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ABSTRACT 
 
Zhong, Y. and Liu, Y.T., 2019. Time-domain acoustic full-waveform inversion based on 
dual-sensor seismic acquisition system. Journal of Seismic Exploration, 28: 103-120. 
 

In many previous studies, attentions were paid to using dual-sensor seismic 
acquisition system for suppressing ghost waves, extending seismic bandwidth and 
improving resolution of migration, while few attentions were paid to full-waveform 
inversion (FWI) based on dual-sensor’s seismic data. In this paper, we propose an 
acoustic FWI method based on dual-sensor acquisition system. We first review 
conventional acoustic FWI and compare it with our new dual-sensor acoustic FWI. Then 
we give the boundary condition for our dual-sensor acoustic FWI. Secondly, we derive 
new gradient equations with the spatial derivative of particle velocities replaced by the 
time derivative of pressure. Further, time-domain multi-scale strategy is conducted to 
reduce the nonlinearity of acoustic FWI. At last, the synthetic examples of modified 
Marmousi model are presented to demonstrate the efficiency and advantages of our 
dual-sensor acoustic FWI over conventional acoustic FWI. It can be found that, compared 
with conventional acoustic FWI, dual-sensor acoustic FWI almost does not cause extra 
computation and memory costs but can improve the accuracy of acoustic FWI. 
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INTRODUCTION 
  

Full waveform inversion (FWI) is a method in retrieving 
high-resolution subsurface parameters from seismic data and has been 
extensively developed by many researchers (Lailly, 1983; Tarantola, 1984, 
1986; Mora, 1987; Sirgue and Pratt, 2004; Sears et al., 2008; Virieux and 
Operto, 2009). Although acoustic FWI and elastic FWI are both widely 
adopted to reconstruct the subsurface compressional velocity, elastic FWI 
seems more suitable than acoustic FWI since elastic FWI can reconstruct 
additional shear wave velocity model. The shear wave velocity model is 
important for reservoir characterization, quantitative imaging (Brossier et al., 
2009a,b) and interpretation of the dynamics of the reflection data (Plessix 
and Cao, 2011). However, the compressional velocity models from elastic 
FWI are often worse than that from acoustic FWI because of that the 
trade-off effects of shear velocity models; the interference of different kinds 
of wave modes also contribute to degraded inverted compressional velocity 
models of elastic FWI (Tarantola, 1986; Virieux and Operto, 2009). In 
addition, it is expensive to get multi-component elastic seismic data for 
elastic FWI. Thus, it is more difficult to obtain high resolution compressional 
velocity models by elastic FWI when compared with acoustic FWI. 

  
Suitable gradient equations are important for giving right decrease 

direction of the objective function, proper evaluation of the step length and 
termination criteria in gradient-based optimization methods (Baumsteinet et 
al., 2009). Tarantola (1986) first derived elastic parameters’ gradients based 
on second-order displacement equations. Crase et al. (1990) proposed a 
more robust objective function, and they used first-order velocity-stress 
equations to calculate the forward wave-field and derived corresponding 
adjoint equations. But they still used the gradients equations of Tarantola 
(1986) to update the parameters. Shipp et al. (2002) inverted compressional 
velocities using large angle reflection data of ocean. They also used 
first-order velocity-stress equations to calculate the forward wave-field and 
replaced the displacement’ spatial derivative of velocity by pressure to 
improve the computational efficiency of FWI. Liu et al. (2006) deduced the 
adjoint equations and the gradient equations by Lagrange multiplier method. 
Zhou et al. (2008) and Wang et al. (2012) used adjoint state method to 
derivate adjoint equations and new gradient equations which are suitable for 
the first-order velocity-stress elastic wave equations. 

  
The two-way acoustic wave equation for FWI is a second-order spatial 

partial differential equation. Theoretically, it needs two spatial boundary 
conditions to solve two-way wave equation in the depth domain (Sandberg 
and Beylkin, 2009). But conventional seismic acquisition system only 
received the wave-field at one given depth. Therefore, it is an 
underdetermined problem to solve two-way acoustic wave equation using 
the spatial boundary condition provided by current seismic acquisition 
system. Based on this problem, some previous studies (Vasconcelos, 2013; 
Ravasi et al., 2015a,b; You et al., 2016) proposed dual-sensor seismic 
acquisition system to record seismic data and then completely solved the full 
wave equation in depth domain based on two layers’ data. They got 
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high-resolution and true-amplitude depth migration profiles. In fact, marine 
towed-streamers acquisition system similar to the dual-sensor seismic 
acquisition, firstly proposed by Sonneland et al. (1986), was used earlier for 
suppressing weather noise and separating up-going and down-going 
wave-field. However, it was difficult to hold two streamers at the same 
vertical plane limited by the techniques at that time. With the development 
of marine seismic acquisition techniques, it is not a difficult problem now. In 
previous research, the marine towed-streamers acquisition system was used 
for suppressing ghost waves, extending seismic bandwidth (Hill et al., 2006; 
Özdemir et al., 2008), and improving resolution of migration (Moldoveanu 
et al., 2007; Bunting et al., 2011). You et al. (2017) implemented RTM 
based on dual-sensor seismic acquisition system and got a higher resolution 
result than conventional RTM. The main reason is that the backward 
wave-field in the time domain can be more accurately extrapolated when 
suitable spatial boundary conditions and initial conditions are provided by 
dual-sensor seismic acquisition system. However, few of them paid 
attentions to the FWI based on the dual-sensor seismic acquisition system. 

 
Therefore, this study conducts acoustic FWI with suitable spatial 

boundary conditions and initial conditions, which are provided by 
dual-sensor seismic acquisition system. We can reconstruct more accurate 
and stable parameters based on the data from dual-sensor seismic acquisition 
system than that based on single sensor’s record. Inversion tests using the 
synthetic data of a modified Marmousi model are implemented to prove the 
feasibility and correctness of our algorithm. The structure of this paper is as 
follows: Firstly, we begin with a brief introduction to our dual-sensor FWI 
and propose different boundary condition. Secondly, we deduce new 
gradients of model parameters and introduce time domain multi-scale strategy. 
Then we combine these strategies and implement our dual-sensor FWI, 
using the synthetic data of a modified Marmousi model, which demonstrates 
our dual-sensor FWI is effective. Finally, we give some conclusions. 

 
 

THEORY 
 
Time-domain Dual-Sensor FWI  
 

 The 2D acoustic velocity-stress equations in Cartesian coordinate system 
are expressed as (Virieux, 1984) with the initial and boundary conditions: 
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where Vx is the horizontal particle velocity, Vz is the vertical particle velocity, 
P is the pressure, f is the source item, ( )tϕ is the source function, ( , )s sx z are 
coordinates of the source, ρ  is the density, and κ  is the bulk modulus 
( 2

PVκ ρ= , VP is the compressional velocity), respectively. 
  

In our acoustic FWI, the objective function is set as 2L objective function:
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(2) 

 
where ( )calP m is calculated pressure data with model m, and Pobs is the 
observed pressure data, respectively. 
 

According to the adjoint state method (Liu and Tromp, 2006; Wang et al., 
2012), the following adjoint state wave eqs. (3) corresponding to acoustic 
first-order velocity-stress eqs. (1) can be derived (Appendix) as: 
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With the marine dual-sensor seismic acquisition system, shown in Fig. 1, 

where two streamers at different depths (z1 and z2) below the sea surface are 
towed behind a survey vessel, the final and boundary conditions can be 
written as: 

 
 

Fig. 1. Marine dual-sensor seismic acquisition system. 
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where ux is the adjoint horizontal particle velocity, uz is the vertical particle 
velocity, p is the adjoint pressure, ( , 1, ) ( , 1, )cal obsP x z t P x z t− ,

( , 2, ) ( , 2, )cal obsP x z t P x z t− are the residuals of the pressure between the 
calculated data and observed data at two different depths, and T is the 
maximum of recording time, respectively. 
 

In conventional acoustic FWI, it is usually assumed the final condition 
and boundary condition as: 

( , 1, ) ( , 1, ) ( , 1, ).
( , , ) 0.
( , , ) 0.
( , , ) 0.

cal obs

x

z

p x z t P x z t P x z t
u x z t T
u x z t T
p x z t T

⎧ = −
⎪

> =⎪
⎨

> =⎪
⎪ > =⎩

                    (5) 

 
The residual of pressure record from single sensor acts as virtual 

sources to back propagate upward and downward from the boundary points 
from maximum time to minimum time, disregarding the direction from 
which it arrived, thus creating some artificial adjoint state wave-field by 
conventional conditions eqs. (5). Although the absorbing boundary can be 
used to attenuate the upward wave-field, the downward wave-field is 
mirrored back-propagated downward instead of upward. This mirrored 
back-propagated downward will creating some strong artificial noncausal 
adjoint state wave-field. Thus, the adjoint state wave-field is inaccurate 
under the conventional conditions eqs. (5). Instead the boundary conditions 
eqs. (4) can stack and reduce the energy of artificial noncausal adjoint state 
wave-field. Therefore we use final and boundary conditions eqs. (4) to 
improve the accuracy of adjoint state wave-field. 

 
The detailed steps to calculate the gradients of parameters of our time 

domain dual-sensor FWI are as follows: Firstly, numerically solve eqs. (1) 
with the initial conditions from minimum time to maximum time to obtain 
the forward source wave-field and store the wave-field at the boundary 
region. Secondly, back propagate the residuals record by solving eqs. (3) 
with the final and boundary conditions equations to get the adjoint state 
wave-field and reconstruct the source wave-field by boundary reconstruct 
method from maximum time to minimum time. With two order of time, high 
order of space staggered grid finite difference to solve eqs. (1) and eqs. (3), 
followed by the perfectly matched layer to eliminate the boundary reflection, 



 

	
	

108 

thirdly, we cross-correlate the adjoint state wave-field and the source 
wave-field to calculate the gradients of density and bulk modulus using 
following equations (see the Appendix): 
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Since the following equation: 
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We can further derive the new gradient equations as 
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 The new gradients eqs. (8) use time derivative of pressure to replace the 

spatial derivative of particle velocity. And the new gradient eqs. (8) can 
reduce the calculation time and improve the accuracy of gradients compared 
with the old gradient eqs. (6). Shipp et al. (2002) applied a similar method, 
in which the displacement’ spatial derivative was replaced by pressure, to 
improve the computational efficiency of FWI. 

 
To decrease the nonlinearity of FWI, multi-scale strategies are usually 

implemented in time domain (Bunks et al., 1995; Boonyasiriwat et al., 2009), 
frequency domain (Pratt et al., 1998; Brossier et al., 2009), or hybrid domain 
(Sirgue et al., 2008). Here, we use Wiener filter instead of low-pass filter to 
improve the accuracy of time domain multi-scale strategy (Boonyasiriwat et 
al., 2009), which can be computed by 
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where FWiener (ω)  is the Wiener filter, Woriginal is the original wavelet, Wtarget 
is the low-frequency target wavelet, ω  is the angular frequency, ε  is a 
small parameter that prevents numerical overflow, and * denotes the 
complex conjugate. 
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According to the chain rule for compound function’s derivation and the 
velocity and density relationships with bulk modulus 

2,p pV Vκ
κ ρ

ρ
= =  .            (10) 

 We can present the gradient equations for compressional velocity and 
density as 
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 And then the gradient-based methods can be applied to update the 

model parameters through iterations with the form 
 

  
1k k k km m dα+ = + ,                                 (12) 

 
where mk and mk+1 are the model parameter vectors at current and next 
iteration, respectively; kα is current update step length, which can be 
computed using line search algorithm (Nocedal and Wright, 2006); d k is the 
current update direction of model parameter vectors. 
 
  
INVERSION EXAMPLES 

 
  In this section, one synthetic example is used to certify the 

effectiveness and advantages of our dual-sensor FWI method over 
conventional acoustic FWI. For simplicity, the free surface effects (multiple, 
conversion, and surface waves) are not considered, and the source wavelet is 
known in our examples. 

  
  We resample and downsize the Marmousi model to reduce the 

computational cost. And the true compressional velocity model and density 
model are shown in Figs. 2(a) and 2(c). The density model is 0.8 times of the 
compressional velocity model. The model dimension is 5390 m ×1290 m 
with grid steps of 10 m×10 m. There are 34 shots located at a depth 20 m 
with the space interval of 160 m. And 540 receivers are put at the depth z = 
20 m and z = 30 m with the space interval of 10 m to record the wave-field 
of pressure, respectively. In the modeling and FWI, the Ricker wavelet, with 
a domain frequency of 20 Hz, is used as the source. The sampling interval is 
0.001 s, and the length of record time is 2.5 s. The initial compressional 
velocities and densities, as shown in Figs. 2(b) and 2(d), are yielded by a 
smooth operator (the size of 500 m × 500 m) of the true models. In this 
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example, time-domain multi-scale FWI is used to avoid local minimum, and 
the inversion is divided into four stages with the frequency bands 0–5, 0–10, 
0–15 and 0–20 Hz. The conjugate gradient is used to update the model. 

 
To evaluate the quality of the FWI, we estimate the relative errors 

between the inverted models and the true ones by 
 

2
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el
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−
=

     ,               
(14) 

 
where truem and invertedm  are the true and inverted parameter, respectively, 
with the dimension of *nx nz . If the value of modelerror is smaller, the 
inversion accuracy is higher. 
 

 
 
Fig. 2. A modified Marmousi2 model: (a) The true compressional velocity model, (b) the 
initial compressional velocity model, (c) the true density model, and (d) the initial density 
model. 
 
 
Inversion with different gradient equations based on the data provided 
by dual-sensor 

 
 In order to test the accuracy and efficiency of the FWI by the different 

gradient equations, we first use the old gradient eqs. (6) and new gradient 
eqs. (8) to invert compressional velocity and density simultaneously, 
respectively. The pressure seismic data at two different depths, provided by 
dual-sensor seismic acquisition system, is used. All the other conditions are 
the same during the inversion except the gradient equations. 
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Fig. 3 displays the inverted velocity models and density models by 
different gradient equations. From Figs 3(a) - 3(d), it can be seen that both of 
the reconstructed compressional velocities and densities by different 
gradient equations are in good accordance with each other not only in 
structure but also in model values. While the inverted results of the FWI by 
new gradient eqs. (8) have slightly better resolution than the results of the 
FWI by old gradient eqs. (6) especially in some areas (for example in the 
black ellipse) from Figs 3(a) - 3(d). 

  
It indicates that the reconstructed compressional velocity and density by 

new gradient equations (8) are slightly accurate than that by the old gradient 
equations (6). In addition, the acoustic FWI by new gradient equations (8) 
cost less time compared with that by old gradient equations (6) under the 
same calculation condition. So we implement acoustic FWI by new gradient 
equations in the following part. 

  

 
 
Fig. 3. Inverted models based on different gradient equations by dual-sensor: (a) the 
inverted compressional velocity model by old gradient equation, (b) the inverted 
compressional velocity model by new gradient equation, (c) the inverted density model 
by old gradient equation, and (d) the inverted density model by new gradient equation. 
 
 
Inversions based on data at different depth provided by single sensor 
  

To test the effectiveness and advantage of our new dual-sensor FWI 
over conventional acoustic FWI, we then use the pressure seismic data at 
different depths provided by single sensor to invert the models. And the new 
gradient equations are used to invert compressional velocity and density 
simultaneously. 

 
The inversion results are displayed in Fig. 4, where Figs. 4(a) and 4(b) 

show the inverted compressional velocities, and Figs. 4(c) and 4(d) display 
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the inverted densities. Comparisons of the Figs. 4(a) and 4(b) with Fig. 3(b) 
indicate that the reconstructed compressional velocities by single sensor’s 
record at different depths are worse than that by dual-sensor’s record. There 
are some artificial results especially in the black ellipse area in Figs. 4(a) and 
4(b). The reconstructed densities by single sensor are in good accordance 
with that by dual-sensor not only in structure but also in model values from 
Figs. 4(c), 4(d) and 3(d). 

 
And the normalized gradients of the parameters at the first iteration, 

with the 20 Hz dominant frequency wavelet, are shown in Fig. 5, where Figs. 
5(a), 5(c) and 5(e) show the gradient models of compressional velocity, and 
Figs. 5(b), 5(d) and 5(f ) display the gradient models of density. From the 
Fig. 5, it can be seen that the gradient model of compressional velocity based 
on the dual-sensor have higher resolution when compared with that based on 
the singer sensor especially in the black ellipse area in Figs. 5(a), 5(c) and 
5(e). The gradient model density by single sensor is in good accordance with 
that by dual-single from Figs. 5(b), 5(d) and 5(f ). 

 
More inversion details can be seen from Fig. 6 that illustrates the 

inverted results at the distance of 2.59 km, 3.15 km and 4.5 km. In Fig. 6 the 
inverted results based on the data provided by the first layer’s singer sensor 
are denoted by “Scheme 1”, the inverted results based on the data provided 
by the second layer’s singer sensor are denoted by “Scheme 2”, and inverted 
results based on the data provided by the dual-sensor are denoted by 
“Scheme 3”. 

  
It is easy to observe that inverted results based on the data provided by 

the dual-sensor are closer to the true models than that based on the data 
provided by the singer sensor. Also as shown in Table 1, the relative errors 
based on first layer’s single sensor’s record, second layer’s single sensor’s 
record and dual-sensor’s record for compressional velocities are 0.0682 and 
0.0687, and 0.0610, respectively; And the relative errors for densities are 
0.0644 and 0.0647, and 0.0632, respectively. It’s clear that the accuracy of 
our dual-sensor FWI is higher than that of conventional acoustic FWI. In 
addition, there is almost no increase in computation and memory costs of our 
dual-sensor FWI when compared with conventional acoustic FWI because 
the number of the wave-field variables does not change. 

 
 

Table 1. Inverted errors based on the data provided by the single and dual sensor. 
 

Parameter  Inverted error for 
first layer’s single 
sensor 

 Inverted error for 
second layer’s single 
sensor     

Inverted error for dual sensor 

   
pV

      
 

     0.0682 
 
     0.0687 

 
         0.0610 

  
ρ  

     

   0.0644 
              
0.0647 

                        
                 0.0632 
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Fig. 4. Inverted models using new gradient equations based on the data provided by the single 
sensor: (a) the inverted compressional velocity based on the data provided by first layer’s singer 
sensor, (b) the inverted compressional velocity based on the data provided by second layer’s 
single sensor, (c) the inverted density based on the data provided by first layer’s singer sensor, 
and (d) the inverted density based on the data provided by second layer’s single sensor. 
 

 
Fig. 5. The normalized gradient models of compressional velocity and density at the first iteration: 
(a) the gradient of compressional velocity based on the data provided by first layer’s singer sensor, 
(b) the gradient of density based on the data provided by first layer’s singer sensor, (c) the 
gradient of compressional velocity based on the data provided by second layer’s single sensor, (d) 
the gradient of density based on the data provided by second layer’s single sensor, (e) the gradient 
of compressional velocity based on the data provided by dual-sensor seismic acquisition system, 
and (f) the density gradient  based on the data provided by dual-sensor seismic acquisition system. 
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Fig. 6. Inverted results based on the data provided by the single and dual sensor. Panels 
(a-c) show the inverted compressional velocity at the distance of 2.59 km, 3.15 km and 
4.5 km, respectively. Panels (d-f) show the inverted density at the distance of 2.59 km, 
3.15 km and 4.5 km, respectively. 
 
 
  
CONCLUSION 

 
In this paper, we have introduced the time-domain dual-sensor acoustic 

FWI and proposed some inversion strategies. The main idea is based on 
dual-sensor data from the marine dual-sensor seismic acquisition system. 
The adjoint state wave-field based on the boundary conditions provided by 
marine dual-sensor seismic acquisition system is more accurate than that 
based on the boundary conditions provided by conventional single sensor 
seismic acquisition system. Thus, dual-sensor acoustic FWI can estimate 
more accurate parameter models than conventional acoustic FWI. The test of 
a modified Marmousi model reveal that there are some advantages of 
dual-sensor acoustic FWI over conventional acoustic FWI. Our dual-sensor 
acoustic FWI is, therefore, promising to make use of dual-sensor’s seismic 
data. 
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APPENDIX 
 
ADJOINT STATE WAVE EQUATIONS AND GRADIENTS FOR 
ACOUSTIC FULL-WAVEFORM INVERSION BASED ON THE 
VELOCITY-STRESS EQUATIONS  
 

 In this Appendix, we derive the adjoint state wave equations and 
gradients for acoustic full-waveform inversion based on the velocity-stress 
equations. 

 
 We rewrite eq. (1) and generalize it using matrix-vector notation in 

simple form as: 
 

  , )( .L S fρ κ =                                    (A-1) 
 

where ( , )Tx zS V V P= , , (0 0 )Txxf f= , , , T denotes the matrix transpose oper-
ator, f is the source item, and 
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t z
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∂ ∂ ∂⎢ ⎥− −

⎢ ⎥∂ ∂ ∂⎣ ⎦

                         

 (A-2) 

 
The model parameters can be splinted into background and perturbation 

components m and mδ . The background and perturbation components of the 
model parameters are , )( Tρ κ and , )( Tρ δρ κ δκ+ + , and the corresponding 
wavefields are represented as ( , )Tx zS V V P= , and ( , )Tx zS V V Pδ δ δ δ= , , 
respectively. Thus the following expression is obtained 

 

 , ) ( )( .TL S S fρ δρ κ δκ δ+ + + =                       (A-3) 
 
Subtracting eq. (A-1) from (A-3) and ignoring the high-order terms 

based on the Born approximation, we can obtain the perturbed wavefield by 
following eqs. (A-4): 

 

 
' ', )( .L S L S L Sρ κρ κ δ δρ δκ=− −                            (A-4) 

where 
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  (A-5) 

 
According to the adjoint state method, the adjoint state operator , )(L ρ κ ∗

satisfies the following equation (Tarantola, 1986): 
  

  
, ) , )( , , (L Ls S s Sρ κ ρ κδ δ∗ =                  (A-6) 

where ( , )Tx zu u ps = ,  is the adjoint state wavefield vector. 

With the initial condition 

0 0.tSδ = =
                            (A-7) 

and the boundary condition  

 0 0.zSδ = =
                            (A-8) 

 
We deduce the adjoint operator using the property of integration by parts. 

It can be expressed as 

0
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.       (A-9) 

Thus, the adjoint state wave equations can be expressed as     
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 In our acoustic FWI, the objective function is set as 2L objective function:

  
2

2

1 ( )
2

cal obsE S m S= −
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		 	 	 	 	

(A-11) 

 
where the ( )calS m is the calculated data with model m and the obsS is the 
observed data, respectively. 
 

 The gradient of the objective function with respect to the model 
parameter m can be derived from the following equation: 

 

  

( ) ( ),
cal

cal obsE S m S m S
m m
∂ ∂

= −
∂ ∂ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

(A-12) 

Taking the derivative of eq. (A-1), we get 

  
( )( ) 0L S mS m L

m m
∂ ∂

+ =
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(A-13) 

which can be rearranged to give 

     
1( ) ( ) ( )S m LL m S m

m m
−∂ ∂

= −
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(A-14) 

Plugging eq. (A-14) into eq. (A-12), we get 

  ( )1( ) ( ),E L S m L m S
m m

∗−∂ ∂
= −

∂ ∂
Δ

   ,                    
(A-15)

where * denotes the adjoint, = ( )cal obsS S m S−Δ is the residual vector. 
 

  In the context of acoustic FWI, we denote ( )1( )= L m Ss ∗− Δ  as the 
solution of the adjoint equations with the residual seismograms acting 
as virtual sources 

, )( =L Ssρ κ ∗ Δ  .               (A-16) 

 

For = , )( Tm ρ κ , the gradient in eq. (A-15) can be written as 
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and   
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