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ABSTRACT 
 
Wu, J. and Bai, M., 2019. Iterative deblending based on the modified singular spectrum 
analysis. Journal of Seismic Exploration, 28: 1-20. 
 
 Deblending of simultaneous-source seismic data aims at separating the blended 
records caused by simultaneous shooting as if the data are acquired traditionally. In this 
paper, we propose a novel modified singular spectrum analysis (SSA) approach to 
remove blending noise in an iterative inversion manner. Compared with the traditional 
SSA approach, the modified SSA approach applies a modified truncated singular value 
decomposition (TSVD) onto the Hankel matrix in the frequency domain, and can 
attenuate more blending noise than the traditional SSA method. We use both synthetic 
and field data examples to demonstrate that the proposed modified SSA method has a 
stronger signal-and-noise separability. 
 
KEY WORDS: deblending, singular value decomposition, noise, 
    singular spectrum analysis, iterative solver. 
 
	
INTRODUCTION 
  
 Modern seismic acquisition requires a high-density, wide-azimuth 
coverage for improving the subsurface illumination (Chen et al., 2017a,c). 
Large  acquisition systems require a highly efficient acquisition deployment. 
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The principal purpose of simultaneous source acquisition is to accelerate the 
acquisition of a large-density seismic dataset, which can save acquisition 
cost and increase data quality. The simultaneous shooting technique has 
existed for decades. It has raised special attention recently because of its 
application to marine acquisition. The benefits are compromised by the 
intense interference between different shots (Berkhout, 2008; Beasley, 2008; 
Berkhout and Blacquiere, 2013; Abma, 2014; Amundsen et al., 2018; Zu et 
al., 2017a). One approach to solve the problem caused by interference is by 
a first- separate and second-processing strategy (Mahdad, 2012; Qu et al., 
2014; Wu et al., 2015; Mueller et al., 2015; Gan et al., 2016a,c), which is 
also called deblending. Another way is by direct imaging and inversion of 
the blended data via attenuating the interference during the inversion process 
(Verschuur and Berkhout, 2011; Zu et al., 2017b; Chen et al., 2017e; Gan et 
al., 2016d; Bai and Wu, 2017; Bai et al., 2018; Wu and Bai, 2018).  
	
 Some researchers have proposed various filtering methods to attenuate 
the interference noise, which can also be referred to as a noise reduction 
problem (Chen and Fomel, 2015; Huang et al., 2016, 2017b; Zhang et al., 
2016, 2017). The separation methods base on inversion regard the separation 
processing as an estimated issue, which aim at estimating the ideal unknown 
unblended data by attenuating the interference noise (Huang et al., 2018b). 
Due to the ill-posed characteristic of inversion problems, some constraints 
should be added into inversion framework to make the inversion problem 
proper. Abma and Yan (2009) proposed a sparse constraint in f-k domain. 
Xue et al. (2017) used high-order radon transform to shape the inversion 
framework to remove the blending noise and preserve the amplitude. Chen 
(2017) proposed a way of fast dictionary learning to represent seismic data 
sparsely. The dictionary learning method can adaptively learn the basis of a 
sparse transform (Siahsar et al., 2017a,b). Yu et al. (2017) proposed an 
approach using a wavelet transform to deterministically separate the primary 
signal from the noise, including simultaneous source interference noise. 
Usually, the inversion methods perform better than the filtering methods. 
Xue et al. (2016) propose a rank-increasing methods for deblending via 
iteratively estimating the blending noise instead of the signals. Many other 
advanced denoising algorithms can also be used to attenuate the blending 
noise by simple filtering (Chen and Ma, 2014; Chen et al., 2016a; Li et al., 
2016a; Chen, 2016; Li et al., 2016b; Huang et al., 2017a,c,d; Chen et al., 
2017b,d; Xie et al., 2017; Chen, 2018; Chen and Fomel, 2018; Huang et al., 
2018a).  
 
 Inversion based methods treat the deblending problem as an inverse 
problem and solve it using some iterative solvers. Low-rank based methods 
have been widely used in the literature for deblending. The low-rank 
constraint can be applied via the Cadzow filtering method (Cadzow, 1988), 
damped rank-reduction method (Chen et al., 2016c,d), the randomized 
multichannel singular spectrum analysis (RMSSA) method (Huang et al., 
2017b), the adaptive damped multichannel singular spectrum analysis 
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(ADMSSA) (Siahsar et al., 2017c), sparsity-constrained MSSA method 
(Wang et al., 2017; Zhang et al., 2017), or the multi-step MSSA method 
(Zhang et al., 2016). Similarly, Xue et al. (2016) used the increased low-rank 
to separated the blended record. However, when the rank is too small at 
initial iteration, some unexpected noise is introduced. Zu et al. (2017c) 
combined the increased low-rank constraint with threshold to further 
improve the deblending performance. The low-rank constraint is similar to 
the sparsity promotion constraint, which belongs to the compressed sensing 
principle Gan et al. (2015); Liu et al. (2016b); Gan et al. (2016b); Liu et al. 
(2016a); Bai and Wu (2018); Liu et al. (2018). Zhou et al. (2018) proposed 
the subspace tracking based rank-reduction method. Zhou et al. (2017) used 
the structural rank reduction method to more or less solve the rank 
inconsistency problem of the local-window based rank reduction method. A 
similar structural smoothness constraint was used by Chen et al. (2016b) for 
interpolating sparsely sampled geophysical dataset. In the algorithmic 
aspects of inversion, Doulgeris et al. (2012) discussed the convergence 
properties.  
 
 In this paper, we propose a novel inversion scheme based on a 
modified singular spectrum analysis (SSA) algorithm. We know that the 
interference noise contained in simultaneous source data will increase the 
rank, therefore, if we can select the suitable preserved rank, then the 
interference noise can be removed well. However, it is not easy to set the 
rank, especially for the complex seismic data, which increases the rank and 
cause a serious rank-mixing problem. Obviously, once the rank is chosen too 
small, it will bring some extra unexpected information and make the signal 
damaged. Otherwise, the interference noise cannot be suppressed well. Our 
proposed method solves this problem by first setting a relatively large rank 
and then using a modified truncated singular value decomposition (TSVD) 
to attenuate those residual noise left in the Hankel matrix that is caused by 
the relatively large rank. In the inversion framework, the modified SSA 
method improves the deblending performance by better separating the 
blended data into signal and noise subspaces. We use two examples to 
compare with the traditional FX method and SSA method to validate the 
effectiveness of our method.  
 
 
THEORY 
 
Iterative deblending based on the shaping regularization framework  
 
 To be convenient, we assume that one simultaneous source data is 
blended using two independent sources, which correspond to two shooting 
sources in ocean bottom cable (OBC) acquisition. Therefore, the blending 
forward processing is done in the common-receiver domain (Chen et al., 
2014),  
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 d = Γ1d1 + Γ2d2   ,              (1) 
 
where d is the blended data, d1 and d2 are the first and second independent 
receiver gathers, respectively, and Γ1 and Γ2 denote the dithering operators 
corresponding to d1 and d2, respectively. In the process of deblending, 
different phase-encoding blending operators have been introduced to 
eliminate the crosstalk noise, such as linear phase term and quadratic phase 
term. Here, the linear phase encoding that expresses the time delays in the 
time domain was applied (Zu et al., 2016b; Qu et al., 2015, 2016). The 
blending operator can be written as the following form,  
 
 Γi=F−1PiF   ,  for i = 1, 2,            (2)  

 Pi = diag(e−jwti,1 , e−jwti,2 , · · · , e−jwti,m )   ,          (3)  

where Γi is the dithering operator of the i-th common-receiver record in the 
time domain, Pi represents the phase matrix of the i-th common-receiver 
record, ti,m is the delay time for the m-th trace of the i-th common-receiver 
record, w is the angular frequency, and j represents the imaginary unit. Note 
that we use the random time delay in this paper.  
 
 Eq. (1) can be expressed into a matrix-vector multiplication form as � 

 d = Γm,                (4) 

where  

    ,                     (5) 
and 

     .                                               (6) 

d is the blended data, Γ is the blending operator, and m is the unblended data. 
The formulation of Γ has been introduced in Mahdad (2012) in detail. When 
considered in time domain, Γ corresponds to blending different shot records 
onto one receiver record according to the shot schedules of different shots. 
Deblending amounts to inverting eq. (4) and recovering m from d.  
 
 Because of the ill-posed property of this problem, all inversion 
methods require some constraints. Chen et al. (2014) proposed a general 
iterative deblending framework via shaping regularization (Fomel, 2007, 
2008; Zu et al., 2016a). The iterative deblending is expressed as:  

� =
⇥
�1 �2

⇤

m =


d1

d2

�
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 mn+1 = S[mn + B[d − Γmn]]   ,            (7) 

where S is the shaping operator, which provides some constraints on the 
model, and B is the backward operator, which approximates the inverse of Γ. 
The shaping regularization framework offers us much freedom in 
constraining an under-determined problem by allowing different types of 
constraints. In this paper, the backward operator is simply chosen as λΓ∗, 
where λ is a scale coefficient closely related with the blending fold, and Γ∗	
stands for the adjoint operator of Γ (or the pseudo-deblending operator). For 
example, λ can be optimally chosen as 1/2 in a two-source dithering 
configuration (Chen et al., 2014; Mahdad, 2012). In this paper, S is chosen 
as the modified SSA operator, which will be introduced in detail next. 
 
  
Singular spectrum analysis 
  
 In the case of a 2D seismic record D(x,t), we carry out Fourier 
transform on the data f (x, t) represented as F (x, w), then for each frequency 
slice F (x, w), the Hankel matrix can be written as M: 
  

 ,             (8) 

where t denotes time, w denotes frequency. M denotes the total number of 
traces, H denotes the Hankel matrix, F is the Fourier transform operator. 
  
 L = ⌊M ⌋+1 and K = M −L+1, and ⌊·⌋ denotes the integer part of its 
argument. If the seismic data contains k linear events, then the rank of 
Hankel matrix M is k. The interference noise existing in the blended 
records will make the Hankel matrix rank raising. Therefore, the problem 
of deblending can be regarded as a rank-reduction problem. It will be 
beneficial to apply truncated singular value decomposition (TSVD) to the 
Hankel matrix to estimate signals (Huang et al., 2016). Then the estimated 
signals can be reconstructed by averaging components of the processed 
Hankel matrix. We can represent the whole process of SSA algorithm as 
follows: 
  
     ,       (9) 

M = HF [D(x, t)]

=

0

BBB@

D(1, w) D(2, w) · · · D(K,w)
D(2, w) D(3, w) · · · D(K + 1, w)

...
...

. . .
...

D(L,w) D(L+ 1, w) · · · D(M,w)

1

CCCA

D̂(x, t) = F�1ARHF [D(x, t)] = PD(x, t)
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where F−1 indicates the inverse Fourier transform, A indicates the 
averaging operator, the R denotes the TSVD operator, and P = F−1ARHF 
indicates a combined rank-reduction operator (i.e., the SSA operator).  
 
 
Modified singular spectrum analysis 
  
 In eq. (8), the Hankel matrix M can be represented as: 
 
 M = S + N   ,             (10) 

where S and N denote the block Hankel matrix of signal and of random 
noise, respectively. 
  
 We assume that M and N have full rank, rank(M) = rank(N) = J and 
S has deficient rank, rank(S) = K < J. The singular value decomposition 
(SVD) of M can be represented as: 
  

     ,              (11) 

where ΣM
1 respectively, larger singular values and smaller singular values. 

 
  UM

1 (I × K), UM
2 (I × (I − K)), V1

M (J × K) and V2
M (J × (J − K)) 

denote the associated matrices with singular vectors. The symbol [·]H 

denotes the conjugate transpose of a matrix. In general the signal is more 
energy-concentrated and correlative than the random noise. Thus, the 
larger singular values and their associated singular vectors represent the 
signal, while the smaller values and their associated singular vectors 
represent the random noise. We let ΣM

2 be 0 to achieve the goal of 
attenuating random noise while recovering the missing data during the 
first iteration in reconstruction process as follows:  
 

     .                        (12) 

Eq. (12) is referred to the TSVD, which is used in the conventional SSA 
approach.  

 However, M is actually still contaminated with residual blending 
noise. Huang et al. (2015) derived a modified TSVD algorithm to 
attenuate the residual noise caused by the conventional SSA. Here, we 
further apply the TSVD algorithm to simultaneous data separation, and 

M = [UM
1 UM

2 ]


⌃M

1 0
0 ⌃M

2

� 
(VM

1 )H

(VM
2 )H

�

M̃ = UM
1 ⌃M

1 (VM
1 )H
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apply the modified TSVD algorithm iteratively for constraining the model 
when solving the blending equation. It can be derived that approximation 
of S can be expressed:  
 
  ,                     (13) 

   ,              (14) 

where  denotes the maximum element of ΣM
2 and N denotes the control 

factor. It is worth mentioning that the greater the N, the weaker the 
damping, and eq. (13) degrades to eq. (12) when N → +∞.  

 The revised TSVD for the SSA algorithm can be represented in 
operator notation as follows:  
 
 S = RmM ,           (15) 
 
where we use Rm as the rank reduction operator for the modified SSA 
while R is used for conventional SSA, as shown in eq. (9). 
 
  
EXAMPLES  
 
 In this section, we use one synthetic and one field data examples to 
demonstrate the performance of the proposed method based on the 
iterative framework expressed in eq. (7). We use two simultaneous 
sources in the numerical tests. Being concise, we only show the 
deblending performance of one record and omit the performance from the 
other source since the two common receiver records that are used for the 
blending are very similar. To quantitatively measure the deblending 
performance, we use the metric (signal-to-noise ratio; SNR) defined in 
Chen et al. (2014): � 

                  ,        (16) 

where SNRn denotes the SNR after n iterations, m0 denotes the clean 
unblended data and mn denotes the deblended data after n iterations. 
  
 The first example is shown in Fig. 1. Fig. 1(a) shows the clean data 
and Fig. 1(b) shows the blended data, which is contaminated by strong 
spiky-like blending interference.  In this example, the blending fold is 3. 
Figs. 1(c) and 1(d) show two zoomed areas from Figs. 1(a) and 1(b). The 
zooming areas are highlighted by the two black frame boxes in Figs. 1(a) 
and 1(b). 

S = UM
1 ⌃M

1 T(VM
1 )H

T = I� (⌃M
1 )�N �̂N

�̂

SNRn = 10 log10
km0k22

km0 �mnk22
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Fig. 1. Synthetic example. (a) Clean data. (b) Blended data. (c) Zoomed (a). (d) Zoomed 
(b). 
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Fig. 2. Synthetic example. (a) Deblended data using FX method. (b) Deblended data 
using SSA method. (c) Deblended data using the proposed method. (d)-(f) Zoomed areas 
corresponding to the frameboxes in (a)-(c). Note that the proposed method obtains the 
cleanest result. 
 
 
 Fig. 2 shows the deblending performance using three different 
methods. Fig. 2(a) shows the deblended data using the iterative f-x 
predictive filtering method (Chen et al., 2014). For simplicity, we use FX to 
refer to the f-x predictive filtering method from here. Fig. 2(b) shows the 
deblended data using the traditional SSA method. Fig. 2(c) shows the 
deblended data using the modified SSA method. Figs. 2(d), 2(e), and 2(f) 
show the zoomed profiles from Figs. 2(a), 2(b), and 2(c). From Fig. 2, it is 
clear that the FX method causes most residual noise while the proposed 
method obtains the cleanest result. The zoomed comparison gives a very 
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obvious demonstration on that the proposed method almost removes all the 
blending interference but the other two methods fail in removing enough 
noise. We then show the removed blending noise in Fig. 3. The removed 
noise section is calculated by subtracting the deblended data from the 
blended data, as shown in Fig. 1(b). From the comparison of blending noise, 
we can conclude that the FX method damages the most useful signals since 
there is a lot of spatially coherent energy shown in Fig. 3(a). The SSA 
method remove less useful energy than the FX method but more than the 
modified SSA method. We then calculate the deblending error sections and 
show them in Fig. 4. The deblending error is defined as the difference 
between the clean unblended data (the exact solution) and the deblended 
data. A successful deblending algorithm should make the deblending error 
close to zero. From the deblending error comparison as shown in Fig. 4, we 
can confirm the fact that the proposed causes least error but the FX method 
causes the most. Fig. 5 shows the SNR diagrams during the iterations. It is 
clear that the proposed method outperforms the other two methods in faster 
convergence and better converged SNR. For compare the amplitude details 
of different deblending methods, we show a trace-by-trace comparison in 
Fig. 6, where the 30-th trace from the unblended data (Fig. 1(a)), blended 
data (Fig. 1(b)), and the deblended data using three different methods (Figs. 
2(a), 2(b), and 2(c)), are extracted and compared together. The trace-by-trace 
comparison confirms again that the proposed method obtains the result that 
is closest to the exact solution. 
 
  

 
 
 
Fig. 3. Synthetic example. (a) Removed blending noise using FX method. (b) Removed 
blending noise using SSA method. (c) Removed blending noise using the proposed 
method. Note that the proposed method causes the least damages to the useful signals.  
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Fig. 4. Synthetic example. (a) Deblending error using FX method. (b) Deblending error 
using SSA method. (c) Deblending error using the proposed method. Note that the 
proposed method obtains the least deblending error. 
 
 

 
 
Fig. 5. Convergence diagram of the synthetic example in terms of SNR.  
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Fig. 6. Trace-by-trace amplitude comparison of the synthetic example. Note that the 
proposed method obtains the closest trace to the clean data. 
 
 
 We then test the proposed method on a real dataset. The unblended 
common receiver gather is shown in Fig. 7(a). Fig. 7(b) shows the 
corresponding blended data. The blending scheme and iterative solver to the 
inverse problem is exactly the same as the last example. Figs. 7(c) and 7(d) 
show two zoomed sections from the unblended and blended data, 
respectively. The blending noise in this example is even stronger than that in 
the last example. Fig. 8 show the deblending performance for three different 
methods. In this example, it seems that all three methods obtain much 
encouraging results since most blending noise has been removed. However, 
a detailed observation can find that there is much more residual noise in the 
deblended data using the FX and SSA methods than in the deblended data 
using the modified SSA method. It is worth mentioning that there is a lot of 
scattering interference before the first breaks in Figs. 8(a) and 8(b). The 
modified TSVD operation helps mitigate this type of noise and makes the 
resulted data smoother and cleaner, as shown in Fig. 8(c). The comparison 
among those zoomed sections shown in Figs. 8(d)-8(f) demonstrates that the 
modified SSA method removes more noise while maintaining the spatial 
coherency. Fig. 9 shows a comparison between the removed noise. Both 
traditional SSA and modified SSA methods do not remove too much useful 
energy, but the FX method does. There is a significant amount of useful 
energy shown in Fig. 9(a), which indicates that the FX method tends to lose 
energy during iterative inversion. There is a negligible amount of useful 
energy left in Fig. 9(b), which comes from the traditional SSA method. The 
proposed method causes almost no leakage useful energy and is thought to 
obtain the best performance. Fig. 10 shows a comparison of deblending error 
sections using different methods, which is consistent with the afore-
mentioned observations and further confirms the superior performance from 
the proposed method. The SNR diagrams of this test is shown in Fig. 11.  
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Fig. 7. Field data example. (a) Clean data. (b) Blended data. (c) Zoomed (a). (d) Zoomed 
(b). 
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Fig. 8. Field data example. (a) Deblended data using FX method. (b) Deblended data 
using SSA method. (c) Deblended data using the proposed method. (d)-(f) Zoomed areas 
corresponding to the frameboxes in (a)-(c). Note that the proposed method obtains the 
cleanest result.  
 
 
CONCLUSIONS  
 
 We have proposed a modified singular spectrum analysis (SSA) 
method for removing interferences caused from the simultaneous source 
acquisition. The traditional SSA method utilize the truncated singular value 
decomposition (TSVD) algorithm to separate the Hankel matrix into signal 
and noise components. In the modified SSA method, the TSVD is 
substituted with a more powerful modified TSVD algorithm, which can help 
better decomposing the data into signal and noise subspaces. The modified 
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SSA method can significantly improve the signal-and-noise separability 
during iterative inversion, which brings a much stronger deblending ability 
for the presented method. The proposed method is easy to be implemented 
and can be conveniently transformed into industrial applications. The 
synthetic and field data examples demonstrate the great potential of the 
proposed method in deblending. 
 

 
 
Fig. 9. Field data example. (a) Removed blending noise using FX method. (b) Removed 
blending noise using SSA method. (c) Removed blending noise using the proposed 
method. Note that the proposed method causes the least damages to the useful signals.� 
 
 

 
 
Fig. 10. Field data example. (a) Deblending error using FX method. (b) Deblending error 
using SSA method. (c) Deblending error using the proposed method. Note that the 
proposed method obtains the least deblending error. 
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Fig. 11. Convergence diagram of the field data in terms of SNR. 
 
 
ACKNOWLEDGEMENTS 
  
 The project is supported by the National Natural Science Foundation 
of China (Grant No. 41704121) and the starting fund at North China 
University of Water Resources and Electric Power (Grant No. 201705002, 
201705003). 
 
 
REFERENCES  
 
Abma, R., 2014. Shot scheduling in simultaneous shooting. Expanded Abstr., 84th Ann. 
 Internat. SEG Mtg., Denver: 94-98.  
Abma, R.L. and Yan, J., 2009. Separating simultaneous sources by inversion. Extended 
 Abstr., 71st EAGE Conf., Amsterdam.  
Amundsen, L., Andersson, F., van Manen, D.-J., Robertsson, J.O. and Eggenberger K., 
 2018. Multi-source encoding and decoding using the signal apparition technique. 
 Geophysics, 83: V49-V59.  
Bai, M. and Wu, J., 2017. Efficient deblending using median filtering without correct 
 normal moveout - with comparison on migrated images. J. Seismic Explor., 26: 
 455-479.  
Bai, M. and Wu, J., 2018. Seismic deconvolution using iteartive transform-domain sparse 
 inversion. J. Seismic Explor., 27: 103-116.  

2 4 6 8 10 12 14 16 18 20
Iterations

3

4

5

6

7

8

9

SN
R

 (d
B

)

SNR comparison

FX
SSA
Proposed



	 17	

Bai, M., Wu, J., Xie, J. and Zhang, D., 2018. Least-squares reverse time migration of 
 blended data with low-rank constraint along structural direction. J. Seismic 
 Explor., 27: 29-48.  
Beasley, C. J., 2008. A new look at marine simultaneous sources. The Leading Edge, 27: 
 914-917.  
Berkhout, A.J., 2008. Changing the mindset in seismic data acquisition. The Leading 
 Edge, 27: 924-938.  
Berkhout, A.J. and Blacquière, G., 2013. Effect of noise in blending and deblending. 
 Geophysics, 78(5): A35-A38.  
Cadzow, J.A., 1988. Signal enhancement - a composite property mapping algorithm. 
 IEEE Transact. Acoust., Speech, Sign. Process., 1: 49-62.  
Chen, W., Chen, Y. and Cheng, Z., 2017a. Seismic time-frequency analysis using an 
 improved empirical mode decomposition algorithm. J. Seismic Explor., 26: 367- 
 380.  
Chen, W., Chen, Y. and Liu, W., 2016a. Ground roll attenuation using improved 
 complete ensemble empirical mode decomposition. J. Seismic Explor., 25: 485-
 495.  
Chen, W., Xie, J., Zu, S., Gan, S. and Chen, Y., 2017b. Multiple reflections noise 
 attenuation using adaptive randomized-order empirical mode decomposition. 
 IEEE Geosci. Remote Sens. Lett., 14: 18-22.  
Chen, W., Yuan, J., Chen, Y. and Gan, S., 2017c. Preparing the initial model for iterative 
 deblending by median filtering.  J. Seismic Explor., 26: 25-47.  
Chen, W., Zhang, D. and Chen, Y., 2017d. Random noise reduction using a hybrid 
 method based on ensemble empirical mode decomposition. J. Seismic Explor., 26: 
 227-249.  
Chen, Y., 2016. Dip-separated structural filtering using seislet thresholding and adaptive 
 empirical mode decomposition based dip filter. Geophys. J. Internat., 206: 457-
 469.  
Chen, Y., 2017. Fast dictionary learning for noise attenuation of multidimensional 
 seismic data. Geophys. J. Internat.,  209: 21-31.  
Chen, Y., 2018. Non-stationary least-squares complex decomposition for microseismic 
 noise attenuation. Geophys. J. Internat., 213: 1572-1585.  
Chen, Y., Chen, H., Xiang, K. and Chen, X., 2016b. Geological structure guided well log 
 interpolation for high-fidelity full waveform inversion. Geophys. J. Internat., 207: 
 1313-1331.  
Chen, Y., Chen, H., Xiang, K. and Chen, X., 2017e. Preserving the discontinuities in 
 least-squares reverse time migration of simultaneous-source data. Geophysics, 
 82(3): S185–S196.  
Chen, Y. and Fomel, S., 2015. Random noise attenuation using local signal-and-noise 
 orthogonalization. Geophysics, 80(6): WD1-WD9.  
Chen, Y. and Fomel, S., 2018. EMD-seislet transform. Geophysics, 83(1): A27-A32.  
Chen, Y., Fomel, S. and Hu, J., 2014. Iterative deblending of simultaneous-source 
 seismic data using seislet-domain shaping regularization. Geophysics, 79(5): 
 V179-V189.  
Chen, Y. and Ma, J., 2014. Random noise attenuation by f-x empirical mode 
 decomposition predictive filtering. Geophysics, 79: V81–V91.  
Chen, Y., Zhang, D., Huang, W. and Chen, W., 2016c. An open-source matlab code 
 package for improved rank-reduction 3D seismic data denoising and 
 reconstruction. Comput. Geosci., 95: 59-66.  
Chen, Y., Zhang, D., Jin, Z., Chen, X., Zu, S., Huang, W. and Gan, S., 2016d. 
 Simultaneous denoising and reconstruction of 5D seismic data via damped rank-
 reduction method. Geophys. J. Internat., 206: 1695-1717. 



	18	

 Doulgeris, P., Bube, K., Hampson, G. and Blacquière, G., 2012. Convergence analysis of 
 a coherency-constrained inversion for the separation of blended data. Geophys. 
 Prosp., 60: 769-781.  
Fomel, S., 2007. Shaping regularization in geophysical-estimation problems. Geophysics,  
 72(2): R29-R36.  
Fomel, S., 2008. Nonlinear shapping regularization in geophysical inverse problems. 
 Expanded Abstr., 78th Ann. Internat. SEG Mtg., Las Vegas: 2046-2051.  
Gan, S., Wang, S., Chen, Y. and Chen, X., 2016a.  Simultaneous-source separation using 
 iterative seislet-frame thresholding. IEEE Geosci. Remote Sens. Lett., 13: 197-
 201.  
Gan, S., Wang, S., Chen, Y., Chen, X., Huang, W. and Chen, H., 2016b. Compressive 
 sensing for seismic data reconstruction via fast projection onto convex sets based 
 on seislet transform. J. Appl. Geophys., 130:194-208.  
Gan, S., Wang, S., Chen, Y., Chen, X. and Xiang, K., 2016c. Separation of simultaneous 
 sources using a structural-oriented median filter in the flattened dimension. 
 Comput. Geosci., 86: 46-54.  
Gan, S., Wang, S., Chen, Y., Qu, S. and Zu, S., 2016d. Velocity analysis of simultaneous- 
 source data using high-resolution semblance-coping with the strong noise. 
 Geophys. J. Internat., 204: 768-779.  
Gan, S., Wang, S., Chen, Y., Zhang, Y. and Jin, Z., 2015. Dealiased seismic data 
 interpolation using seislet transform with low-frequency constraint. IEEE Geosci. 
 Remote Sens. Lett., 12: 2150-2154.  
Huang, W., Wang, R. and Chen, Y., 2018a. Regularized non-stationary morphological 
 reconstruction algorithm for weak signal detection in micro-seismic monitoring: 
 Methodology. Geophys. J. Internat., 213: 1189-1211.  
Huang, W., Wang, R., Chen, Y, Li, H. and Gan, S., 2016. Damped multichannel singular 
 spectrum analysis for 3D random noise attenuation. Geophysics, 81(4): V261-
 V270.  
Huang, W., Wang, R., Gong, X. and Chen, Y., 2018b. Iterative deblending of 
 simultaneous-source seismic data with structuring median constraint. IEEE 
 Geosci. Remote Sens. Lett., 15. doi: 10.1109/LGRS.2017.2772857.  
Huang, W., Wang, R., Li, H. and Chen, Y., 2017a. Unveiling the signals from extremely 
 noisy microseismic data for high-resolution hydraulic fracturing monitoring. 
 Scientif. Rep., 7: 11996.  
Huang, W., Wang, R., Yuan, Y., Gan, S. and Chen, Y., 2017b. Signal extraction using 
 randomized-order multichannel singular spectrum analysis. Geophysics, 82: V59- 
 V74.  
Huang, W., Wang, R., Zhang, D., Zhou, Y., Yang, W. and Chen, Y., 2017c. 
 Mathematical morphological filtering for linear noise attenuation of seismic data. 
 Geophysics, 82: V369-V384.  
Huang, W., Wang, R., Zhang, M., Chen, Y. and Yu, J., 2015. Random noise attenuation 
 for 3D seismic data by modified multichannel singular spectrum analysis. 
 Extended Abstr., 77th EAGE Conf., Madrid. doi: 10.3997/2214– 4609.201412830.  
Huang, W., Wang, R., Zu, S. and Chen, Y., 2017d. Low-frequency noise attenuation in 
 seismic and microseismic data using mathematical morphological filtering. 
 Geophys. J. Internat., 211: 1318-1340.  
Li, H., Wang, R., Cao, S., Chen, Y. and Huang, W., 2016a. A method for low-frequency 
 noise suppression based on mathematical morphology in microseismic monitoring. 
 Geophysics, 81(3): V159-V167.  
Li, H., Wang, R., Cao, S., Chen, Y., Tian, N. and Chen, X., 2016b. Weak signal detection 
 using multiscale morphology in microseismic monitoring. J. Appl. Geophys., 133: 
 39-49.  
Liu, W., Cao, S. and Chen, Y., 2016a. Seismic time-frequency analysis via empirical 
 wavelet transform. IEEE Geosci. Remote Sens. Lett., 13: 28-32.  



	 19	

Liu, W., Cao, S., Gan, S., Chen, Y., Zu, S. and Jin, Z., 2016b. One-step slope estimation 
 for dealiased seismic data reconstruction via iterative seislet thresholding. IEEE 
 Geosci. Remote Sens. Lett., 13: 1462-1466.  
Liu, W., Cao, S., Jin, Z., Wang, Z. and Chen, Y., 2018. A novel hydrocarbon detection 
 approach via high-resolution frequency-dependent avo inversion based on 
 variational mode decomposition. IEEE Transact. Geosci. Remote Sens., 56: 2007- 
 2024.  
Mahdad, A., 2012. Deblending of Seismic Data. Ph.D. thesis, Delft University of 
 Technology.  
Mueller, M.B., Halliday, D.F., van Manen, D.-J. and Robertsson, J.O., 2015. The benefit 
 of encoded source sequences for simultaneous source separation. Geophysics, 
 80(5): V133-V143.  
Qu, S., Zhou, H., Chen, H., Zu, S. and Zhi, L., 2014. Separation of simultaneous 
 vibroseis data. Expanded Abstr., 84th Ann. Internat. SEG Mtg., Denver: 4340-
 4344. 
Qu, S., Zhou, H., Chen, Y., Yu, S., Zhang, H., Yuan, J., Yang, Y. and Qin, M., 2015. An 
 effective method for reducing harmonic distortion in correlated vibroseis data. 
 J.  Appl. Geophys., 115: 120-128.  
Qu, S., Zhou, H., Liu, R., Chen, Y., Zu, S., Yu, S., Yuan, J. and Yang, Y., 2016. 
 Deblending of simultaneous-source seismic data using fast iterative shrinkage-
 thresholding algorithm with firm-thresholding. Acta Geophys., 64: 1066-1092. 
 Siahsar, M.A.N., Abolghasemi, V. and Chen, Y., 2017a. Simultaneous denoising and 
 interpolation of 2D seismic data using data-driven non-negative dictionary 
 learning. Sign. Process., 141: 309-321. 
 Siahsar, M.A.N., Gholtashi, S., Kahoo, A.R., Chen, W. and Chen, Y., 2017b. Data-
 driven multi-task sparse dictionary learning for noise attenuation of 3D seismic 
 data. Geophysics, 82(6): V385-V396.  
Siahsar, M.A.N., Gholtashi, S., Olyaei, E., Chen, W. and Chen, Y., 2017c. Simultaneous 
 denoising and interpolation of 3D seismic data via damped data-driven optimal 
 singular value shrinkage. IEEE Geosci. Remote Sens. Lett., 14: 1086-1090.  
Verschuur, D.J. and Berkhout, A.J., 2011. Seismic migration of blended shot records with 
 surface-related multiple scattering. Geophysics, 76(1): A7-A13.  
Wang, Y., Zhou, H., Zu, S., Mao, W. and Chen, Y., 2017. Three-operator proximal 
 splitting scheme for 3D seismic data reconstruction. IEEE Geosci. Remote Sens. 
 Lett., 14: 1830-1834.  
Wu, J. and Bai, M., 2018. Incoherent dictionary learning for reducing crosstalk noise in 
 least-squares reverse time migration. Comput. Geosci., 114: 11-21.  
Wu, S., Blacquière, G. and van Groenestijn, G.-J., 2015. Shot repetition: An alternative 
 approach to blending in marine seismic. Expanded Abstr., 85th Ann. Internat. 
 SEG Mtg., New Orleans: 48-52.  
Xie, J., Chen, W., Zhang, D., Zu, S. and Chen, Y., 2017. Application of principal 
 component analysis in weighted stacking of seismic data. IEEE Geosci. Remote 
 Sens. Lett., 14: 1213-1217.  
Xue, Y., Chang, F., Zhang, D. and Chen, Y., 2016. Simultaneous sources separation via 
 an iterative rank-increasing method. IEEE Geosci. Remote Sens. Lett., 13, 1915- 
 1919.  
Xue, Y., Man, M., Zu, S., Chang, F. and Chen, Y., 2017. Amplitude-preserving iterative 
 deblending of simultaneous source seismic data using high-order Radon transform. 
 J. Appl. Geophys., 139: 79-90.  
Yu, Z., Abma, R., Etgen, J. and Sullivan, C., 2017. Attenuation of noise and simultaneous 
 source interference using wavelet denoising. Geophysics, 82: V179-V190.  
Zhang, D., Chen, Y., Huang, W. and Gan, S., 2016. Multi-step damped multichannel 
 singular spectrum analysis for simultaneous reconstruction and denoising of 3D 
 seismic data. J. Geophys. Engin., 13: 704-720.  



	20	

Zhang, D., Zhou, Y., Chen, H., Chen, W., Zu, S. and Chen, Y., 2017. Hybrid rank-
 sparsity constraint model for simultaneous reconstruction and denoising of 3D 
 seismic data. Geophysics, 82(5): V351-V367.  
Zhou, Y., Li, S., Zhang, D. and Chen, Y., 2018. Seismic noise attenuation using an online 
 subspace tracking algorithm. Geophys. J. Internat., 212: 1072-1097.  
Zhou, Y., Shi, C., Chen, H., Xie, J., Wu, G. and Chen, Y., 2017. Spike-like blending 
 noise attenuation using structural low-rank decomposition. IEEE Geosci. Remote 
 Sens. Lett., 14: 1633-1637.  
Zu, S., Zhou, H., Chen, H., Zheng, H. and Chen, Y., 2017a. Two field trials for 
 deblending of simultaneous source surveys: why we failed and why we succeeded? 
 J. Appl. Geophys., 143: 182-194.  
Zu, S., Zhou, H., Chen, Y., Pan, X., Gan, S. and Zhang, D., 2016a. Interpolating big gaps 
 using inversion with slope constraint. IEEE Geosci. Remote Sens. Lett., 13: 1369-
 1373.  
Zu, S., Zhou, H., Chen, Y., Qu, S., Zou, X., Chen, H. and Liu, R., 2016b. A periodically 
 varying code for improving deblending of simultaneous sources in marine 
 acquisition. Geophysics, 81(3): V213-V225.  
Zu, S., Zhou, H., Li, Q., Chen, H., Zhang, Q., Mao, W. and Chen, Y., 2017b. Shot-
 domain deblending using least-squares inversion. Geophysics, 82(4): V241-V256.  
Zu, S., Zhou, H., Mao, W., Zhang, D., Li, C., Pan, X. and Chen, Y., 2017c. Iterative 
 deblending of simultaneous-source data using a coherency-pass shaping operator. 
 Geophys. J. Internat., 211: 541-557.  
 
 

 

 

 

 

 

 

 

	


