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ABSTRACT 
 
Liu, W., He, Y.M., Li, S, Wu, H., Yang, L.F. and Peng, Z.M., 2019. A generalized 17-
point scheme based on the directional derivative method for highly accurate finite-
difference simulation of the frequency-domain 2D scalar wave equation. Journal of 
Seismic Exploration, 28: 41-71. 
 

Forward modeling of the frequency-domain wave equation represents an essential 
foundation for full waveform inversion in the frequency domain, the accuracy and 
efficiency of which rely heavily on the forward modeling method employed. To reduce 
the numerical dispersion, anisotropy, and number of grids per the shortest wavelength in 
forward modeling methods, rotating coordinate systems have been successfully applied to 
establish finite-difference (FD) schemes for the forward modeling of the frequency-
domain wave equation. However, rotated optimal FD schemes are incapable of handling 
rectangular sampling grids, which are ubiquitous in practice. Fortunately, optimal FD 
schemes based on the average-derivative method (ADM) overcome this restriction on 
different directional sampling intervals. However, the ADM itself is merely an algebraic 
approach and therefore does not inherit the geometrical properties of the rotating 
coordinate system. Based on the principle of a rotating coordinate system, a novel 
optimal directional derivative method (DDM)-based 4th-order, 17-point FD scheme is 
developed in this paper for the forward modeling of the frequency-domain, two-
dimension scalar wave equation to approximate the spatial derivatives.  The conventional 
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4th-order, 9-point scheme and rotated optimal 17-point FD scheme can be derived as 
special cases of the proposed scheme. Compared with the rotated optimal 17-point FD 
scheme, the proposed scheme is capable of addressing arbitrary rectangular sampling 
grids, including equal and unequal directional sampling intervals; moreover, the 
optimized weighted coefficients can reduce the number of grids per the shortest 
wavelength from 2.56 to less than 2.4 with maximum phase velocity errors of 1%. 
Furthermore, the proposed scheme is superior to the ADM-based optimal 17-point FD 
scheme in suppressing numerical dispersion due to the inherited geometrical properties of 
the rotating coordinate system. A perfectly matched layer boundary condition is applied 
to the final FD equation to attenuate boundary reflections. Numerical examples 
demonstrate the validity and adaptability of our 17-point FD scheme. 

 
KEY WORDS: seismic forward modeling, acoustic wave equation, frequency domain,  
       finite difference, numerical dispersion analysis, directional derivative. 
 
 
INTRODUCTION 
 

 Full waveform inversion (FWI) has recently begun to attract more 
attention from geophysicists as a result of its ideal mathematical basis, high 
precision and ability to model multiple parameters. Consequently, FWI has 
become a research focus in the geophysics community (Tarantola, 1984; 
Virieux and Operto, 2009; Yang et al., 2014) and can be performed in the 
time domain (Tarantola, 1984; Gauthier et al., 1986), frequency domain 
(Pratt, 1990, 1999; Pratt and Worthington, 1990a,b; Pratt et al., 1998; Min et 
al., 2003), and the Laplace domain (Lee et al., 2008; Pyun et al., 2008; Shin 
and Cha 2008; Ha and Shin, 2012, 2013; Shin et al., 2013) as well as in a 
hybrid domain (Shin and Cha, 2009; Shin et al., 2010; Kamei et al., 2015). 
Since forward modeling is an essential foundation of FWI and constitutes 
the significant computational cost, the accuracy and efficiency of FWI 
mainly depend on the forward modeling method employed (Brossier et al., 
2009; Virieux and Operto, 2009; Liu et al., 2013). 

 
 Regardless of whether it is performed in the time, frequency or 

Laplace domain, FWI cannot be implemented without forward modeling of 
the wave equation. Forward modeling of the frequency-domain wave 
equation was initially proposed by Lysmer and Drake (1972) and was 
performed using a finite-element method. Based on a comparison between 
finite-difference (FD) and finite-element forward modeling schemes, 
Marfurt (1984) indicated that numerical modeling in the frequency domain 
did not exhibit a stability problem. Compared with the forward modeling in 
the time domain, forward modeling in the frequency domain possesses 
numerous advantages, including the ability to implement convenient parallel 
manipulations of multi-frequency and multi-shot computations based on a 
direct solver, e.g., lower-upper (LU) factorization, the lack of time 
accumulated errors, the flexible choice of the frequency band (Operto et al.. 
2007), and the smooth implementation of wavefield simulations in 
viscoelastic media (Pratt, 1990). However, the main disadvantage of 
frequency-domain forward modeling is that it can be performed only 
implicitly by solving a large set of linear equations, which requires a 
substantial amount of computer memory. This disadvantage is particularly 
apparent in three-dimensional (3D) forward modeling, as even the inclusion 
of additional computing resources cannot improve the calculation efficiency. 
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In the context of acoustic wave FWI, Pratt and Worthington (1990a) 
developed the classical 5-point FD scheme for the two-dimensional (2D) 
frequency-domain scalar wave equation, which does not impose any 
limitations on the directional sampling intervals. However, this scheme 
suffers from serious numerical dispersion errors and requires 13 grids per the 
shortest wavelength to reduce the phase velocity errors to less than 1%. In 
general, the numerical dispersion errors of frequency-domain forward 
modeling methods are more severe than those of time-domain forward 
modeling methods. That is, frequency-domain forward modeling methods 
require more grids per the shortest wavelength to achieve the same 
calculation accuracy as time-domain forward modeling methods, meaning 
the sampling intervals will consequently be smaller (Jo et al., 1996). 
Therefore, simply diminishing the sampling interval cannot realistically 
reduce the numerical dispersion and anisotropy in frequency-domain 
forward modeling schemes, because this approach will increase the 
computational time and memory consumption. 

 
To improve the calculation accuracy and reduce the number of grids per 

the shortest wavelength (Gmin), rotating coordinate systems have been widely 
used to construct FD schemes for wave equation forward modeling in the 
frequency domain (Jo et al., 1996; Shin and Sohn, 1998; Štekl and Pratt 
1998; Hustedt et al., 2004; Operto et al., 2009; Cao and Chen, 2012). Based 
on the 45° rotating coordinate system, Jo et al. (1996) developed an optimal 
9-point scheme for the scalar wave equation by using conventional 0° and 
45° FD operators to approximate the Laplacian and mass acceleration terms 
and reduced Gmin to approximately 4. Subsequently, Shin and Sohn (1998) 
developed an optimal 25-point scheme by combining the FD operators of 0°, 
26.6°, 45°, and 63.4° rotating coordinate systems and reduced Gmin to nearly 
2.5. Similarly, Cao and Chen (2012) extended the FD operators of 0° and 
45° rotating coordinate systems to the 4th-order and proposed a 4th-order, 
17-point FD scheme with a higher calculation accuracy and reduced Gmin 
from 5 to approximately 2.56 relative to the conventional 4th-order, 9-point 
FD scheme. 

  
Although rotating coordinate system-based optimal algorithms are very 

effective for the forward modeling of the frequency-domain scalar wave 
equation, all of the abovementioned rotated optimal FD schemes require 
equal spatial sampling intervals (i.e., a square sampling grid) along the 
directions of the X and Z axes, thereby limiting their practical applications 
due to different directional sampling intervals of the actual models (i.e., 
rectangular sample grids). Fortunately, numerous scholars have derived 
effective solutions targeted at rectangular sampling grids. Chen (2012) 
proposed a new optimal 9-point scheme based on the average-derivative 
method (ADM) (Chen, 2008), namely, the ADM-based 9-point scheme. This 
algorithm includes Jo’s rotated optimal 9-point scheme (Jo et al., 1996) as a 
special case. Subsequently, Zhang et al. (2014) generalized the ADM and 
proposed an ADM 25-point scheme that includes the rotated 25-point 
scheme (Shin and Sohn, 1998) as a special case. In terms of a 17-point FD 
stencil, Tang et al. (2015) proposed an ADM 17-point scheme whose Gmin 
was reduced to approximately 2.4 within which the rotated 17-point scheme 



 44 

(Cao and Chen, 2012) is similarly regarded as a special case. Though the 
abovementioned optimal FD ADM schemes improved the calculation 
accuracy to some extent while generalizing their respective rotated optimal 
schemes, this was achieved only through algebraic manipulation, and the 
improved schemes forfeited the geometrical properties of the rotating 
coordinate systems. Therefore, based on the directional derivative method 
(DDM) (Saenger et al., 2000) and the staggered-grid technique (Štekl and 
Pratt, 1998), Chen (2013) proposed a new generalized optimal 9-point FD 
scheme that not only retains the geometrical properties of the rotating 
coordinate system but also addresses arbitrary rectangular sampling grids 
with more flexibility. In addition to the commonly used 9-, 25-, and 17-point 
FD schemes, Liu et al. (2013) proposed a 15-point FD scheme aimed at 
effectively suppressing dispersions with a smaller impedance-matrix 
bandwidth (i.e., less memory consumption) and reduced Gmin to 
approximately 2.97. Although only a square sampling grid was discussed, 
this method can also be applied to rectangular sampling grids. Lately, Fan et 
al. (2017) developed a more generalized optimal method for the FD 
simulation of the 2D frequency-domain scalar wave equation, based upon 
which the dispersion equation and optimal expansion coefficients can be 
obtained for a given FD stencil and many commonly used frequency-domain 
FD schemes (e.g., FD stencils with different numbers of points, different 
directional sampling intervals, and rotated sampling grids) can be derived as 
special cases. Although the optimal 25-point scheme based on this algorithm 
has a much higher accuracy than the ADM 25-point scheme (Zhang et al., 
2014), and though its Gmin is reduced from 2.78 to 2.13, the corresponding 
improvements for the corresponding ADM 9-, 17-, and 15-point FD schemes 
are trivial. 

 
In general, improving the FD scheme is an effective way to increase the 

accuracy and efficiency of wave equation forward modeling in the frequency 
domain. Rotating coordinate systems have been successfully applied to wave 
equation forward modeling in the frequency domain; moreover, the 
improved ADM-based FD schemes can overcome defects in rotated optimal 
FD schemes, and they can be employed with different directional sampling 
intervals. Despite these qualities, however, the abovementioned ADM 
schemes (except for the ADM 17- and 25-point schemes) cannot produce 
high-precision images from seismic exploration due to their 2nd-order 
accuracy and lack of geometrical properties related to the rotating coordinate 
system. In this paper, a novel DDM-based 17-point scheme with a 4th-order 
accuracy is developed for the frequency-domain scalar wave equation. 
Theoretical analyses show that this new scheme retains the geometrical 
properties of the rotating coordinate system and that it can be flexibly 
applied to arbitrary rectangular sampling grids in practice. Numerical 
dispersion analyses reveal that the DDM 17-point scheme reduces Gmin to 
less than 2.4 and can decrease the required computer memory and maintain 
the same accuracy by increasing the sampling interval. Numerical simulation 
examples further prove that our scheme can effectively suppress numerical 
dispersion and anisotropy and improve the calculation accuracy. Finally, we 
provide a valid and adaptable forward modeling method for high-precision 
FWI in the frequency domain. 
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THEORY 
 
Conventional 17-point scheme and its limitations 
 

In a Cartesian coordinate system, the frequency-domain 2D scalar wave 
equation for a homogeneous medium is given by 

  

∇2P x,ω( )+ω
2

v 2
P x,ω( ) = −F ω( )δ x − s( )      ,                                (1) 

 
where  is the frequency-domain wavefield pressure,  is the 
Fourier transform of the source function, ω  is the angular frequency, ( )δ x  
is the Dirac delta function, ( )v x  is the propagation velocity of the seismic 
wave, x= x , z( )  and ( )= ,s sx zs  are the spatial coordinates and the coordinates 

of the source location, respectively, and 
2 2

2
2 2x z

∂ ∂
∇ = +

∂ ∂
 is the 2nd-order 

differential operator. The first term on the left-hand side of eq. (1) is known 
as the Laplacian term, and the second term is known as the mass 
acceleration term. 
  

Due to their low precision and heavy numerical dispersion, frequency-
domain, 2nd-order FD schemes need smaller grid intervals to improve the 
accuracy of forward modeling. Meanwhile, frequency-domain, 4th-order FD 
schemes, such as the conventional 4th-order 9-point and 17-point schemes 
whose FD stencils are shown in Fig. 1, exhibit higher precisions. 

 
 
 

 
 

 

Fig. 1. Finite-difference (FD) grid stencil for the Laplacian operator of (a) the 
conventional 4th-order, 9-point scheme, (b) the 45° rotated stencil, and (c) the 
conventional 4th-order, 17-point scheme. 

( ),P ωx ( )F ω
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Applying the 4th-order central FD operator to approximate the 2nd-
order spatial derivative (i.e., the Laplacian term) in eq. (1), the conventional 
4th-order, 9-point FD scheme can be written as 

  

    

( ) ( )

( ) ( )
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where ( ), ,m nP P m x n z= Δ Δ  is the discretized wavefield, ( ), ,m nv v m x n z= Δ Δ  is 
the discretized velocity, xΔ  and zΔ  are the spatial sampling intervals along 
the X and Z axis directions, respectively,  m and n are the sequence numbers 
of the X and Z axis coordinates, respectively, and j is the sequence number 
of the frequency. 
 

Based on eq. (2), Cao and Chen (2012) generalized the Laplacian term 
as a linear combination of the 4th-order FD approximations for the 
Laplacian operators of the 45° rotating coordinate system and original 0° 
rectangular coordinate system and formulated the wavefield pressure of 
mass acceleration term as a linear combination of the wavefield pressures at 
the points corresponding to the Laplacian term. Then, the 4th-order, 17-point 
FD scheme can be given by 
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where the constants a, b, c, d, e, and f are the weighted coefficients that can 
be obtained via an optimization approach, and  b + 4 c +d +e + f( ) =  1. In eq. 
(3) the first and second terms on the left-hand side are the FD 
approximations for the Laplacian operators of the 0° rectangular coordinate 
system and 45° rotating coordinate system, respectively. 
  

In the case where x zΔ = Δ , the coefficients used in the 4th-order, 17-
point scheme are optimized through numerical dispersion analysis (Cao and 
Chen 2012) as a = 1.0673, b = 0.8875, c = 0.0251, d = 0.0237, e = –0.0204, 
and f = –0.000275. This scheme can reduce Gmin to less than 2.56 and 
decrease the numerical dispersion and memory requirement, while the 
conventional 4th-order, 9-point scheme needs at least 5 grids per the shortest 
wavelength. Unfortunately, the 4th-order, 17-point scheme fails because the 
directional sampling intervals are unequal in most cases. When x zΔ ≠ Δ , the 
second term on the left-hand side of eq. (3) is not an approximation for the 
Laplacian term.  

 
If the second term on the left-hand side of eq. (3) is expanded using 

Taylor's formula for the binary function, we can obtain 
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               (4) 

 
 
From eq. (4), the FD operator of a 45° rotating coordinate system is an 
approximation for the Laplacian term only when x zΔ = Δ . The detailed 
derivation is referred to in the Appendix. 
 
 
A directional derivative method-based 17-point scheme 
 

To improve the calculation accuracy and reduce the memory 
requirements, we developed a novel optimal 4th-order, 17-point scheme 
based on the DDM (Saenger et al., 2000) with the ambition of overcoming 
the obstacles of the rotated optimal 4th-order, 17-point scheme (Cao and 
Chen, 2012). When x zΔ ≠ Δ , the principle of a rotating coordinate system 
can be generalized to a DDM, which has been successfully applied to the 
development of the rotated optimal 2nd-order, 9-point scheme (Chen, 2013). 

  
When x zΔ ≠ Δ , the two axis directions L1 and L2 of the rotating 

coordinate system are not orthogonal to each other. That is, the included 
angle between the two axis directions is less than 90°. Thus, we call this 



 48 

rotating coordinate system the diagonal coordinate system in this paper. The 
relationship between the diagonal coordinate system and the original 
rectangular coordinate system is shown in Fig. 2. We can compute the 1st-

order directional derivatives 
1

P
l
∂

∂
 and 

2

P
l
∂

∂
 as follows: 

  

 
 
Fig. 2. Schematic of the relationship between the diagonal coordinate system and the 
original rectangular coordinate system. 
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∂ ∂ ∂

                                                         (5) 

 
where 

     1 2 1 2cos cos , cos , cos ,x z z
l l l

α α θ θ
Δ Δ Δ

= = = − =
Δ Δ Δ

                   (6) 

          
2 2l x zΔ = Δ +Δ , 1  l  and 2l  are the variables along the two axis directions in 

the diagonal coordinate system, 1α  and 1θ  are the included angles between 
the direction of L1 and the positive directions of the X and Z axes, 
respectively, and 2α  and 2θ  are similarly the included angles between the 
direction of L2 and the positive directions of the X and Z axes. With eqs. (5) 
and  (6), we can obtain the 2nd-order directional derivatives as follows: 
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                                (7) 

 
With eq. (7), we can further obtain the expression of the Laplacian term 

including directional derivatives: 
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Applying the 4th-order central FD operator to eq. (8), an approximation 

to the Laplacian term can be obtained: 
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Combining eq. (9) with eq. (2) and representing the wavefield pressure 

of mass acceleration term as a linear combination of the wavefield pressures 
at the points corresponding to the Laplacian term, the optimal 4th-order, 17-
point DDM-based scheme can be obtained:  
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where 
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where the constants ( ), 1, ,7ia b i = L  are the weighted coefficients for 

optimization, and 5 7
1 2 6
2 4 =1i ii i

b b b
= =

+ +∑ ∑ . 
 
Compared with the conventional rotated optimal 17-point scheme, the 

proposed scheme is a more generalized optimal 4th-order, 17-point scheme 
with a wider application range that includes square sampling grids and 
arbitrary rectangular sampling grids. When 2 3 4 5,  ,  x z b b b bΔ = Δ = = , eq. (10) 
degrades to eq. (3); that is, the new 17-point scheme includes the rotating 
coordinate system-based 17-point scheme as a special case. In addition, 
when 1 1a b= =  and ( )0 2, ,7ib i= = L , the classical 4th-order, 9-point scheme is 
included in the proposed 17-point scheme as another special case. 

 
 
Coefficient optimization and dispersion analysis 

 
To obtain synthetic seismograms with a high precision, numerical 

dispersion and anisotropy issues in forward modeling methods must be 
reduced optimally (Alford et al., 1974). To this end, numerical dispersion 
analysis can be used to evaluate the precision of a forward modeling method, 
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and the optimal coefficients required to minimize the normalized phase 
velocities or dispersion errors can be determined via optimization. 

 
To perform numerical dispersion analysis for the proposed scheme, we 

substituted a plane wave ( ) ( )
0, , x zi k x k zP x z Peω − +=  into eq. (10). Assuming 

the velocity v of the medium is a constant, the discrete dispersion relation 
can be derived as 
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From the definition of the phase velocity phv kω= , the normalized 

phase velocity can be obtained as 
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where 2 =2k Gπ λ π= Δ  is the plane wave wavenumber, sinxk k θ=  and 

cosxk k θ=  are the wavenumbers of the plane wave along the X and Z axis 
directions, respectively, θ  is the propagation angle from the positive 
direction of the Z axis, G λ= Δ  is defined as the number of grids per 
wavelength λ , and ( )max ,x zΔ = Δ Δ  is the largest sampling interval, that is, 
the value of G is determined by the grid interval of the rectangular sampling 
grid. Thus, the numerical dispersion analysis and coefficient optimization 
should be separated into two conditions: x zΔ ≥ Δ  and x zΔ < Δ . 
 

We first consider the condition x zΔ ≥ Δ . Substituting the sampling 
interval ratio r x z= Δ Δ  and the wavenumber 2k G xπ= Δ  into eq. (14), 
the normalized phase velocity can be expressed as 
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where 
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2 4
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θ θ
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     (16) 

 
There is no numerical dispersion when the numerical phase velocity is 

equal to that of the medium, namely, 1phv
v
=  (Jo et al., 1996). Under 2D 

conditions, numerical dispersion is related to the propagation angle of the 
seismic wave, the sampling grid interval and the coefficients in eq. (10). 
Therefore, the weighted coefficients a, bi (i = 1,…,7) can be obtained by 
minimizing the L2-norm of the normalized phase velocity errors (i.e., a 
dispersion analysis objective function), which is defined as follows: 

   ( ) ( )
2

; , 1 ; , ; , , 1, ,7,ph
i i

v
E r a b r a b k d dk i

v
θ θ∗ ∗⎛ ⎞

= − =⎜ ⎟
⎝ ⎠
∫∫ K               (17) 

 
where * 1k G λ= = Δ . Substituting eq. (15) into eq. (17), the objective 
functions for different sampling interval ratios r x z= Δ Δ  can be obtained. 
 

To obtain the optimal values of the coefficients a  and ( )1, ,7ib i = L , a 
constrained global optimization algorithm (Global Search) in MATLAB was 
used to solve the objective functions. The range of * 1k G=  can usually be 
determined practically via multiplicate trials; here, the range is ( ]0,0.435  with 
an interval of 0.001. Moreover, the range of the propagation angle θ  is 
[ ]0 ,90° °  with an interval of 1°. 

  
The optimized coefficients for different sampling interval ratios 

r x z= Δ Δ  are listed in Table 1 when x zΔ ≥ Δ . When 1.0r >  in Table 1, the 
absolute values of the optimization coefficients a, b1 and b7 increase with an 
increasing ratio, whereas the absolute values of the optimization coefficients 
b2 and b4 show a downward trend. Meanwhile, the change patterns for the 
absolute values of the optimization coefficients b3, b5 and b6 are the same 
with an initial decreasing trend followed by an increasing trend, and they 
reach their minimum values at approximately 2.0. For x zΔ < Δ  and 

2k G zπ= Δ , the optimized coefficients for the different sampling interval 
ratios r z x= Δ Δ  can be obtained through the same procedures as in the 
case of x zΔ ≥ Δ  (Table 1). Through a comparison of the optimization 
coefficients in Table 1 and Table 2, the values of the coefficients a, b1, b6 
and b7 are the same while the values of the coefficients b2 and b4 are 
exchanged with those of the coefficients b3 and b5, respectively, as is 
determined by the symmetry of the DDM 17-point scheme. Although only 
the optimization coefficients related to a part of the sampling interval ratios 
are provided in this paper, the optimization coefficients for the remaining 
sampling interval ratios can be easily obtained using the same approach.  
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Table 1. The optimized coefficients for different sampling interval ratios r x z= Δ Δ  when 
x zΔ ≥ Δ . 

 

r=Δx/Δz a b1 b2 b3 b4 b5 b6 b7 

1.0 1.4294927 0.9943091 -0.0234205 -0.0234199 -0.0279369 -0.0279374 0.0505651 0.0022150 

1.5 0.6992809 0.7854866 0.0837901 0.0600050 -0.0183311 -0.0068620 -0.0024708 -0.0032019 

2.0 0.7163125 0.8302360 0.0781348 0.0289988 -0.0174147 0.0020851 0.0000659 -0.0035269 

2.5 0.7227821 0.9054697 0.0717649 -0.0230907 -0.0157992 0.0166854 0.0031150 -0.0042627 

3.0 0.7254346 1.0354868 0.0644372 -0.1124488 -0.0136899 0.0410985 0.0067086 -0.0052788 

3.5 0.7261739 1.2444166 0.0567076 -0.2552140 -0.0111873 0.0794327 0.0105308 -0.0065044 

4.0 0.7266541 1.5631476 0.0476554 -0.4717152 -0.0082623 0.1365899 0.0150302 -0.0079510 

 

 

 
Table 2. The optimized coefficients for different sampling interval ratios r z x= Δ Δ  when 
x zΔ < Δ . 

 

 
 

The following content concerns numerical dispersion analysis. When 
x zΔ ≥ Δ , Figs. 3–6 show the normalized phase velocity curves (dispersion 

curves) of the conventional 4th-order, 9-point scheme, rotated optimal 17-
point scheme, and the ADM 17-point scheme in addition to our DDM 17-
point scheme for different sampling interval ratios r x z= Δ Δ . As shown in 
Fig. 3, when r =1.0 ( x zΔ = Δ ), numerical dispersion is most likely to occur 
with a phase velocity error of 1%±  in the conventional 4th-order, 9-point 
scheme, which has no optimization and requires 5 grids per the shortest 
wavelength compared with the other three optimized 17-point schemes. 
Furthermore, the differences among the dispersion curves for the different 
propagation directions are very apparent and lead to evident anisotropy. 
Nevertheless, the ADM 17-point scheme and the DDM 17-point scheme 
exhibit slighter numerical dispersion and anisotropy and only require 2.4 
grids per the shortest wavelength for maximum phase velocity errors of 1%, 

r=Δz/Δx a b1 b2 b3 b4 b5 b6 b7 

1.5 0.6992809 0.7854866 0.0600050 0.0837901 -0.0068620 -0.0183311 -0.0024708 -0.0032019 

2.0 0.7163125 0.8302360 0.0289988 0.0781348 0.0020851 -0.0174147 0.0000659 -0.0035269 

2.5 0.7227821 0.9054697 -0.0230907 0.0717649 0.0166854 -0.0157992 0.0031150 -0.0042627 

3.0 0.7254346 1.0354868 -0.1124488 0.0644372 0.0410985 -0.0136899 0.0067086 -0.0052788 

3.5 0.7261739 1.2444166 -0.2552140 0.0567076 0.0794327 -0.0111873 0.0105308 -0.0065044 

4.0 0.7266541 1.5631476 -0.4717152 0.0476554 0.1365899 -0.0082623 0.0150302 -0.0079510 
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while the rotated 4th-order, 17-point scheme needs at least 2.56 grids (Cao 
and Chen, 2012). It is noteworthy that a seismic wave propagating in the 45° 
direction will exhibit the smallest numerical dispersion because its 
dispersion curve fluctuates slightly around 1.0 for most values of 1/G. 
However, seismic waves propagating in the vertical (0°) and horizontal (90°) 
directions are the most likely to yield obvious numerical dispersion due to 
the more apparent fluctuations in their dispersion curves. Moreover, the 
dispersion curves of seismic waves propagating in the 0°, 15° and 30° 
directions coincide with those propagating in the 90°, 75° and 60° directions, 
respectively. Therefore, the normalized phase velocity errors are symmetric 
about that of a wave propagating in the 45° direction in the angle range of 
0°–90°; this feature also exists in the other ranges of propagation angles as a 
result of symmetry in the 17-point schemes when x zΔ = Δ . 

  
 

 
 
 
Fig. 3. Normalized phase velocity curves of the conventional 4th-order, 9-point (a) and 
17-point (b) schemes and the ADM-based 17-point (c) and DDM-based 17-point schemes 
(d) when x zΔ = Δ . 

 
When x zΔ > Δ , the dispersion curves of the conventional 4th-order, 9-point 
scheme, the ADM 17-point scheme and the proposed DDM 17-point scheme 
for different sampling interval ratios r x z= Δ Δ  are as shown in Figs. 4-5. 

 
When , the normalized phase velocity errors are no longer 

symmetrical, and the propagation angle of the seismic wave with the 
smallest dispersion does not approach 45° but instead gradually approaches 
0°. In terms of the classical 4th-order, 9-point scheme, the seismic waves 
with larger propagation angles cause numerical dispersion more easily 
within the propagation angle range of 0°–90°. The dispersion curves of the 
ADM 17-point and DDM 17-point schemes do not change with variations in 
the values of the ratio r because of the optimization process, whereas the 
seismic waves with larger propagation angles are also more likely to exhibit 
numerical dispersion as a result of the extended horizontal sampling interval. 

x zΔ > Δ
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Compared with the ADM 17-point scheme, the proposed DDM 17-point 
scheme demonstrates superior dispersion suppression capabilities. 
Specifically, all of the dispersion curves of the DDM 17-point scheme for 
seismic waves propagating along different angles exhibit smaller 
fluctuations, especially those with much larger propagation angles. 
Furthermore, when min1 0.25G ≤ , the normalized phase velocity errors of the 
DDM 17-point scheme are distributed more closely to 1.0, which means 
there is little dispersion in our DDM 17-point scheme. In contrast, the ADM 
17-point scheme is still likely to yield apparent dispersion, especially at 
approximately [ ]1 0.1,0.25G∈ . For x zΔ < Δ , analogous conclusions with 
respect to numerical dispersion and the number of grids per the shortest 
wavelength can be drawn due to the symmetry of the DDM 17-point scheme; 
consequently, those conclusions will not be presented here in this paper. 

 
 
  

 
 

 

Fig. 4. Normalized phase velocity curves of the conventional 4th-order, 9-point scheme, 
the ADM-based 17-point scheme and the DDM-based 17-point scheme when 1.5r =  
(left column) and 2.0r =  (right column). 
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Fig. 5. Normalized phase velocity curves of the conventional 4th-order, 9-point scheme, 
the ADM-based 17-point and the DDM-based 17-point scheme when 2.5r =  (left 
column) and 3.0r =  (right column). 

 

 

 
 
Fig. 6. Normalized phase velocity curves of the conventional 4th-order, 9-point scheme, 
the ADM-based 17-point and the DDM-based 17-point scheme when 3.5r =  (left 
column) and 4.0r =  (right column). 



 57 

 
 

Absorptive boundary conditions 
 

The suppression effects of absorptive boundary conditions for boundary 
reflections can influence the forward modeling accuracy. The perfectly 
matched layer (PML) absorbing boundary condition was pioneered by 
Bérenger (1994), and it has been widely used for FD simulations of the wave 
equation (e.g., Hustedt et al., 2004; Operto et al., 2009; Liu et al., 2013; 
Tang et al., 2015). The frequency-domain scalar wave equation with PML 
boundary conditions (Bérenger, 1994) is written as follows: 
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where i  is an imaginary unit, xe  and ze  are the stretching functions in X and 
Z axis directions, respectively, dx  and dz  are the distances from the inner 
points of the PML boundaries along the X and Z axis directions, respectively, 
to the model boundary, xpmlL  and zpmlL  denote the widths of the PML 
boundaries along the X and Z axis directions, respectively, peakf  is the peak 
frequency of the source wavelet, and 0a  is a constant that can be determined 
by trial and error. The constant 0a  is assigned a value of 1.79 in this paper. 
  

From eqs. (8), (10), and (18), the optimal 4th-order, 17-point DDM-
based FD scheme with PML boundary conditions can be derived: 
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where  
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NUMERICAL EXAMPLES 

 
In this section, we present two homogeneous models to confirm the 

validity and accuracy of the optimal DDM 17-point scheme and one 
heterogeneous model to further demonstrate its adaptability to complex 
medium conditions. 

 
 

Homogeneous model examples 
 
To confirm the validity and accuracy of our DDM 17-point scheme, 

two simple 2D models are provided. First, we consider a whole 
homogeneous model with a velocity of 2500 m/s and grid dimensions of 

201 201Nx Nz× = × . In this case, an analytical solution is available to 
facilitate a comparison with the numerical solutions. A Ricker wavelet 
source is included in the forward modeling with a peak frequency of 25 Hz, 
and the waveform curve and amplitude spectrum are shown in Fig. 8. The 
maximum frequency used in the forward modeling is approximately 70 Hz 
on the premise of containing at least 99.9% of the effective spectrum energy. 
According to the sampling criterion of the DDM 17-point scheme (i.e., 
Gmin= 2.4), the maximum sampling interval is determined by 
2500 / 70 / 2.4 14.88 m≈ . Thus, we design two sampling solutions: 

 
 7 m,  1x z r x zΔ =Δ = =Δ Δ =   

and  
        14 m, 7 m,  2x z r x zΔ = Δ = =Δ Δ = . 

 
As shown in Fig. 7, the source is located at the center of the model. To 

observe the variations in the numerical dispersion with the propagation angle, 
five receivers (R1, R2, R3, R4, and R5) are individually placed near the source. 
Specifically, receivers R1 and R5 are placed 50 grid units away from the 
source horizontally to the right and vertically downward at propagation 
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angles of 90° and 0°, respectively. When , the receivers R2, R3 and 
R4 represent propagation angles of 63.44°, 45° and 26.56°, respectively. 
Meanwhile, when 2x zΔ = Δ , the receivers R2, R3 and R4 represent respective 
propagation angles of 76.96°, 63.44° and 45°. 

 

 
 
Fig. 7. Homogeneous velocity model. 
 

 
 
Fig. 8. Ricker wavelet with a peak frequency of 25 Hz and its amplitude spectrum. 

x zΔ = Δ
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We performed forward modeling on this homogeneous model using 
the conventional 4th-order, 9-point scheme, the ADM 17-point scheme and 
the proposed DDM 17-point scheme and compared the results with the 
analytical solutions. The thickness of the PML absorbing boundary is 50 
units, and the recording time is 0.6 s, with an interval of 1 ms. The analytical 
solutions in a homogeneous medium are defined as follows (Alford et al., 
1974): 

( ) ( ) ( ) ( )( )21
0, ; ,P t i H k f tπ− ⎡ ⎤= − −⎣ ⎦x s x sF F                              (22) 

where F  and 1−F  are the Fourier and inverse Fourier transformation 
operators, respectively, with respect to time, ( )f t  is the time-domain Ricker 
wavelet, ( ) ( )2

0H x  is the second Hankel function of order zero, 0k vω=  is the 
wavenumber, 0v  is the propagation velocity of the seismic wave, −x s  is the 
distance from the source to the receiver, x denotes the coordinates of the 
receiver, s denotes the coordinates of the source, and ( ), ;P tx s  represents the 
time-domain seismic wavefield excited by the source at position s and 
received by the receiver at position x. 

  
Fig. 9 shows the results (synthetic seismograms) recorded by the 

receivers R1–R5 for the two sampling solutions ( x zΔ = Δ  and 2x zΔ = Δ ) and 
the absolute error curves computed using eq. (22) with the conventional 4th-
order, 9-point scheme, the ADM 17-point scheme and the proposed DDM 
17-point scheme. Fig. 10 shows the mean absolute error (MAE) and standard 
deviation (SD) values calculated from the absolute error curves for the 
different receivers (R1–R5) shown in Fig. 9. In general, Fig. 9 provides the 
qualitative relationships between the forward modeling results and the 
analytical solutions while Fig. 10 provides the corresponding quantitative 
relationships. As shown in Fig. 9, the results from using the DDM 17-point 
scheme almost coincide with the analytical solutions with an MAE of 
approximately 0.01, thereby demonstrating that our proposed DDM 17-point 
scheme is correct. Moreover, the results for the case of 2x zΔ = Δ  prove that 
the proposed DDM 17-point scheme can be applied to different directional 
sampling intervals as well. 

  
As shown in Fig. 9(a), the results obtained using the conventional 4th-

order, 9-point scheme are in good accordance with the analytical solutions 
even though it is not optimized, because the sampling interval 7 mx zΔ = Δ =   is 
smaller than its theoretical maximum interval 2500 / 70 / 5 7.14 m≈ , thereby 
satisfying the requirement for normalized phase velocity errors of 1%± . The 
results obtained using the DDM 17-point scheme almost coincide with the 
analytical solutions, whereas the results acquired by employing the ADM 17-
point scheme exhibit slight fluctuations, especially on either side of the main 
waveform. Therefore, the DDM 17-point scheme is overall more accurate 
than the ADM 17-point scheme. Remarkably, according to the MAE and SD 
values [Fig. 10(a)], the conventional 4th-order, 9-point scheme is the most 
accurate among the three FD schemes, and the DDM 17-point scheme is 
apparently superior to the ADM 17-point scheme when 7 mx zΔ = Δ = . In 
addition, the MAE and SE change patterns relative to the propagation angles 
[Fig. 10(a)] for the three FD schemes are symmetrical about R3 (i.e., a 45° 
propagation angle), which is consistent with theoretical analysis. 



 61 

 

 
 

Fig. 9. Overlapping seismograms and absolute error curves for the different receivers (R1–
R5) computed using the analytic method, the conventional 4th-order, 9-point scheme, the 
ADM-based 17-point scheme and the DDM-based 17-point scheme when 7 mx zΔ = Δ =  
(a) and 14 m, 7 mx zΔ = Δ =  (b). 



 62 

 
As shown in Fig. 9(b), the results of these three FD schemes gradually 

tend to draw close to the analytical solutions, indicating that their 
computational accuracies should increase with a decrease in the propagation 
angle in agreement with theoretical analysis. The results from the ADM and 
DDM 17-point schemes that have actual maximum grid intervals of 14 m, 
which are smaller than the theoretical maximum sampling interval (14.88 m), 
coincide well with the analytical solutions. The results received by R5 (0° 
propagation angle) in the conventional 4th-order, 9-point scheme exhibit little 
numerical dispersion because the grid interval along the propagation 
direction is 7 m, which is less than the theoretical maximum sampling 
interval (7.14 m). However, relatively evident numerical dispersion is 
detected in the results for the other propagation angles due to grid intervals 
that are greater than 7.14 m. Furthermore, as shown in Fig. 10(b), the MAE 
and SD values of the DDM 17-point scheme for all of the propagation angles 
are smaller than those of the ADM 17-point scheme, revealing that the 
proposed DDM 17-point scheme possesses superior accuracy and more 
effectively suppresses dispersion in every propagation direction.  
 
 
 

 
 
Fig. 10. Mean absolute error (MAE) and standard deviation (SD) values calculated from 
the absolute error curves for the different receivers (R1–R5) in Fig. 9 when 7 mx zΔ = Δ =  
(a) and 14 m, 7 mx zΔ = Δ =  (b). 

 

The second example is a horizontal two-layer model with velocities of 
2000 m/s for the first layer and 3500 m/s for the second layer (Fig. 11). The 
horizontal and vertical grid dimensions are 201Nx =  and 201Nz = , 
respectively. The source, which is the same as that in the previous example, 
and the receivers are located at the top of the model (Fig. 11). For this model, 
two sampling solutions are employed ( 5 mx zΔ = Δ = , 1r x z=Δ Δ =  and 

11 mxΔ = , 5.5 mzΔ = , 2r x z= Δ Δ = ) based on the theoretical maximum 
sampling interval ( 2000/70/2.4 11.9 m≈ ) to ensure the accuracy of the 
forward modeling. The recording times for the two sampling solutions are 
0.65 s and 0.9 s, with an interval of 1 ms. 
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Fig. 11. Horizontally layered velocity model. 

 

We performed forward modeling on this model to further confirm the 
validity of the DDM 17-point scheme compared with the conventional 4th-
order, 9-point scheme and the time-domain FD method. The results from the 
time-domain method (with a 2nd-order accuracy in the time domain and a 
12th-order accuracy in the spatial domain) are employed as a comparative 
standard because this method has the same accuracy as the frequency-domain 
4th-order, 17-point FD scheme (Tang et al., 2015). 

  
Fig. 12 and Fig. 13 show single-shot seismograms and wavefield 

snapshots, respectively, calculated using the abovementioned time-domain 
method and frequency-domain methods for the two sampling solutions. 
When 1.0r = , there is no numerical dispersion in the corresponding single-
shot seismograms or wavefield snapshots since the grid interval 
( 5 mx zΔ = Δ = ) is less than the theoretical maximum sampling interval 
( 2000/70/5 5.71 m≈ ) for the conventional 4th-order, 9-point scheme. However, 
when 2.0r = , some apparent numerical dispersion appears within the results 
from the conventional 4th-order, 9-point scheme because the maximum grid 
interval (11 m) is greater than the theoretical maximum sampling interval 
[Fig. 12(b) and Fig. 13(b)]. Generally, the results from the proposed DDM 
17-point scheme, which does not generate visible numerical dispersion, agree 
with those from the time-domain method. Moreover, as observed from the 
single-shot seismogram in Fig. 12(c) and the wavefield snapshot in Fig. 13(c), 
the boundary reflections are adequately suppressed by the configured PML 
absorbing boundaries, thereby demonstrating that the established FD scheme 
with PML absorbing boundaries [eq. (20)] is correct.  
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Fig. 12. Synthetic single-shot seismograms calculated using the time-domain method 
with a 2nd-order accuracy in time and a 12th-order accuracy in space (a), the 4th-order, 
9-point scheme (b), and the DDM-based 17-point scheme (c) when 1.0r =  (the first row) 
and 2.0r =  (the second row). 

 

 
Fig. 13. Synthetic wavefield snapshots calculated using the time-domain method with a 
2nd-order accuracy in time and a 12th-order accuracy in space (a), the 4th-order, 9-point 
scheme (b), and the DDM-based 17-point scheme (c) when 1.0  278 msr t= =，  (the first 
row) and r = 2.0, t = 296 ms (the second row). 
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 Heterogeneous model examples 
 

To demonstrate the adaptability of the DDM 17-point scheme to 
complex media, we applied a heterogeneous 2D salt model as shown in Fig. 
14. The horizontal and vertical grid dimensions are 201Nx =  and 191Nz = , 
respectively, and the respective sampling intervals are 12 mxΔ = and 8 mzΔ = . 
For the ratio 1.5r x z=Δ Δ =  of the directional sampling intervals, the 
corresponding optimization coefficients in Table 1 are a = 0.6992809, b1 = 
0.7854866, b2 = 0.0837901, b3 = 0.0600050, b4 = -0.0183311, b5 =-0.0068620, 
b6 = -0.0024708, and b7 = -0.0032019. A Ricker wavelet is employed as the 
source, with a peak frequency of 15 Hz at the position (x = 1200 m, z = 0 m), 
and the recording time is 1.4 s, with an interval of 1 ms. The receivers are 
uniformly placed on either side of the source point, with an interval of 12 m. 

  
Fig. 15 and Fig. 16 show the single-shot seismograms and wavefield 

snapshots (t = 535 ms) obtained using the proposed DDM 17-point scheme 
and the time-domain method, respectively. Both the seismogram [Fig. 15(b)] 
and the wavefield snapshot [Fig. 16(b)] obtained using the DDM 17-point 
scheme not only lack numerical dispersion but also agree well with the 
results using the time-domain method [Fig. 15(a) and Fig. 16(a)] with 
respect to their dynamic and kinematic characteristics. Therefore, we 
conclude that the DDM 17-point FD scheme has good adaptability to not 
only simple media models but also complex media models.  

 
 

 
 
Fig. 14. Heterogeneous salt model. 
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Fig. 15. Synthetic single-shot seismograms calculated using the time-domain method 
with a 2nd-order accuracy in time and a 12th-order accuracy in space (a) and the DDM-
based 17-point scheme (b). 

 

 
 
Fig. 16. Synthetic wavefield snapshots (t = 535 ms) calculated using the time-domain 
method with a 2nd-order accuracy in time and a 12th-order accuracy in space (a) and the 
DDM-based 17-point scheme (b). 

 

CONCLUSIONS 
 
We have proposed a novel frequency-domain 17-point FD scheme 

based on the DDM for the 2D scalar wave equation. This new scheme not 
only extends the application scope of the conventional rotated optimal 17-
point FD scheme by removing the requirement for equal directional 
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sampling intervals but also retains the geometrical properties of the rotating 
coordinate system. Theoretical analyses indicate that the optimized DDM-
based 17-point scheme can reduce the number of grids per the shortest 
wavelength from 2.56 to less than 2.4 for maximum phase velocity errors of 
1% and can both improve the computational efficiency and decrease the 
memory requirements while maintaining the same accuracy. Besides, the 
classical 4th-order, 9-point scheme and the rotated optimal 17-point scheme 
are two special cases of the DDM-based 17-point scheme. The validity and 
accuracy of the new optimal DDM-based 17-point scheme are confirmed 
through the comparison with the analytical solutions of homogeneous 
examples. In addition, the new scheme is superior to the ADM 17-point 
scheme and possesses a higher accuracy and is more capable of suppressing 
numerical dispersion resulting from the geometrical properties of the 
rotating coordinate system. A heterogeneous example further demonstrates 
the adaptability of the proposed method to complex media. In general, the 
new scheme enhances the application scope of the 17-point FD scheme and 
provides an effective and flexible forward modeling method for high-
precision FWI in the frequency domain.  
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APPENDIX 
 
FINITE-DIFFERENCE DISCRETIZATION FOR THE LAPLACIAN 
OPERATOR (SECOND-ORDER SPATIAL DERIVATIVE) OF THE 
45° ROTATING COORDINATE SYSTEM 
 

 
The following derivation process is provided to prove that the finite-

difference approximation of the Laplacian in a 45° rotating coordinate 
system can be applied only to equal directional sampling intervals (i.e., a 
square sampling grid). 

  
The finite-difference approximation of the Laplacian in a 45° rotating 

coordinate system is given as (Cao and Chen, 2012) 
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 Performing a second-order Taylor expansion of the terms ( 2, 2m nP − −

, 

+2, 2m nP − , +2, 2m nP + , 2, 2m nP − + , 1, 1m nP − −
, +1, 1m nP − , +1, 1m nP +  and 1, 1m nP − + ) on the right-hand 

side of eq. (A-1), we can obtain 
 



 70 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2, 2 , , ,

2 2 2
2 2 2 2

, , ,2 2

+2, +2 , , ,

2 2 2
2 2

, , ,2 2

2 2

1 2 + 2 + 4 ,
2

2 2

1 2 + 2 + 4
2

m n m n m n m n

m n m n m n

m n m n m n m n

m n m n m n

P PP P x z
x z

P P Px z x z x z
x z x z

P PP P x z
x z

P P Px z x z
x z x z

ο

− −

∂ ∂⎛ ⎞= + − Δ + − Δ +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
− Δ − Δ Δ Δ + Δ Δ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂⎛ ⎞= + Δ + Δ +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
Δ Δ Δ Δ +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

2 2

2, +2 , , ,

2 2 2
2 2 2 2

, , ,2 2

+2, 2 , , ,

2 2 2
2 2

, , ,2 2

,

2 2

1 2 + 2 4 ,
2

2 2

1 2 + 2 4
2

m n m n m n m n

m n m n m n

m n m n m n m n

m n m n m n

x z

P PP P x z
x z

P P Px z x z x z
x z x z

P PP P x z
x z

P P Px z x
x z x z

ο

ο

−

−

Δ Δ

∂ ∂⎛ ⎞= + − Δ + Δ +⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
− Δ Δ − Δ Δ + Δ Δ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂ ∂⎛ ⎞= + Δ + − Δ +⎜ ⎟∂ ∂⎝ ⎠

∂ ∂ ∂
Δ − Δ − Δ Δ

∂ ∂ ∂ ∂
( )2 2, ,z x zο

⎛ ⎞
+ Δ Δ⎜ ⎟

⎝ ⎠
     (A-2)   
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Then
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            (A-4) 

Substituting eq. (A-4) into eq. (A-1), we can obtain 
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Eq. (A-5) is true only when x zΔ = Δ . That is, the right-hand side of eq. (A-1) 

is not an approximation for the Laplacian 
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