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ABSTRACT 
 
Sun, F.Y., Gao, J.H. and Liu, N.H., 2019. An efficient method to model seismic 
propagation in diffusive-viscous media with dipping interfaces. Journal of Seismic 
Exploration, 28: 21-40. 
 
  Partial wavefield that is not be interfered by other waves plays a significant role 
in seismic exploration. In many applications, geophysicists are only interested in partial 
wavefields. In this work, we first derive an efficient workflow to simulate partial 
wavefields in the diffusive-viscous media with the presence of dipping layers. It can 
efficiently calculate various partial wavefields for investigating the seismic exploration 
based on the diffusive-viscous theory. Especially, the reflection/transmission coefficients 
in the dip layered media are studied through the coordinate transformation and the plane 
wave theory. Then, a fast integral method is used to synthesize the wavefields from a 
point source, and the best integral path is chosen to improve the accuracy and the 
computational efficiency. By choosing the appropriate sign of the complex slowness, the 
instability phenomenon in the computation process can be avoided. The analysis and 
numerical examples show that the proposed method is stable and efficient. 
 
KEY WORDS: partial wavefield, layered diffusive-viscous media, reflectivity method. 
 

 
INTRODUCTION 
 

The complete seismic wavefield is usually complex because it contains 
many types of waves. However, when we study the phenomenon of 
frequency-dependent due to the presence of fluids, we are only interested in 
the partial wavefield which is not interfered by other waves. The seismic 
response in hydrocarbon reservoirs is affected  by many factors, such as the 
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porosity, permeability, viscosity and so on (Toksöz and Johnston, 1981; 
Raikes and White, 1984). Goloshubin et al. (1996) observed traveltime delay 
and energy redistribution when comparing cases of water-saturated and 
dry-sandstone rocks in both laboratory and field data. To explain the 
anomalies, Korneev et al. (2004) proposed the diffusive-viscous theory and 
showed the general link between characteristics of fluid saturation and 
seismic attenuation. In this paper, we propose a modeling method which 
combines the diffusive-viscous theory and the reflectivity method to 
simulate seismic wave propagation.  
 

There are many other numerical modeling methods to compute 
complete seismic wavefield, such as the finite difference method (Alterman 
and Karal, 1968; Marfurt, 1984; Arntsen et al., 1998; Wu and Harris, 2004; 
Gao and Zhang, 2013; Han et al., 2014), finite element method (Smith, 1975; 
Peelamedu, 1999; Guo et al., 2001; Min, 2002; Taeyoung et al., 2009; Zhang 
and Li, 2013; Meng and Fu, 2017) and spectral element method (Patera, 
1984). However, it is difficult to obtain accurate waves in many applications, 
which are not interfered especially in thin layers. As a result, geophysicists 
are only interested in partial wavefield. For example, the primary reflected 
waves are needed to study amplitude variations with offset (Shuey, 1985). In 
borehole geophysics, reflections are complex because downgoing-waves and 
upgoing-waves interfere with each other. The interference may affect the 
accuracy of seismic imaging (Mars, 1999; Nowak and Imhof, 2004; 
Serdyukov and Duchkov, 2015). For multiple predictions, we often focus on 
the multiples of target layers only (ten Kroode, 2002). The presence of 
interbed multiples has a strong impact on the interpretation, which distorts 
the wavelets of true reflections and reduces the quality of final images. 
Therefore, seismic simulation of wavefields without interbed multiples 
before imaging is often needed in practice (Wang et al., 2016). Therefore, 
modeling partial wavefields without interference is important.  
 

To simulate partial wavefield and remove the interference errors, we 
propose a novel workflow based on the diffusive-viscous theory and the 
reflectivity method in this paper. The main advantage of the proposed 
method is its capacity to give both a total solution of wavefield and partial 
wavefield of interest in layered media. After decomposing all wave types 
into upgoing- and downgoing- waves, the proposed method describes 
seismic behavior in stratified earth models in a convenient way, where 
waves can be decoupled into different wave types. Reflections, 
transmissions and the corresponding multiples inside thin layers inserted 
between two half-spaces can be fully modeled, respectively.  
 

Seismic wave propagation in stratified media has been studied for a 
long time (Aki and Richards, 2002). The method of seismogram synthesis 
that we will present is for multi-layered media with dipping interfaces. This 
method can be viewed as an extension of the reflectivity method for 
horizontal layered media to dipping layered media. And it can also be used 
for layered media with the horizontal interface. The accurate and stable 
result in dipping  layered  media is important in many practical applications  
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because dipping layers are more realistic than horizontal layers. The 
difference between horizontal and dipping layered media is that the slowness 
of the ray paths is not conserved in dipping layered media. Therefore, a 
complicated algorithm to model wave propagation in dipping layered media 
than that in horizontal layered media. There are also other approaches to 
simulate the wave propagation in a layered model with dipping interfaces. 
For instance, the wavefield extrapolation method can be used to simulate 
wave propagation in elastic media with dipping interfaces (Berkhout et al., 
1982; Bourbie and Gonzalez-Serrano, 1983). The generalized reflectivity 
method proposed by Chen (1990, 1996) and boundary element approach of 
Ge and Chen (2007). Liu et al. (2008) were proposed to simulate wave 
propagation in stratified elastic media with irregular interfaces. However, 
these methods have various limitations for simulating partial wavefields. 
The extended reflectivity method of Zhao et al. (2017) can also be used to 
model wave propagation in dip-layered media, but there is not a discussion 
about the best integral path, and the computation process is unstable and the 
overflow phenomenon always occurs.     
 

On the basis of previous works that have been referred earlier, we 
derive a stable and efficient partial wavefield simulation method in 
diffusive-viscous media based on the reflectivity method. Then, we simulate 
the propagation of diffusive-viscous waves in fluid-saturated layered models 
in the frequency-wavenumber domain. A fast integral method is used to 
synthesize the wavefield for a point source. Numerical examples and the 
comparison with the finite difference solution demonstrate that our proposed 
method is computationally and mathematically efficient. 
 
 
DIFFUSIVE-VISCOUS WAVE EQUATION 
 

 The diffusive-viscous theory is proposed to explain the phenomenon 
that fluid-saturated layers generate large reflection amplitudes at low 
frequencies (Korneev et al., 2004). In the absence of a source term, the wave 
equation can be written as 

  

  

∂2u
∂t 2

+γ
∂u
∂t

−η( ∂
3u

∂z 2∂t
+

∂3u
∂x 2∂t

)−v 2 (∂
2u
∂x 2

+
∂2u
∂z 2
) = 0

 
,      (1) 

 
where γ  represents the diffusional dispersive force with a unit of Hz, η  
denotes the viscosity with a unit of 2 /m s . These two variables are 
considered to be attenuation parameters, which are related to porosity and 
permeability. v  is the velocity in a non-dispersive situation. u  denotes the 
displacement. 

The harmonic plane wave solution of eq. (1) is given by 

  ( )exp .u j t j px qzω ω= + +⎡ ⎤⎣ ⎦                               (2) 
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where ω  denotes the angular frequency, p  and q  are the horizontal 
slowness and the vertical slowness, respectively, 

   
( )1 sinp

V
ε=  , 

   
2

2

1 ,q p
V

= −                                         (3) 

 
where V is the complex velocity, ε  is the incident angle between the ray 
and the vertical direction. The complex velocity and the quality factor Q can 
be computed by (Carcione and Tinivella, 2001) 
 

   

2

1
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ηω
γ
ω

+
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−
 , 

   Q =
Re V 2( )
Im V 2( )

=
v 2 −ηγ( )ω
ηω 2 +γv 2  .                             (4) 

 
   Eq. (4) indicates that V  and Q  not only depend on the attenuation 
caused by the diffusive and viscous properties, but also on the frequency. 
The resulted velocity and wavenumber reduce to those of acoustic media 
when attenuation parameters approach to zero, whereas Q  becomes infinity, 
i.e., no attenuation. The detailed derivation of eq. (4) can be seen in the 
Appendix. 
 
 
REFLECTION AND TRANSMISSION AT A DIPPING INTERFACE 
 

To determine the reflection and transmission coefficients at a dipping 
interface in layered diffusive-viscous media, two coordinate systems are 
introduced as shown in Fig. 1(a). The global coordinate system XOZ  with 
X -axis at the horizontal direction. The local coordinate system ˆˆ ˆXOZ with 
X̂ -axis at the dipping interface and its origin in XOZ  system is (x0 , z0). α  
is the plane wave velocity, ρ  is the density. The subscript “1” and “2” 
denote upper and lower media, respectively. γ  and η  are the 
diffusive-viscous parameters. The variables with a superscript “∧ ” are in the 
local coordinate system. Otherwise, they are in the global coordinate system. 

  
Two different coordinate systems in Fig. 1(a) can be transformed to 

each other by a rotation matrix C , 
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Fig. 1. The propagation of the plane wave in the diffusive-viscous media with a single 
interface. (a) Two layered diffusive-viscous media with a dipping interface in the global 
system. (b) Two layered diffusive-viscous media with a horizontal interface in the local 
system.  

  
 First, the downgoing incident wave in the global system is written as 
 
  ( )1 1 1=exp ,j p x q zφ ω +⎡ ⎤⎣ ⎦                                  (6) 
 
where the time factor j te ω  has been suppressed, 1p  and 1q  are the 
horizontal and vertical slownesses in the global coordinate system, 
respectively. 
  

Because the wave propagation is independent of coordinate systems, 
the simplified equations of incident wave in the local system can be obtained 
by replacing ( ),x z  with ( )ˆ ˆ,x z  as eqs. (7) and (8) 

  ( ) ( )1 1 0 1 0 1 1
ˆ ˆ ˆ ˆ ˆexp exp ,j p x q z j p x q zφ ω ω= + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦              (7) 

  

1 11

1 1

ˆ
,

ˆ
p p
q q

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
C                                        (8) 

 
where the superscript “∧ ” indicates that relative variables are discussed in 
the local coordinate system. 1p̂  and 1q̂  are the horizontal and vertical 
slowness in the local coordinate system, respectively.  
 

In the local coordinate system, the dipping interface is considered as 
horizontal, which separates two diffusive-viscous media as shown in Fig. 
1(b). The secondary waves in both half-spaces can be written as 

 

  ( ) ( )2 1 0 1 0 2 2
ˆˆ ˆ ˆ ˆ ˆ= exp exp ,dT j p x q z j p x q zψ ω ω⋅ + ⋅ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦             (9) 

  ( ) ( )1 1 0 1 0 1 1
ˆˆ ˆ ˆ ˆ ˆ= exp exp ,dR j p x q z j p x q zϕ ω ω⋅ + ⋅ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦            (10) 

(a) (b) 
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where ˆ dR  and ˆ dT  denote the reflection and transmission coefficients 
corresponding to the downgoing-waves in the local coordinate system. The 
subscript “2” represents that parameters are in the second layer. Boundary 
conditions require that the pressure and particle velocity projection on the 
normal of the boundary are continuous. The reflection and transmission 
coefficients can be written as 

  
2 1 1 2

2 1 1 2

ˆ ˆˆ ,
ˆ ˆ

d q qR
q q

ρ ρ
ρ ρ

−
=

+
                                      (11) 

  
1 2

2 1 1 2

ˆ2ˆ .
ˆ ˆ

d qT
q q
ρ

ρ ρ
=

+
                                      (12) 

 
 In acoustic media, the vertical slowness is always real. Although eqs. 
(11) and (12) have the same form as in case of acoustic media, the 
slownesses and the coefficients are complex and dependent on frequency. 
The question is how to correctly choose the sign of the vertical slownesses in 
eqs. (11) and (12) to avoid the instability in wave propagation. In this paper, 
we choose the imaginary part of the vertical slowness related to the 
downgoing- and upgoing- waves as positive and negative, respectively. 
 
    Substituting ( )ˆ ˆ,x z  with (x,z) in eqs. (9) and (10), the secondary waves 
in the global coordinate system become 
 

( ) ( ) ( )2 1 0 1 0 2 0 2 0 2 2
ˆ exp exp exp ,dT j p x q z j p x q z j p x q zψ ω ω ω= ⋅ + ⋅ − − ⋅ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (13) 

( ) ( ) ( )1 1 0 1 0 1 0 1 0 1 1
ˆ= exp exp exp ,dR j p x q z j p x q z j p x q zϕ ω ω ω⋅ + ⋅ − − ⋅ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦   (14) 
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ˆ
.

ˆ
p p
q q

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
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C                                        (15) 

  
   We consider the reflection and transmission coefficients dR  and dT  in 
the global coordinate system as 
 

  ( )1 0 1 0
ˆ exp ,d d

pp ppR R j p x q zω= ⋅ +⎡ ⎤⎣ ⎦                           (16) 

  ( )1 0 1 0
ˆ exp .d dT T j p x q zω= ⋅ +⎡ ⎤⎣ ⎦                            (17) 

So eqs. (13) and (14) can be re-written as 

  ( ) ( )( )2 2 0 2 0exp ,dT j p x x q z zψ ω⎡ ⎤= ⋅ − + −⎣ ⎦                   (18) 

  ( ) ( )( )2 1 0 1 0exp ,dR j p x x q z zϕ ω⎡ ⎤= ⋅ − − −⎣ ⎦                    (19) 



                     27 

For transmitted waves, we have 

  ( ) ( )( )1 1 0 1 0exp ,uT j p x x q z zψ ω⎡ ⎤= ⋅ − − −⎣ ⎦                     (20) 

  ( )2 0 2 0
ˆ exp ,u uT T j p x q zω= ⋅ −⎡ ⎤⎣ ⎦                             (21) 
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p p
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where the superscript “u” denotes that the variables are corresponding to the 
upgoing-waves. The multiple components can be calculated in the same way. 
The proposed method can simulate different wave components. Meanwhile, 
the proposed method is valid when interfaces are horizontal. The coefficients 
of secondary waves at dipping interfaces in the global coordinate system 
depend on the position and dipping angles of interfaces. The ray slowness is 
not conserved in layered media with dipping interfaces. 
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Fig. 2. Two half-spaces with a dipping interface. For an upgoing plane wave, there are 
two secondary waves. 
 
  
PARTIAL WAVE PROPAGATION IN LAYERED MEDIA 

 
We consider a layered medium with dipping interfaces shown in Fig. 3. 

The position of a point source is placed at the origin in the global coordinate 
system. To construct the local coordinate system, each interface is 
considered along the X̂ -axis of the local coordinate system. 
 

The incident plane waves in the global coordinate system are shown in 
eq. (6). The complete modeling procedure is shown in Fig. 4. 
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Fig. 3. The wave propagation in a layered diffusive-viscous media. 

Transform the wave from global 
system to local system. ˆˆ ˆXOZ XOZ→

Computer the secondary wave in 
local system. ˆˆ ˆXOZ

The i-th 
interface

The (i+1)-th 
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Transform the wave from local 
system to global system. ˆˆ ˆXOZ XOZ→

 

Fig. 4. The recursion procedure for layered media. (1) Constructing a local coordinate 
system ˆˆ ˆXOZ for the i-th interface. The origin of the local coordinate system (xi-1, zi-1) in 
the global plane could be given anywhere. (2) The wave equations in XOZ  system are 
transformed into ˆˆ ˆXOZ system. Then, the specific simulation process as shown in Fig. 1 
and Fig. 2 is introduced to calculate the reflected wave and transmitted wave which are in 
XOZ  system. (3) Iterating the step 1 and step 2 layer by layer. 

 
                     
The equation of primary downgoing-waves in the layer i  is 

  
( ) ( )( )1 1

1

exp , 1,2,3
i

d
i n i i i i

n

T j p x x q z z i Nψ ω − −
=

⎡ ⎤= − + − =⎣ ⎦∏ K .   (24) 

The transmission coefficient at the dipping interface in the global 
coordinate system is 

  

( ) ( )( )1 2 1 2
ˆ exp , 1,2,3d d

pp n pp n np n n np n nT T j p x x q z z n Nω⋅ ⋅ − − − −
⎡ ⎤= − + − =⎣ ⎦ L    (25) 
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where (xi-1, zi-1) represents the source at the origin of the global coordinate 
system. In eqs. (24) and (25), points (xi , zi) are the origins of the local 
coordinate system in the global coordinate system. 

There are some recursive relations, defined in eqs. (26), (27) and (28). 
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1 1
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where 1iθ −  is the dipping angle of the interface between the layer 1i −  and 
layer i . 
 

The primary reflection wave in the layer m  reflected from the 
interface i  is 

( ) ( )( )
1 1

, 1 1
0 0

exp , 1,2
i i

d d u
m i n i m m m m m

n m

T R T j p x x q z z iφ ω
− −

− −
= =

⎡ ⎤= ⋅ ⋅ ⋅ − − − =⎣ ⎦∏ ∏ L   (29) 

where u
mT  denotes the transmission coefficient corresponding to the 

upgoing-wave at m-th interface. d
iR  is the reflection coefficient 

corresponding to the downgoing-wave at i-th interface. d
nT  is the 

transmission coefficient corresponding to the downgoing-wave at n-th 
interface. At the free surface, 0 1uT =  and 0 1dT = . 
 

To study waves that we are interested, raytracing method of Cerveny 
(2005) is used. The code procedure is that " "+  represents downgoing-waves 
and " "−  represents the upgoing-waves. A four-dimensional code [+, +, -, -] 
represents the wave propagation shown in Fig. 5. For different waves in 
media with multiple layers, the modeling procedure can be coded as 
multi-dimension. 

 

Fig. 5. Wave propagation of the code [+, +, -, -]. 

+

+ -

-
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SYNTHESIZING RECORDING OF A POINT SOURCE 

 
Synthetic seismograms for a point source can be calculated by a 

superposition of all plane waves (Aki and Richards, 2002). Here, we 
introduce a slowness integral 

 

  
( )

( )exp1= .
2 2

r r
s s

s

j p x q z
W f p dp

jq
ω

π Γ
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−∫                 (30) 

 
Eq. (30) is an integral formula about the horizontal slowness. ps and qs 

represent the horizontal and vertical slownesses of plane waves at the source. 
pr and qr are the slownesses of reflection waves at receivers. f (ps) is the 
reflection coefficient (or the transmission coefficient).  represents the 
integral contour of the horizontal slowness in a complex plane. 
 

For primary reflected waves from all interfaces in media as shown in 
Fig. 3, the synthetic wavefield can be written as 
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Fig. 6. The integral contour of horizontal slowness in the complex plane.  is the angle 
between and the real axis,  is the wave velocity. (a) The integral paths for elastic 
media, which are deviated from the real axis slightly to avoid the poles at the real axis. 
(b) The integral paths for diffusive-viscous media. 
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According to the residue theorem, many integral paths can be chosen 
from a complex plane. In elastic media, the integral path Γ  is along the real 
axis. To avoid poles at the real axis, the integral path is usually deviated 
from the real axis slightly, shown Fig. 6(a) (Fuchs and Müller, 1971; 
Chapman, 1978). Frazer and Gettrust (1984) introduced the integral path ʹΓ  
shown in Fig. 6(a). For a single receiver, the integral has a fast convergence 
rate when ( )1= tan / r sx z zθ − − , where x  is the offset, rz  and sz  are the 
receiver and source positions along the Z  axis, respectively. In the case of 
attenuation, the integral path can be chosen as the real axis due to the poles 
in the first and third quadrants, it can also reduce the complexity of the 
computation. We choose the integral path 1Γ  shown in Fig. 6(b), and 
synthesis seismograms are shown in Fig. 7(a). However, the section BC of 
the integral path 1Γ along the real axis is dominant of eq. (31). It indicates 
that there is no attenuation when the wave propagates along horizontal 
directions. The integral path 1Γ  is modified to the path 2Γ . There is a small 
angle, between segment BC and real axis, ensure the segment BCʹ  is 
slightly below the poles. Synthesis seismogram is shown in Fig. 7(b). The 
comparison of the peak amplitude of synthetic seismograms with the paths 
1Γ  and 2Γ  is shown in Fig. 7(c). 

 

 

 

 
Fig. 7. The synthesis seismograms of diffusive-viscous which are calculated by the 
different integral path shown in Fig. 6(b). (a) The synthesis seismogram calculation by 
path . (b) The synthesis seismogram calculation by path . (c) The comparison for 
the peak amplitude of the synthetic seismograms with the path and .  
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For the oscillatory integral shown in eq. (31), there are classic 

computation methods, such as the standard trapezoidal method, the Filon’s 
method (FM) (Filon, 1930), the generalization of Filon’s method (GFM) 
(Frazer and Gettrust, 1984), and the Hermite interpolation method. In 
practice, we can choose an appropriate method according to the kernel 
functions of oscillatory integrals. In the reflectivity integral computations, 
the GFM approach is more efficient than non-Filon quadrature technique 
(Frazer and Gettrust, 1984). According to the GFM, the slowness integral 
can be rewritten in the form of  ∫ f (p)exp[sg(p)]dp as 

 

 
( ) ( ) ( ) ( )

( )
, max , , .

2 2 max ,
i s r r
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= = =
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The GFM analogue of the trapezoidal rule is 
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Fig. 8. The comparison of the accuracy of the quadrature which is calculated by GFM 
and the standard trapezoidal, respectively.  
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where 2 1p p−  is the integral step. Note that 2 1p p−  is the inversely 
proportional to max( , )x zω ω . The specification operator ( )D h  indicates 
( ) ( )2 1h p h p−  for any function ( )h p . Fig. 8 shows the comparison of the 

GFM and the standard trapezoidal method for the same diffusive-viscous 
model, we can see that the GFM obtains accurate results when the 
integration step 0.002dp = . In contrast, the result of the standard trapezoidal 
is not as accurate as the GFM due to oscillation as it needs smaller step size. 
 
 
NUMERICAL EXAMPLES 
 

In this section, we synthesize seismograms from several models using 
our method. For comparison, the synthetic seismograms are also compared 
with the results from the Flux-Corrected Transport-Finite-Difference method 
(FCT-FDM). The FCT-FDM was first introduced to model propagations of 
diffusive-viscous waves by Zhao (2014). 

 
To verify the validity of the proposed method and to illustrate the 

diffusive-viscous attenuation effects, the first theoretical model with a thin 
plane bed sandwiched between two homogeneous half-spaces is chosen, 
shown in Fig. 9(a). The parameters are given in Table 1. We consider three 
cases in this model: standard acoustic case, viscoelastic case and 
diffusive-viscous case. For the same layer in different cases, we only modify 
the attenuation parameters, and all the other parameters keep invariable. The 
time sampling rate is 1 ms. A Ricker wavelet with a dominate frequency of 
40 Hz is placed at the origin , and has a 100 ms time-delay. 

 
In Figs. 9(b) and 9(c), the reflection wavefields have some substantial 

differences between water-saturated layers and dry-sandstone layer. The 
water-saturated layers cause a noticeable time delay in waveforms and the 
loss of high-frequency energy. It is clear that there is a less obvious time 
delay in Figs. 9(d) to 9(e) for thin beds with dry-sandstone. However, the 
energy redistributions between different frequencies are observed due to the 
introduction of diffusive-viscous parameters. Figs. 9(f) and 9(g) show that 
the same phenomenon can be seen as Fig. 9(d) and 9(e). From this 
comparison, we see that the diffusive-viscous parameters can explain the 
observation of Korneev et al. (2004). 

 
To verify the validity of the proposed method for diffusive-viscous 

media with dipping interfaces, the second test model is presented as shown 
in Fig. 10(a). The dipping angles of the upper interface and the lower 
interface are 15 and 10 degrees, respectively. The distance between receivers 
is 5 m and synthetic seismograms are extracted every 8 traces. The 
half-spaces parameters are the same as those shown in Table 1 and the thin 
layer is water-saturated. Figs. 10(b) and 10(c) show that synthetic 
seismogram contains all primary reflected waves and the interfaces cannot 
be distinguished. As a result, the presence of thin layers cannot be identified. 
All the partial waves can be modeled as shown using the proposed method in 
this paper as shown in Fig. 10. 

(0,0)
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Fig. 9. (a) A three-layered media with horizontal interfaces and the thin layer is 10 m 
thickness. The integral interval of horizontal slowness is and the integral step 

is 0.0025s/m. (b) The comparison of the reflection waves in the time domain between the 
dry-sandstone layer and the water-saturation layer based on diffusive-viscous theory. (c) 
The comparison of the reflection waves in the frequency domain between the 
dry-sandstone layer and the water-saturation layer based on diffusive-viscous theory. (d) 
The comparison of the reflection waves in the time domain between the diffusive-viscous 
case and the acoustic case ( ), both them are a dry-sandstone layer. (e) The 
comparison of the reflection waves in the frequency domain between the 
diffusive-viscous case and the acoustic case, both them are a dry-sandstone layer. (f) The 
comparison of the reflection waves in the time domain between the diffusive-viscous 
case and the viscoelastic case ( ), both them are a water-saturation layer. (g) The 
comparison of the reflection waves in the frequency domain between the 
diffusive-viscous case and the viscoelastic case, both them are a water-saturation layer. 

 
Table1. The parameters of the fluid-saturated sandstone medium for Figs. 9(a) and 10(a). 
 
Layers  ( )3g cmρ −⋅   ( )/v m s   ( )Hzγ   ( )2 /m sη  

 
Thickness (m) 

Half space 1.2 2300 0.0001 0.0001 450 
Dry-sandstone  1.8 1190 56 0.056 10 
Water-saturation 2.1 1470 90 0.2 10 
 
CONCLUSIONS 
 
 In this paper, we proposed an efficient partial wavefield modeling 
method in layered diffusive-viscous media with dipping interfaces. The 
synthetic seismograms compared with the finite difference method show that 
the proposed method is computationally efficient and can be used to model 
thin layers. The synthetic seismogram of a particular wavefield can be used 
to help us to investigate seismic characteristics of thin layers. After showing 
the application of the method to model primary reflection waves, we believe 
it can be applied to model multiples. In summary, our study aims to 
understand the wave propagation in fluid-saturated media and explain the 
physical phenomena associated with the characteristics of porous media. 
These results would be useful to help interpret field data and contribute to 
the fluid identification. However, the proposed method cannot be considered 
as the optimal method in all cases, such as the presence of fractures or with 
complex structures. The proposed method can be seen as an extension of the 
reflectivity method for diffusive-viscous media with horizontal or dipping 
layers. The main limitation is that it cannot be applied to the case where the 
downgoing reflections are excited from the downgoing incident waves, 
because dipping interfaces are too steep. Dipping angles should be limited in 
an appropriate range to avoid the downgoing reflections. Note that the 
physical interpretation of diffusion–dissipation term remains to be 
understood. Korneev et al. (2004) speculate that the fluid flow in the matrix 
can be the main driving mechanism of fluid diffusion-dissipation. 

1 1

1 1,v v
⎡ ⎤−⎢ ⎥⎣ ⎦

= =0γ η

=16Q
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Fig. 10. (a) The second theoretical model which is a descendant from the first model 
Fig.9(a). The dipping angles for the upper interface and the lower interface are 15,10 
degrees, respectively. The other parameters remain unchanged. The integral interval of 
horizontal slowness is 

1 1

1 1,v v
⎡ ⎤−⎢ ⎥⎣ ⎦

and the integral step is 0.002 s/m. (b) The comparison 

of synthetic seismogram calculated by our method and by Flux-Corrected 
Transport-Finite-Difference method (FCT-FDM). (c) The comparison of the first trace 
in the synthetic seismogram. (d) The primary reflected waves that are reflected by the 
upper interface. (e) The first trace reflected by the upper interface. (f) The primary 
reflected waves that are reflected by the lower interface. (g) The first trace reflected by 
the lower interface. 
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APPENDIX 
 
 

We start from the stress-strain relation: 
 

                                     (A-1) 
 
In eq. (A-1),  denotes the stress and  is the complex modulus, 

is the strain. The Fourier transform of equation (A.1) is 
  

                                  (A-2) 
 
 The complex velocity and the quality factor can be written as 
 

  
                                         (A-3) 

  
                                   (A-4) 

where  and  are the real and imaginary parts of complex 

modulus . We assume the plane wave solution of the eq. (1) as 
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                     (A-5) 

 
where k is the complex wavenumber. From eqs. (A-5), (A-1), (A-3) and 
(A-4), we can obtain 
 

  
                                           (A-6) 

  
                                           (A-7) 

  

                      (A-8) 
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