the normal vector from the interface and σ  is the symmetric, 
second-ordered stress tensor. When the elastic waves are reflected and return 
to the seafloor, they are converted to pressure fields and then propagate to 
the sea surface. 
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 Following the finite element method (FEM) by Kang et al. (2012), we 
can obtain a discretized finite element equation for acoustic-elastic coupled 
media, which considers the irregular seafloor geometry. The coupled media 
equation with interface conditions can be expressed in matrix form in the 
Laplace domain as 
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where AK  is the stiffness matrix for acoustic media; 11K , 12K , 21K , and 

22K  are the stiffness matrices for elastic media; AM  designates the mass 
matrix for acoustic media; 11M  and 22M  are the mass matrices for elastic 
media; and AQ  and EQ  are the interface boundary matrices in acoustic and 
elastic media, respectively. Furthermore, θ  is the slope of the interface 
between the acoustic and elastic layers, !p s( )  is a pressure field vector, 

!v x s( )  and !v z s( )  are the horizontal and vertical displacements in the 
Laplace domain for elastic media, respectively, and  

!f s( )  is the Laplace-
domain source vector (Kang et al., 2012).  

 
 We can simplify (1) using an impedance matrix S: 
 

  S !u = !f   ,                        (7) 
 
where !u  is the Laplace-domain wavefield vector containing the pressure 
field and the displacement. In acoustic-elastic coupled media, the Lamé 
constants (λ  and µ ) and density ( )Eρ  are elastic model parameters which 
are updated by waveform inversion. After updating, these parameters are 
converted to VP and VS. In other words, the coupled media FWI can 
reconstruct the VP, VS, and density models. 
 

  In the FWI algorithm, the residual is measured by the difference 
between observed and modelled data. In the Laplace domain, the wavefield 
has very small absolute values, compared with those in the frequency 
domain (Shin and Cha, 2008). Therefore, for measuring the residuals of 
damped wavefields, the logarithmic objective function (Shin and Min, 2006) 
is more useful than the conventional l2 objective function. The logarithmic 
objective function for Laplace-domain waveform inversion at a given 
Laplace damping constant is 
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  In the above equations, !dij , !uij , and δ !rij  are the observed 
wavefield, the modelled wavefield, and the residual at the jth receiver by the 
ith source, respectively. The values sn  and rn  are the total number of 
sources and receivers, respectively. Using the back-propagation algorithm 
(e.g., Pratt et al., 1998), we can effectively calculate the gradient of the 
objective function with respect to the model parameter ( ),ix izk  using the 
impedance matrix of the coupled wave equation S as 
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where ( ),ix izk represents all of the elastic model parameters (the Lamé 
constants and density) in the conventional algorithm. Here, 

( , )ix izkv  is the 
virtual source term defined as 
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where !ui  is the forward modelled wavefield, and δ !ri  is the residual for the 
i-th source defined as 
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    After calculating the gradient of the objective function, all of the elastic 
model parameters in the coupled media are simultaneously updated as 
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where l is the iteration number, lα  is the step size parameter at the l-th 
iteration, ns  is the total number of Laplace damping constants, NRM is a 
normalizing operator, and η  is a stabilizing factor. We estimate the 
unknown source wavelet from the initial source using Newton’s method 
(Shin et al., 2007). We repeat this procedure until a stopping criterion is met.  
 
 
DENSITY RECONSTRUCTION BY FWI WITH GRADIENT SCALING 
METHOD 

 
 FWI in the Laplace-domain for acoustic-elastic coupled media 

frequently computes VP and VS models with the density model fixed (Bae et 
al., 2010) because computational stability of density is difficult to achieve 
(Tarantola, 1986). In this study, the Lamé constants (λ  and µ ) and density 
are updated separately until convergence has been achieved. In other words, 
the Lamé constants are updated with density fixed for the first 10 iterations, 
and then with the previously updated Lamé constants fixed, density is 
updated for the next 10 iterations. During the density updates, the scaled 
density gradient (Kang et al., 2016) was employed. The scaled gradient is 
computed by the vertically accumulated squared sum of the original density 

gradient values. The accumulated density gradient    
∇density( ix ,iz )

Eacc ix,iz( )  is 

calculated as 
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where 

   
vdensity( ix ,iz )

is the virtual source term for the density. 
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   After obtaining the accumulated density gradient

   
∇density( ix ,iz )

Eacc ix,iz( ) , we 

compute the scaled gradient 
   
∇density( ix ,iz )

EL ix,iz( )  by multiplying the 
conventional gradient and the accumulated gradient: 
  
  ∇density ix,iz( )EL ix,iz( ) = ∇density ix,iz( ) E ix,iz( ) ⋅Eacc ix,iz( )⎡⎣ ⎤⎦ .           (15) 
 
Density is updated by the process: 
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  Our FWI procedure consists of the following two steps: (1) VP and VS 
are updated with the initial density fixed for the first 10 iterations, and (2) 
density is updated for the next 10 iterations using the modified gradient, 
while keeping the previously updated VP and VS values fixed. These two 
steps are repeated until convergence has been achieved. 
 
 
 
EXPERIMENTS WITH SYNTHETIC AND REAL DATA 
 
Synthetic data example 
 
   We examine the results of FWI with the scaled gradient of density for 
Hess salt model. Fig. 1 shows Hess model (VP , VS, and density) that 
includes sea water and the irregular seafloor; below the seafloor, the salt 
body was modelled by higher VP (4.51 km/s) and VS (2.17 km/s) and lower 
density (2.16 g/cc) than the surrounding sediments. The synthetic data from 
Hess model consist of 164 shots with 851 receivers. The shot and receiver 
intervals are 100 m and 20 m, respectively. Fig. 2 shows the initial model for 
FWI in the Laplace domain. In this initial model, VP, VS, and density in sea 
water are 1.5 km/s, 0 km/s, and 1 g/cc, respectively. Below the seafloor, VP, 
VS, and density linearly increase to the depth of 3 km: VP increases from 2.1 
to 3.6 km/s, VS increases from 1.2 to 2.2 km/s, and density increase from 2.1 
to 3.0 g/cc. Fig. 3 shows the gradients of the Lamé constants (λ and µ ) and 
density for updating the final models, which were calculated by the back-
propagation algorithm in the Laplace domain (Bae et al., 2010). In the 
inversion process, we used 15 damping constants ranging from 1 to 15.  
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(a) 

 

 
(b) 

 

 
(c) 

 
 
Fig. 1. Hess salt model: (a) VP, (b) VS, and (c) density.  
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(a) 

 

 
(b) 

 

 
(c) 

 
 
Fig. 2. The initial models for FWI of Hess salt model: (a) VP, (b) VS, and (c) density. 
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(a) 

 

 
(b) 

 

 
(c) 

 
 

Fig. 3. The gradients of (a) λ, (b) µ, and (c) density after 51 iterations. The gradients were 
calculated by the back-propagation algorithm.  
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(a) 

 

 
(b) 

 

 
(c) 

 
 
Fig. 4. Hess salt model reconstructed by Laplace-domain FWI after 200 iterations for 
acoustic-elastic coupled media using the conventional gradient: (a) VP, (b) VS, and (c) 
density. 
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  In the final model computed using the conventional gradients after 
200 iterations (Fig. 4), we estimate that VP and VS were properly 
reconstructed; however, high-density artefacts were generated immediately 
above the salt body. In our algorithm, a negative gradient indicates an 
increase in the value of the model parameters, whereas a positive gradient 
reduces the model parameters. In Figs. 3a and 3b, the gradients of the Lamé 
constants (λ  and µ ) show strong negative values in the salt body and high 
positive values immediately below the seafloor, respectively. In contrast, the 
conventional density gradient shows positive values in the salt body and 
negative values immediately below the seafloor (Fig. 3c). We think that this 
contrasting property caused the density artefacts in the final model (Fig. 4c). 

 
 

 
(a) 

 

 
(b) 

 
Fig. 5. (a) Accumulated and (b) scaled density gradients after 51 iterations. 
 

 
The accumulated and scaled density gradients that were calculated by 

eqs. (14) and (15) after 51 iterations are shown in Fig. 5. Fig. 6 displays the 
final model computed by FWI using the scaled density gradient after 200 
iterations. We find that VP and VS are almost the same as those in Fig. 4, 
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implying that VP and VS are estimated by both algorithms in a stable and 
consistent manner. Comparing Fig. 6c with Fig. 4c, however, we notice a 
recognizable difference in the final density models. Fig. 6c is obviously 
closer to the true model (Fig. 1c). In particular, the density artefact 
immediately below the seafloor was effectively removed. For a quantitative 
comparison, we plotted the density profiles at a depth of 3 and 7 km (Fig. 7), 
which shows a noticeable improvement in the density reconstruction using 
FWI with the scaled gradient over that with the conventional gradient. Bae et 
al. (2010) noted that it is difficult for FWI to properly recover the density 
because it is not sensitive enough to density. It appears that our empirical 
method for scaling the density gradient reconstructs the density more 
accurately than the conventional gradient method while simultaneously 
suppressing density artefacts in synthetic data test. 
 
 
 
Real data example 
 
   We applied FWI with the scaled gradient to real data obtained in a sea 
area where a salt body is present below the seafloor. The data consist of 
1,156 shots recorded on 804 receivers. The shot and receiver intervals are 
37.5 m and 12.5 m, respectively, and the recording time is 15.0 s. Fig. 8 
shows an example of shot gathers. Prior to FWI, the data were low-cut 
filtered, and all of the signals before the first arrival were muted (i.e., 
zeroed). Fig. 9 shows the initial VP, Vs, and density models. In the initial 
model, VP, VS, and density in sea water were fixed to 1.5 km/s, 0 km/s, and 
1.0 g/cc, respectively; whereas, below the seafloor, VP increases linearly 
from 1.5 to 3.5 km/s, VS increases from 0.9 to 2.5 km/s, and the density 
increases from 1.8 to 2.3 g/cc. We used 10 Laplace damping constants from 
1 to 10. The grid size for the inversion was 25 m. 
 
  The final model sections after 200 iterations appear to reveal an 
object in the 1.5 to 2.5 km depth range (vertically) and in the 45 to 50 km 
distance range (horizontally) (Fig. 10). This object has higher VP, VS, and 
lower density than the surrounding material, which is representative of a salt 
structure embedded in the sediment. The reconstructed VP and VS values, 
well over 4 and 2 km/s, respectively, are typical of a salt dome. The 
reconstructed density values, less than 2.0 g/cc, are slightly lower than that 
of salt. However, the object estimated as a salt body is clearly distinguished 
in the density section. These features may indicate that FWI with the scaled 
gradient is adequate for defining a strong density contrast such as an 
embedded salt dome in the subsurface. 
 
 The density model, however, provides a better image of the salt 
structure than the VP and VS models. This may indicate that FWI with a 
scaled density gradient is adequate for defining a strong density contrast 
such as an embedded salt dome in the subsurface. 
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(a) 

 

 
(b) 

 

 
(c) 

 
 
Fig. 6. Hess salt model reconstructed by Laplace-domain waveform inversion after 200 
iterations for acoustic-elastic coupled media using the scaled density gradient: (a) VP, (b) 
VS, and (c) density. 
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(a) 

 
(b) 

 
Fig. 7. Comparison of density profiles at distances of (a) 3 km and (b) 7 km. 
 

 
  
Fig. 8. A portion of real shot gathers as an example of real seismic data. 
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(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 9. Initial models for Laplace-domain waveform inversion of real data: (a) VP, (b) VS, 
and (c) density.  
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(a) 

 

 
(b) 

 

 
(c) 

 
 
Fig. 10. Final models computed by Laplace-domain waveform inversion after 200 
iterations for (a) VP, (b) VS, and (c) density. Note the presence of a salt body in the 40–50 
km range, shown as a low density. 
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CONCLUSIONS 
 
    Waveform inversion cannot properly recover density because of its 
low sensitivity to density. In this study, we have presented a method for 
scaling the gradient of density for acoustic-elastic full-waveform inversion 
that improves the accuracy of reconstructed density. The gradient scaling is 
implemented by multiplying the conventionally computed gradient with the 
square of the gradient summed in the direction of depth. By applying this 
method for density inversion, we note that the gradient scaling method 
enables more accurate reconstruction of density properties for acoustic-
elastic coupled media in inverted density model and better suppression of 
artefacts compared to the conventional gradient, particularly for a strong 
density contrast in synthetic and field data examples. 
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