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ABSTRACT 
 
Zhao, M., Wang, Y.Q., Peng, Z.M., Wu, H., He, Y.M., Zhou, J.J. and Yang, L.F., 2019. 
Seismic multi-attribute fusion using fast independent component analysis and its 
application. Journal of Seismic Exploration, 28: 89-101. 
 

Basic principles of independent component analysis (ICA) and fast independent 
component analysis (FastICA) algorithm are elaborated, and we propose an automatic 
fusion method of seismic multi-attribute based on FastICA. This method can calculate 
the transform kernel matrix rapidly using FastICA algorithm to achieve the feature 
fusion of several seismic attributes in the ICA domain. After that we map the 
synthesized attribute to the spatial domain to obtain the fusion result. Our method can 
remove the correlation hidden in high-order statistical characteristics between features. 
Finally, the application of 3D seismic data in northeastern Sichuan shows the 
effectiveness and rationality of the proposed method. 
 
KEY WORDS: ICA/FastICA, transform kernel matrix, feature fusion, seismic attributes. 
 
 
INTRODUCTION 

 
Seismic multi-attribute fusion technology has developed rapidly in 

recent years, and has been widely used in sedimentary facies analysis, 
reservoir description, dynamic monitoring of oil reservoir and other fields. 
It has become the core issue of reservoir geophysics (Raeesi et al., 2012). 
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 There are many approaches to achieve seismic multi-attribute fusion, 

such as, the simplest weighted method, multi-attribute linear regression, 
principal component analysis (PCA) (Kim et al., 2008), artificial neural 
networks (Malek et al., 2010; Li et al., 2014), wavelet and multi-resolution 
analysis (Unser et al., 2009), RGBA color fusion (Stokman et al., 2007) and 
so on. Although the application of these fusion methods has matured, there 
are still some deficiencies. For example, some weights selection and 
parameter settings require human intervention, which can lead to an unstable 
performance of the algorithm. 

 
 As an improved method of independent component analysis (ICA), 

fast independent component analysis (FastICA) can run much faster than 
ICA. The ICA theory was first proposed by Jutten and Herault (1988). It was 
applied to blind source separation (BSS) in early period. After that, it was 
widely used in face recognition (Yang et al., 2007), blind voice signal 
separation, extraction of medical signal (Chien et al., 2012), image 
segmentation (Margadan-Mendez et al., 2010) and many other fields. 
Nikolaos and Tania (2007) applied it into the fusion of different sensors and 
multi-focus image for the first time, which realized pixel-based and 
region-based image fusion. 

 
     Based on the previous work, we propose to apply FastICA to seismic 
multi-attribute fusion. In the framework of feature level fusion, new 
multi-attribute fusion rules and procedures are designed and implemented to 
eliminate the shortcomings of existing methods. By using FastICA theory, 
the transform kernel matrix is rapidly calculated, and then the source 
attributes are transformed into ICA domain through kernel matrix and 
merged. Thus, the fusion results can be obtained quickly. Our method can 
further improve the accuracy of seismic reservoir prediction and fluid 
identification. Algorithm module “Seismic multi-attribute automatic fusion 
based on FastICA” developed by us has been integrated by the large-scale 
seismic interpretation system "GeoMountain" developed by CNPC Sichuan 
Petroleum Geophysical Prospecting Company, and the processing results of 
the actual data in northeastern Sichuan show that the proposed method is 
superior to other methods. 
 
 
 
METHODOLOGY 
 
Independent component analysis 
 

ICA is a signal processing technique that can extract the independent 
components from a group of linear mixed signals. The linear model of ICA 
(Eriksson et al., 2006) is shown in Fig. 1. 
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Fig. 1. Linear model of ICA. 
 

In Fig. 1, mixing matrix A represents the mixed mode of independent 
source signals s = (s1,s2,!,sn )

T , and matrix A is the transform kernel 
calculated by the FastICA algorithm. Each observed signal xi is a linear 
combination of s = (s1,s2,!,sn )

T , and y = ( y1, y2,!, yn )
T  are the 

independent signals extracted from the observed signals x = (x1,x2,!,xn )
T   

by the FastICA technology. In the model, the key of FastICA technology is 
to find the transform kernel matrix A so that the output signals y1, y2,!, yn    
can approximate the source independent signals s1,s2,!,sn  to the utmost 
extent (Blanco et al., 2005). 
 

We regard each seismic source attribute as a linear combination of 
several independent attributes. The seismic source attribute can be 
represented by the observed signal xi in Fig.1. In order to extract the 
independent attributes from the seismic source attributes one by one, we use 
the FastICA algorithm to find out the transform kernel matrix W quickly. 
From Fig. 1, we know that x As= . Assuming w xTiy =  and 
Q = AT w= q1,q2,!,qn( )

T , we can obtain 

      
1

w x w As s
n

T T T
i i i

i

y Q q s
=

= = = =∑ ,                        (1) 

 
where yi is a linear combination of si , and qi ∈  Q represents the weight. 
When the independence of yi is the strongest, yi will be a proper independent 
attribute feature of seismic source attributes. According to this method, we 
can find all the proper column vectors and finally obtain the transform 
kernel matrix W. 
 

In the process of calculating matrix W, we use the negative entropy 
function to measure the independence so that we can distinguish whether it 
is the proper column vector (Shen et al., 2008). Negative entropy of random 
variable y can be defined as 
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( )( ) ( ) log
( )G

p yJ y p y dy
p y

= ∫ ,                              (2) 

 
where pG(y) is the probability density function of a Gauss random variable 
with the same mean value and variance as random variable y, and p(y) is the 
probability density function of y. To simplify, we use the maximum entropy 
principle to calculate the negative entropy estimation and can obtain the 
negative entropy approximate equation 
 

      2( ) [E{ ( )} E{ ( )}]GJ y G y G v≈ − ,                           (3) 
 
where v is a standard Gauss random variable, and 

( )( ) log cosh( ) ,  1 2G y by b b= ≤ ≤  is a non-quadratic function, and [ ]E ⋅  is a 
mean operator. 
 
 
Seismic attributes fusion principles based on FastICA 
 

In this paper, we apply the FastICA algorithm to the multi-attribute 
fusion. This is because that the correlation between multiple attributes is 
usually hidden in the high-order statistic characteristics, and FastICA can 
effectively reduce the high-order correlation and maintain the high-order 
mutual independence between features. It is better than the classical PCA 
and singular value decomposition (SVD) (Jha et al., 2011), which can only 
eliminate second-order correlation. 
  

The FastICA algorithm first preprocesses the seismic source attributes, 
including removing mean value and whitening, to simplify the following 
process. The preprocessed attribute data x satisfies the conditions E[ ] 0x =  
and E[ ]Txx I= . Then we can select a proper vector w to make the negative 
entropy function reach the maximum value and thereby the transform kernel 
matrix W is obtained. Combining wTiy x=  with eq. (3), there is 

 

      2( ) [E{ (w )} E{ ( )}]T
GJ y G x G v= − .                        (4) 

 
     Because v is a Gauss variable that has the same mean and covariance 

matrix as vi , the maximization problem of eq. (4) can be converted into an 
optimization problem of E{ (w )}TG x . According to the Kuhn-Tucker 
condition (Primlos et al., 2001), we can solve E{ (w )}TG x  under the 
condition 2E{(w ) } 1T x = , that is 

 

      E{ (w )} w 0Txg x β− = ,                                 (5) 
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where 0 0E{w (w )}T Tβ xg x=  is a constant obtained through the intial value 

0w  of w, and Function g (⋅)  is the derivative of ( )G ⋅ . FastICA uses the 
Newton’s method (Dontchev et al., 2010) to solve eq. (5) to get 
 

      
E{ [w ( ) ]} w( )w( 1) w( )
E{ '[w ( ) ]}

T

T T

xg k x β kk k
xx g k x β

−
+ = −

−
,                  (6) 

 
where k represents the iteration number. Eq. (6) is complicated because it 
involves matrix inversion. Since the preprocessed attribute data satisfies the 
condition E[ ]Txx I= , there is 
 

      E{ '[w ( ) ]} E[ ]E{ '[w ( ) ]} E{ '[w ( ) ]}T T T T Txx g k x xx g k x g k x≈ = .   (7) 
 
      Combining eqs. (6) and (7), through simplification we can obtain the 
following form 
 

     w( 1) E{ [w ( ) ]} E{ '[w ( ) ]}w( )T Tk xg k x g k x k+ = − .            (8) 
  
      In order to improve the stability of the algorithm, we normalize w(k) 
after each iteration and judge the iteration termination at last. 
 
    The algorithm in (8) just estimates one independent component. We 
need to run the algorithm (8) using several vectors w1,w2,!,wn   to get the 
whole transform kernel matrix W. Through the above discussion we can 
summarize the basic procedure of FastICA algorithm (Hyvarinen, 1997, 
1999) as follows with Fig. 2: 
 
(1) Get the preprocessed attribute data x, including removing mean                       

value and whitening; 
 
(2) Select initial vector w0 randomly and let 0k = ; 
 
(3) Calculate w ( 1)i k +  according to eq. (8); 
 
(4) Normalize w ( 1) w ( 1) w ( 1)i i ik k k+ = + + ; 
 
(5) Judge the iteration termination. If w ( 1) w ( )i ik k ε+ − <  is not valid,   
      k pluses one and return to step (3). Otherwise iteration ends, and        

output w ( 1)i k +  ( i =1,2,!,n ) gives one of the rows of the matrix 
W. 
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Fig. 2. Flowchart of using FastICA to calculate transform kernel matrix W. 
 
 
MULTI-ATTRIBUTE FUSION 
 

Using FastICA algorithm to realize seismic multi-attribute fusion, we 
assume that ( )f ⋅  represents the fusion rule and I 1, I 2,!, I n  are seismic 
attributes to be good fused. Fusion in the ICA domain can be presented by 

 

f 1 2( ) ( , , )nI f I I I⋅ = L .                                   (9)     
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The entire process can be summarized as 

      { }1
fusion 1 2( ) T (T{ },T{ }, T{ })nI f I I I−⋅ = L .                 (10) 

 
The fusion process will be described in detail below. Fig. 3 is the 

flowchart of seismic multi-attribute fusion based on FastICA. 
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Fig. 3.  Flowchart of seismic multi-attribute fusion using FastICA. 

 
 
(1) Divide source attributes data into patches. 

Assume that n source attributes will be fused and each attribute data is                          
a matrix with a size of 1 2M M× . Select a rectangular sliding window W 
with a size of N N×  to divide each source attribute into m patches. 
The patches of each source attribute are stored as a 2N -dimensional 
column vector in collection C = I 11, I 12,!, I 1m , I 21, I 22,!, I 2m ,!, I n1, I n 2,!, I nm{ } ,  
where I ij (i =1,2,!,n ,  j =1,2,!,m)  represents the column vector obtained 
from the j-th patch of i-th source attribute. The size of collection C is 

2 ( )N n m× × . 
 
(2)   Randomly select p column vectors from the collection C. 
 
(3)   Calculate the transform kernel matrix in ICA domain. 

The selected column vectors make up a matrix x as the input of 
FastICA algorithm and to obtain the transform kernel T{}⋅ , i.e., matrix 
W shown in Fig. 2. 
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(4)  Map the source attributes from the spatial domain to the ICA domain 

by multiplying the transform kernel T{}⋅  and the attributes data. 
 Remove the mean value of each column of collection C and we can 

obtain { }ijC Iʹ ʹ= . Mean value of each column makes up a vector 
{ }ijM m= . Map the attribute patches from the spatial domain to ICA 

domain through T{}ij ijs I ʹ= ⋅ × . 
 
(5)  Fusion in the ICA domain. 

When source attributes is mapped to the ICA domain, the fusion results 
can be obtained using 

    1

1

n
ij ij

j n
i

ij
j

s s
F

s=

=

⋅
=∑

∑
.                                        (11) 

Eq. (11) is the fusion rule used in the ICA domain. sij is the j-th column 
of the i-th attribute slice in the ICA domain. According to eq. (9), we 
can get the fusion result of all the attribute patches. 

 
(6)  Map the fusion result from the ICA domain to the spatial domain by        

multiplying the fusion result F in the ICA domain and the inverse 
transform kernel 1T {}− ⋅ . 
The fusion result of the j-th attribute patch in the spatial domain can be 
obtained through 

    -1

1

1T {}
n

j j ij
i

MF F m
n =

= ⋅ × + ∑  .                           (12) 

According to eq. (12), we can get all the patches in the spatial domain. 
Use the averaging method to process the overlapped area and get the 
final fusion result. 
 
 

APPLICATION AND ANALYSIS 
 

In order to verify the effectiveness of our method, we use a 3D 
seismic attribute data in northeastern Sichuan region for testing. Since 
different attributes have different magnitude, a data standardization is 
required first. We select Root Mean Square amplitude, Frequency 
Attenuation Gradient and Average Energy as the three source attributes to be 
fused, which are regarded suitable by geological experts. The Root Mean 
Square amplitude can show the stratification of lithology and lithological 
changes. Besides, it can identify amplitude anomalies and describe sequence. 
It can also be used to track seismic anomaly, such as amplitude anomalies 
caused by delta, watercourse or gas sand, and differentiate integrated 
sediment, hummocky sediment and messy sediments and the oil and gas 
reservoir prediction (Xie et al., 2014). As a low frequency band shadow, 
Frequency Attenuation Gradient has been proven to be an effective fluid 
factor. It  is  sensitive to hydrocarbons and is a derived attribute based on the   
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spectral decomposition, which can do hydrocarbon detection directly. It is an 
ideal attribute for gas detection and mainly applied to detect low-frequency 
gas sand and chasm especially suitable for thin reservoir. Average Energy 
can identify amplitude anomalies or sequence characteristics and identify 
lithology and gas sand changes effectively. It is a common attribute to 
predict hydrocarbon potential (Rezvandehy et al., 2011). Fig. 4 shows the 
time-slicing slices of the selected three attributes, belonging to the reservoir 
in the second section of Feixianguan group called Ertan. The size of data 
matrix is 401×251. It can be seen from Figs. 4(a)-(c) that any single attribute 
cannot describe the reservoir plane characteristics completely, and it cannot 
satisfy the accuracy requirements of reservoir prediction and fluid detection. 
Therefore, we use our method to fuse the three attributes to realize the 
complementation of advantages between attributes. 

 
 

   
     (a) RMS amplitude                   (b) Average energy 
 

                
                   (c) Frequency attenuation gradient 
 
Fig. 4. Source seismic attributes. 
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In order to verify the validity of the method, we do the contrast test 

and analysis through the conventional PCA method and our method in this 
paper. Fig. 5 shows the fusion result of the above three attributes fused by 
PCA method. Fig. 6 shows the fusion result of the above three attributes 
fused by our method. 

 
It is not hard to see that the fusion results of both PCA and FastICA 

method are superior to any single attribute in Fig. 4 in describing the 
characteristics of the riverway. But the color distribution of the PCA result 
(Fig. 5) is relatively simple, and some details of the information are lost. By 
contrast, the fusion result of our method (Fig. 6) is rich in detail components. 
It is easier for interpreters to delineate favorable areas. Since entropy reflects 
the amount of information, a larger information entropy means more 
information in image fusion. So entropy is introduced (Zheng et al., 2008) to 
evaluate the results quantitatively, defined as 
 

      2( ) ( ) log ( )H x p x p x= −∑ ,                             (13) 

where x is the fusion result, and p(x) is the probability density function of x. 

 

   
 
 
Fig. 5. Fusion result by PCA. 
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Fig. 6. Fusion result by our method. 
 
 
Table 1. Quantitative evaluation of fusion results. 
 

 
 

As we can see from Table 1, the entropy value of the fusion result by 
our method is larger than that of PCA method, which shows that the 
FastICA result has more information than the PCA result. Purple area 
represents the main part of the riverway and red area represents background 
in Fig. 5. Since the PCA fusion process does not include the attribute 
features corresponding to smaller eigenvalues, only the main components 
are extracted to participate in fusion, which destroyed the integrity of source 
information, resulting in loss of background details in the fusion result. And 
from the comparison of Fig. 5 and Fig. 6, we can see that Fig. 6 not only 
clearly shows the backbone of the riverway, but also shows the clear 
background without the influence of clutter. It is obvious that FastICA better 
maintains the integrity of source information because the fusion process 
does not remove the features corresponding to smaller eigenvalues and 
highlights the high frequency components and details of each source 
attribute.  Fusion result is rich in detail  and  is closer to the real reservoir  
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information. Fig. 4(b) shows the distribution of “average energy”. Although 
it shows the outline of the riverway clearly, the width of the riverway is cut 
and background information is lost. Fig. 4(a) and 4(c) can fully display the 
backbone of the riverway, but there are too much clutter in the background, 
blurring the main reservoir characteristics. Fig. 6 not only depicts the 
backbone of the riverway clearly but also eliminated the clutter in the 
background, making the background information clear. So the fusion result 
by FastICA is closer to the real reservoir information. Tests show that our 
method can effectively integrate multiple attribute characteristics and 
remove the redundancy between attributes. The fusion results can better 
highlight the reservoir sand information and emphasize energy distribution, 
which can provide interpreters or computers with scientific basis to analyze 
reservoir characteristics automatically and solve the multi-solution problem 
of single attribute reservoir prediction. 
 
 
CONCLUSIONS 
 

We introduced the FastICA algorithm into seismic multi-attribute 
fusion in this paper. The transform kernel matrix and the synthesis matrix 
are calculated by FastICA algorithm so that the ICA decomposition of 
seismic attributes can be realized quickly. According to certain rules, a 
variety of attributes are fused into an integrated attribute in the ICA domain. 
Algorithm module “Seismic multi-attribute automatic fusion based on 
FastICA” developed by us has been integrated to a large seismic 
interpretation system called GeoMountain of CNPC Sichuan Petroleum 
Geophysical Prospecting Company. The processing results are verified by 
the actual data in the northeast of Sichuan and are superior to other methods. 
The major advantage of our method is that it can automatically eliminate 
redundancy between the seismic multiple attributes and highlight the fine 
features. The fused attribute can highlight the abnormal characteristics of 
reservoir hydrocarbon to improve the accuracy of reservoir prediction. In 
addition, our method is simple, fast and effective. Theoretically, it can 
realize the fusion of any number of attributes. And the fusion rules and 
parameters selection are flexible, which can avoid factitious interference 
factors of the conventional methods. Therefore, it has certain application 
value in lithology section analysis, description and prediction of reservoir 
space. 
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