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ABSTRACT 
 
Protasov, M.I., Tcheverda, V.A. and Pravduhin, A.P., 2019. 3D true-amplitude 
anisotropic elastic Gaussian beam depth migration of 3D irregular data. Journal of 
Seismic Exploration, 28: 121-146. 
 

True amplitude seismic migration is the procedure, which provides not only the 
localization of geological objects but also the restoration of their so-called "reflectivity". 
This characteristic gives very important quantitative additional information about elastic 
parameters of the objects of interest. The paper addresses 3D seismic depth true-
amplitude migration of 3D irregular data in anisotropic media based on beam 
decomposition of the data. The main objective is the development of the imaging 
procedure suitable for anisotropic media and handling 3D irregular seismic data without 
any preliminary regularization. The key components providing the desired image are 
elastic anisotropic Gaussian beams. Depending on the choice of the beam (quasi P or 
quasi S) we have PP- or PS-images. Results of synthetic and real data processing are 
presented and discussed. 
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INTRODUCTION 
 

Gaussian beams are waves, which are concentrated within the 
exponentially vanishing vicinity of a ray and are globally regular, that they 
do never degenerate at singular points of ray fields, like caustic and foci 
(Nomofilov, 1981; Popov, 2002; Novack, 2012). They form some kind of a 
full base that is any solution of elastic wave equation can be represented as 
a superposition of these beams (Babich and Popov, 1989). Hill was the first 
who use this property of Gaussian beams to write down Green’s function in 
the Kirchhoff integral (Hill, 1990, 2001) and introduce Gaussian beam 
migration. 

  
The prestack migration procedure presented in (Hill, 2001) operates 

on common-offset gathers and is extremely efficient because the 
computation of superposition of very narrow beams isolates summations 
that do not depend on seismic data and opens a possibility of estimating the 
result by the asymptotic method of a saddle point. The paper (Gray, 2005) 
develops Gaussian beam based migration to common-shot records, which 
handles multi-pathing in a natural way. 

  
Along with the correct recovery of the spatial position of geological 

objects, it is extremely important to construct their true-amplitude images. 
As true-amplitude, we have in mind images, which amplitudes are 
proportional to the so-called reflectivity representing variations of some 
physical parameters, normally impedance or some of its derivatives. The 
amplitudes of the imaged events, however, are usually interpreted less 
precisely. We believe the first Gaussian beam version of true-amplitude 
pre-stack depth migration was proposed and implemented in (Albertin, 
2004). Also in the paper (Gray and Bleistein, 2009) was proposed true-
amplitude beam imaging of seismic data in a source-receiver domain. All of 
the mentioned beam migrations use the wave-field decomposition into 
Gaussian beams. 

 
In the papers (Protasov and Tcheverda, 2011) proposes another 

strategy for Gaussian beams based true amplitude pre-stack migration: 
  
1) Individual Gaussian beams are used instead of wave-field 

decomposition into Gaussian beams; 
2) Gaussian beams are traced from the imaging point; 
3) The traces of these beams at sources and receivers positions are 

used as corresponding weights for prestack data summation;  
4) Gaussian beams have an equal width at all imaging point; 
5) Imaging condition is implemented in terms of structural angles. 
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This technique provides an asymptotically correct true-amplitude image in 
acoustic media. The papers (Protasov and Tcheverda, 2012) and (Protasov, 
2015) extend this approach to 2D elastic pre-stack migration for 
multicomponent walkaway Vertical Seismic Profiling (VSP) data and 2D 
depth migration of multi-component surface seismic data in anisotropic 
media. 
 

Below we developed this approach for 3D anisotropic media. We 
created three slightly different 3D beam imaging algorithms. First one is the 
straightforward generalization of the 2D analog where imaging condition is 
got in terms of structural angles, Gaussian beams are traced from the image 
point and they are chosen equal at all image points. This procedure is 
supposed to be used as a target oriented imaging where a high signal to 
noise ratio and spatial resolution are achieved. The other two algorithms are 
the slight modifications where imaging condition is got in terms of 
acquisition coordinates, and beams are traced from the acquisition and for 
the last modification beams widths are supposed to be equal at the 
acquisition system. This way provides a good signal to noise ratio still but 
faster realizations for big 3D models and for huge 3D seismic data.  All 
algorithms provide the 3D true-amplitude image of 3D/3C seismic data. 
The proposed approach does not require regularization and can be applied 
to irregular data either in source-receiver or midpoint-offset domains. P- 
and S-wave beams can be used to handle raw multi-component data without 
separating the waves. 

 
 

BEAM IMAGING METHOD IN 3D 
 

Statement of the true-amplitude imaging problem 
 

Let us consider a 3D heterogeneous anisotropic elastic medium with 
Lamé's parameters and density decomposing as follows: 

 
.=,= 10

10 ρρρ ++ ijklijklijkl ccc                                                             (1)  
  
The parameters ),,(0 zyxcijkl and ),,(0 zyxρ  describe a priori known 

smooth macro-velocity model/background/propagator, while ),,(1 zyxcijkl and
),,(1 zyxρ  are responsible for its rough/rapid perturbations or reflectors. 

 



	 	 	124 

We introduce a distorted Born approximation (Devaney, 1984) for 
the reflected/scattered wavefield on the surface: 
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Here )),(,,( rrrr yxzyx  is the receiver coordinate, )),(,,( ssss yxzyx  is the 
source coordinate, ω  is the frequency and 0u

!  is the incident wavefield 
propagating in a smooth background from a volumetric point source with 
impulse )(ωF , );,,0;( ωηξrxG  - Green's matrix for the smooth background and 
operator 1L  introducing by the rough perturbations ),,(1 zyxcijkl  and 1ρ : 
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The problem is to reconstruct rough perturbations of elastic 

parameters 1
ijklc  and density 1ρ or some of their combinations by resolving 

integral eq. (3) with the data );,;,( ωssrr
obs yxyxu! . 

 
Target oriented imaging condition: structural angles and equal beams 
at the image point 
 

From every imaging point ),y,(x i ii zx= , we trace a pair of quasi-
pressure (qP) rays. One of them is traced to the receiver positions, another - 
towards the source positions. These rays are completely defined by the 
macro-model parameters ),,(),,,( 321321

0 xxxxxxcijkl ρ and by the structural 
angles θγ ,  and 21,, ββaz  (see Fig. 1). Angles θγ ,  define a structural vector

) cos ,sinsin ,sincos ( γγθγθ ⋅⋅=n! , i.e., structural dip γ and structural 
azimuth θ . Angle az defines the plane of ray propagation at the image 
point, i.e., azimuth of rays incidence. Angles 21,ββ  are opening angles and 
for isotropic media they are equal, but for the anisotropic case they are 
different and they are connected by the Snell’s law for anisotropic media: 
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Fig. 1. (а) The geometry of the method. (b) Structural angles. 

 
 Because opening angles 21,ββ depend on each other we write below 
the dependence with respect to 2β  only. We define the receiver ray by the 
index «1», and source ray by the index «2» and construct qP Gaussian 
beams concentrated these rays (Nomofilov, 1981) and denote them as

);,,,;;,(),;,,,;;,( 2
2

2
1 ωβθγωβθγ azxyxuazxyxu ss

gb
qprr

gb
qp

!! . Then on the acquisition, 
we compute two summation  weights: one is the normal derivative of the 
Gaussian beam in the receivers area, another one is the normal derivative of 
the scalar part of the corresponding beam in the source area: 
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The initial width for both Gaussian beams is fixed at the image point. 

Therefore, one can control the beam’s width by using the dimensionless 
parameter (for example, number of wavelengths) and, consequently, one 
can control the image resolution. The smallest possible beam width at the 
image point should yield the best image resolution (sharp imaging kernel). 

 
We multiply both parts of the “single scattering” integral (2) by the 

constructed weights (4) and integrate with respect to the source and receiver 
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coordinates. Using saddle point technique for every beam weight (it is the 
straightforward 3D analog of the result described in the paper (Protasov, 
2015)), we come to the following identity: 
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Then, we  use the following representation of qP beams: 
  

2,12,12,1 gb
qpqp

gb
qp eu ϕ

!!
= ,        

 
and compute beam derivatives (operator 1L ) retaining terms up to the first 
order only, The microlocal analysis (it is analogous to the analysis 
described in the paper by (Protasov and Tcheverda, 2011))  of the left-hand 
side of (5)  gives  the following:  
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Now let us change  variables )(),,( zyx ,p,pp→ωθγ  by the implicit function: 
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After multiplication  of (6) by 
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and integration with respect to ωθγ ,, , we come to the imaging condition 
with respect to structural angles: 
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 The operator M  is the almost identity operator and is represented as 
the superposition of the Fourier transform of the scattering potential: 
 

 1212
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ρ        (9) 

 
and its quasi-inverse. It is not an exact inverse Fourier transform because 
integration is performed not over the whole phase space but over its 
subdomain later referred to as the domain of partial reconstruction. In 
particular, if a support of the Fourier image of a function does not belong to 
this domain, this function is from the kernel of this "almost identity" 
operator. 

 
The procedure is naturally multi-component. Any Gaussian beam for 

elastic media has qP- or qS-wave polarization. The imaging condition 
includes the scalar product of the beam polarization vector and polarization 
vector of the recorded wave field. In particular, this product of unit 
polarization vectors of Gaussian qP-beam and upgoing qP-wave gives 
almost one, but for Gaussian qP-beam and upgoing qS-wave is almost zero. 
Therefore on a PP image, there are no artifacts produced by the PS waves. 

 
Ray tracing from the image point controls structural angles ( 2,,, βθγ az ), 
therefore, integrals in the realization of the imaging condition (8) with 
respect to structural angles can be computed easily, hence the true 
amplitude selective images (which are images for the fixed structural 
angels) are computed easily as well. It is worth mentioning that these kind 
of images, so-called selective images, are extremely important for the 
detection of diffractions produced by subseismic objects (Protasov et al., 
2016). However, in such an algorithm for every image point and for every 
value of structural angles one should compute the corresponding weights 
and also one should find and load the corresponding part of the seismic 
data. In this case, the computational time is rather big for any serious 3D 
seismic acquisition, where data space, as a rule, is much larger than a 
hundred gigabytes. But because the computational time depends on the 
number of image points and structural angles then it can be reasonable for 
the small image area. Therefore, the described algorithm can serve as 
target-oriented high-resolution imaging approach. 
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Imaging condition: acquisition coordinates 
 

Instead of structural angles 2,,, βθγ az  the alternative parametrization 
of the rays is offset and common middle point  ,h,h,y,x yxmm 0000  which 
are defined by the ray coordinates on the acquisition surface as follows: 
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 Then we can use parametrization  0000 yxmm h,h,y,x  in (6) do the 

change of variables ),p,p(p,y,(x zyxmm →)00 ω  in the following manner: 
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Now let us multiply both parts of (6) by the Beylkin’s determinant (Beylkin, 
1985) 
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and integrate with respect to ω,y,x mm 00 . 
  
 Finally, we come to the imaging condition in terms of the common 
midpoint, offset: 
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In the common industrial technology of seismic processing, the data 

are often sorted by common midpoint ( mm y,x ) and offset ( yx hh , ). Therefore 
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on the left-hand side of (10), we need to change variables 
),h,h,y(x),y,x,yx yxmmssrr →( : 
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Now the weights (4) are defined in mid-point\offset coordinates: 
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In this case, ray tracing is done from a fixed set of points on the 

acquisition surface to all the points of the medium, where an image is built, 
for that we use approximate anisotropic ray tracing (Dehghan, 2007), and 
paraxial ray tracing (Gibson, 1991). And then for a fixed offset, we should 
construct an image (at all the points of the medium) for all central midpoints 
that define a pair of beam centers in the receivers and sources, respectively. 
In addition, if we set the migration aperture on the acquisition surface, there 
will be no need to build an image in the whole region and there will be no 
need to solve the direct problem in the whole region but within the aperture 
only. 

 
This approach provides technological workflow of the migration 

procedure. First of all, attributes are computed apart from the summation 
procedure. Also, attributes are computed for the predefined sparse grid of 
beam centers and they are computed on the sparse image grid within the 
migration aperture. Such way allows computing attributes for rather huge 
models within the reasonable computational time. In the summation 
procedure for every source-receiver pair of beam centers the data are loaded 
once and then their summation is done for all image points within the 
migration apertures. In comparison with the version where shooting is done 
from the image, there is no necessity to find the data for each image point. 
Finally, in such case, the migration is much faster in comparison with 
shooting from the bottom. 

 
However, even in this case, the most technologically advanced 

procedure of summation depends on the Gaussian beams. In the case when 
the width of the Gaussian beams is controlled in the image points the 
summation of uploaded data for each pair is done with different weights for 
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different image points. Therefore the computational time of summation 
procedure is rather huge for big 3D seismic acquisition. However, in this 
case, the image quality is got with the best resolution. 

 
 

Imaging condition: equal beams at the acquisition system 
 

The other option is to control beam width at the acquisition surface, 
more precisely, we provide equal beams width for each beam center. First of 
all, we can integrate the left-hand side of (11) with respect to ω  explicitly: 
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Let us rewrite the product of weights and Beylkin determinant in the 
following form: 
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Here .,, 01x0xx10101 yyymmmmmm hhhhhhyyy,xxx −=−=⋅−=−=  Then 

imaging condition (13) takes the form: 
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We have to note beam travel times 21,ττ  consist of travel times 

between beam center points and image point 0
2

0
1

0
12 τττ +=  and beam travel 

time shift according to the source-receiver shift from beam centers: 
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As one can conclude, the summation procedure can be split into two 

stages: 
 

1) the decomposition of the data into beams 
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2) the mapping procedure: 
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Finally, we have got the procedure consisting of data decomposition 

and mapping of decomposed data to the image domain. This way leads to 
the rather fast parallel beam imaging software and, hence, opens the 
possibility to migrate huge seismic data up to terabytes within the reasonable 
computational time. 

 
  Below we provide some comparison of the imaging condition (17)-

(18). If we assume that the weight is computed in the offset domain
),(),( 1x11x1 yy

h
gb hhhhT δ= , then we come to the multi-component, anisotropic 

true-amplitude analog of the beam migration proposed by Hill (2001). In this 
case, the beam decomposition of the data is done only in mid-point domain: 
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followed by the mapping procedure for each offset: 
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By comparison of (19) and (20) with the full decomposition (17) and 

(18) we may conclude that the computational cost can be similar (it depends 
on the number of offsets that we really need to compute in (18)), but for the 
last variant the data must be regular in common midpoint offset domain, 
however, the data can be irregular for the first case. Also in this case beam 
decomposition with respect to offsets is performed which gives additional 
image quality profit. We have to underline that almost all real data 
geometries provide irregular data, especially land acquisitions.  
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Fig. 2. Two-dimensional section of the three-dimensional model SEG-salt - (a); an 
acquisition system simulating marine seismic survey - (b); synthetic data for one source 
based on the results of finite-difference modeling - (c). 
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RESULTS OF DATA PROCESSING 
 
Synthetic data sets processing 

 
All numerical examples are presented for the algorithms where 

beams are traced from the acquisition system i.e. realizations of imaging 
condition (11) and imaging condition (18) where full beam decomposition 
is proposed. To verify the approach and software developed we use one of 
the most well-known 3D data sets, it is the freely available data for the 
SEG-salt model [SEG / EAGE 3D modeling Salt Model Phase-C, 1996]. 
The model is three-dimensional and contains a salt body (Fig. 2a). The 
dataset simulates marine seismic survey, in which observations consist of 
51 lines of the ship's motion, the distance between which is 320 m. On each 
line 96 sources, the interval between sources along the line is 80 m (Fig.2b). 
The signal from each source (Fig. 2c) is fixed by 8 cables, the distance 
between them is 40 m, with each receiver accounting for 68 receivers with a 
distance of 20 m between them. 

 
For this model and the data, two tests of the migration are carried out. 

One of them is implemented for the smoothed SEG-salt model through 
Kirchhoff industrial migration. In this case, the smoothing of the model is 
selected in such a way as to obtain the best quality image of the lower 
horizontal interface at a depth of about 3500 meters. Comparison of the 
two-dimensional sections of the SEG-salt model (Figs. 3c, 4c) and similar 
sections of the three-dimensional image from the  Kirchhoff migration 
(Figs. 3e, 4e) show that the position of this interface is restored in many 
places quite well. The same results demonstrate a fairly good recovery of 
the lower boundary of the salt body, but at the same time with this, the 
upper interface of Kirchhoff migration result is rather blurred and 
defocused. Another test was done using developed Gaussian beam 
migration, also here a special tracing algorithm for a more correct 
description of the rays through the salt body. Comparison of the two-
dimensional sections of the SEG-salt model (Figs. 3c, 4c) and similar 
sections of the three-dimensional image from the Kirchhoff  migration 
(Figs. 3e, 4e), as well as the slices from the Gaussian beam migration result 
(Figs. 3a, 4a) show that the lower horizontal interface at a depth of 3500 
meters much better restored using Gaussian beam migration than Kirchhoff 
migration with the "optimal" smoothing of the model. It is also obvious that 
in the subsalt zone at a depth between 2000 and 3000 meters the dipping 
reflector is restored quite confidently in the Gaussian beam migration 
image, whereas on the Kirchhoff migration it is almost absent. Moreover, 
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the salt interface is more reliably determined by the Gaussian beam 
migration results (Figs. 3b, 4b) than by the Kirchhoff migration results 
(Figs. 3f, 4f). 

 
 

 
Fig. 3. Two-dimensional sections of the three-dimensional model SEG-salt, with the 
coordinate crossline = 7800 m - (c), at a depth of 2000 m - (d); two-dimensional 
sections of a three-dimensional image of Gaussian beam migration, with the 
coordinate crossline = 7800 m - (a), at a depth of 2000 m - (b); two-dimensional 
sections of a three-dimensional image of Kirchhoff migration, with a coordinate of 
crossline = 7800 m - (e), at a depth of 2000 m - (f ). 
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Fig. 4. Two-dimensional sections of the three-dimensional model SEG-salt, with the 
coordinate xline = 3800 m - (c), at a depth of 3000 m - (d); two-dimensional sections of 
a three-dimensional image of Gaussian beam migration, at a coordinate xline = 3800 m - 
(a), at a depth of 3000 m - (b); two-dimensional sections of a three-dimensional image of 
Kirchhoff migration, at a coordinate xline = 3800 m - (e), at a depth of 3000 m - (f ). 
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Real data depth imaging 
 

Next, the developed Gaussian beam migration algorithm has been 
tested on the real data. First, it was applied to the 2D land data from 
Western Siberia. Several common midpoint gathers are presented on the 
Fig. 5a. The depth migration model was got by anisotropic common image 
point tomography.  P-velocity and Thomsen parameters are presented in 
Fig. 5. One can observe maximum parameters values provide 20% of 
anisotropy. For these model and data, both beam imaging algorithms were 
applied ,i.e., realizations of imaging condition (11) and imaging condition 
(18). The imaging results of both approaches are very similar in this case 
because the quality of data is rather good and the model is rather simple. 
Therefore we provide the imaging results of the algorithm that is 
realizations of the imaging condition (11) in comparison with the Kirchhoff 
migration results got by the commercial processing system. The image 
stack produced by Kirchhoff migration is shown in Fig. 6a and the image 
stack obtained by Gaussian beam migration is presented in Fig. 6b. The 
corresponding common image gathers (CIGs) calculated by a Kirchhoff 
migration can be seen in Fig. 11a and CIGs computed by the beam imaging 
can be found in Fig. 7b. The beam migration algorithm produces CIGs and 
a full stacked image that are much cleaner and less noisy than Kirchhoff 
migration results. 

 
Then we have got the results for 3D surface seismic real data and 3D 

acquisition from the Kara Sea. These are the marine seismic data where 
towed streamers (12 pieces) are used: 6000 meters long, the distance 
between streamers is 100 meters, the distance between receivers is 12.5 
meters, i.e., 480 receivers per braid. The interval between the sources is 25 
m, the spacing between the source lines is 600 m, the distance from the 
source to the nearest receiver varies between 175-185 m. The maximum 
offset in the data is 6000 m, and their fold is 240. Before processing the 
data, the binning in common midpoint (CMP) domain was applied with 
bins sizes 12.5 m by 25 m. An example of several CMP (common 
midpoint) gathers is presented in Fig. 8. Though trace coordinates in CMP 
domain are regular (see Figs. 9a, 9b) the traces coordinates in vector offset 
domain are irregular (see Figs. 9c, 9d, 9e). Therefore, for the “standard” 
beam migration one needs to provide data regularization in the vector-offset 
domain. However, the developed beam procedures allow computing images 
in any point within the acquisition limits. So the image can be computed on 
rather irregular and rather dense or sparse acquisition grid. 
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Fig. 5. (a) Several common mid-point gathers of 2D seismic data from Western Siberia; 
migration velocity model. (b) P-velocity. (c) Thomsen parameter . 
(d) Thomsen parameter . 

 
 
These data went through the full processing workflow. First time 

processing and then depth processing. At the last stage, pre-stack depth 
migration was performed. Before this stage, a depth velocity model was 
constructed. For that purpose common image point (CIP) tomography was 
used. First, the migration process followed by CIP tomography is repeated 
until CIP gathers provide non-flat events. Next, tying a well to seismic data 
further tomographic refinement of the model is carried out taking into 
account a priori information. Well data contain information about the 

ε
δ
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anisotropy of the environment, therefore, after the well information is taken 
into account, a priori information about the anisotropy is entered into the 
model and specified in the process of tomographic inversion. Finally, an 
anisotropic migration model of the environment is constructed. To obtain a 
satisfactory migration depth velocity model, in this case, 26 iterations of 
migration and tomography were performed. It is clearly seen that the 
anisotropic parameters are the functions of both depth and horizontal 
directions (Fig. 10). The maximum value of the Thomsen parameter δ
reaches 0.05, and the maximum value of the Thomsen parameterε  reaches 
0.1, where the main anisotropic layers start from the seabed and reach the 
depth of 1300 m (Fig. 11). 

 

 
                                  (a)                                                                 (b) 
 
Fig. 6. (a) Kirchhoff migration: an image stack in the anisotropic model. (b) Beam 
migration: an image stack in the anisotropic model. 

 
 
Finally, at the last stage of processing, the developed beam migration 

algorithm was applied to these 3D real data. The 3D image stack and CIP 
gathers are presented on the Fig. 12a where all seismic interfaces are traced 
quite clearly, thanks to the good ratio signal/noise which can be achieved by 
target oriented massive summation of the data in the beam migration 
process. On the CIP gathers provided by Gaussian beam migration, seismic 
events are horizontal. Particularly, it means the anisotropy in the migration 
process is taken into account correctly (Fig. 12b), the section as a whole is 
quite resolved, and the seismic events are fairly focused. Fig. 13b represents 
the image stack obtained by the commercial Kirchhoff migration. Fig. 13a 
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presents the image stack that is got by beam imaging according to eqs. (17) 
and (18). From a comparison of images obtained in this way, it follows that 
the resolution of migration on Gaussian beams exceeds the resolution of 
Kirchhoff's migration, the seismic horizons in the image obtained by 
Gaussian beams are better traced than in the image obtained by Kirchhoff's 
migration (Fig. 13). Also, we compared the computational time of the 
developed beam imaging algorithm and commercial Kirchhoff migration. 
The image presented on the Fig. 12a were got for the area 300 km2 and the 
computational time was about 18 hours. The computational resources 
contain 10 nodes with 20 cores on each computation node. The computation 
time of Kirchhoff migration was about 16 hours on the same environment. 
So computational times are rather similar but the image quality of the beam 
migration is better.  

 

 
                       (a)                                                          (b) 
 

Fig. 7. a) Kirchhoff migration: CIGs in anisotropic model. b) Beam migration: CIGs in 
the anisotropic model. 
 
 
CONCLUSION AND DISCUSSION 

 
We developed three-dimensional anisotropic Gaussian-beam 

migration algorithms for irregular 3D/3C seismic data. We created three 
slightly different 3D beam imaging algorithms. Also, all three algorithms 
use: 
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1) Individual Gaussian beams instead of wave-field decomposition 
into Gaussian beams; 

2) Traces of the beams as weights for prestack data summation. 
 
The first one is a straightforward generalization of the 2D analog where: 
 

1) Gaussian beams are traced from the imaging point; 
2) Gaussian beams have an equal width at all imaging point; 
3) Imaging condition is implemented in terms of structural angles. 

 
 This procedure is supposed to be used as a target oriented imaging 
and object-oriented imaging where a high signal to noise ratio and spatial 
resolution are achieved. So we propose to use this procedure for imaging of 
small-scale heterogeneity i.e. for diffraction imaging where such properties 
are extremely important. 
   

The other algorithm is slight modification where: 
  
1) Gaussian beams are traced from the acquisition points; 
2) Gaussian beams have an equal width at all imaging points; 
3) Imaging condition is implemented in terms of acquisition 

coordinates. 
 

 
 
Fig. 8. Several common midpoint gathers of 3D seismic data from the Kara Sea. 
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Fig. 9. Midpoints and offsets coordinates after binning of the seismic data from the Kara 
Sea. a) position of midpoints after binning. b) and their zoom; c) d) e) offset coordinates 
for three different midpoints. 
 
 

 
 
Fig. 10. Migration model got by common image point tomography of 3D seismic data 
from the Kara Sea. a) P-velocity, anisotropic parameters. b) Thomsen parameter . c) 
Thomsen parameter . 

δ
ε
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Fig. 11. Depth profiles of the migration model at the point x = 0 y = 0. a) P-velocity, 
anisotropic parameters. b) Thomsen parameter . c) Thomsen parameter . 
 
 
 Such an algorithm is not object-oriented and it requires a 
transformation of recovered true amplitude function from acquisition 
coordinates to structural angles coordinates. But this way provides a high 
signal to noise ratio and spatial resolution still and faster realization in 
terms of beam tracing which is important for big 3D models and big 3D 
imaging area. 
  

The third algorithm is a slight modification of the second one where: 
1) Gaussian beams are traced from the acquisition points; 
2) Gaussian beams have an equal width at the acquisition points; 
3) Imaging condition is implemented in terms of the acquisition 

coordinates. 
 
 This way provides a good signal to noise ratio still and it gives much 
faster realization in terms of data summation with beams that is highly 
important for big 3D seismic data. In comparison with this algorithm 
(beams have equal width at the acquisition points) the second algorithm 
(beams have equal width at all imaging points) has better signal to noise 
ratio at the final image and therefore it can be used, for example, for 
imaging of rather noisy data or for diffraction imaging where signal to noise 
ratio plays a crucial role. Otherwise, the third algorithm (beams have an 

δ ε
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equal width at the acquisition points) provides good enough results that 
have similar quality with the second one (beams have an equal width at all 
imaging points). 
  

     
 

Fig. 12. Results of anisotropic Gaussian beam migration of 3D seismic data from the 
Kara Sea. a) 3D view of the deep migrated section. b) Common image point 
seismograms. 
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Fig. 13. Depth vertical sections of 3D images got by migration of 3D seismic data from 
the Kara Sea. a) Result of anisotropic Gaussian beam migration. b) Result of anisotropic 
Kirchhoff migration. 

 
 
All the algorithms can be applied to irregular data either in source-

receiver or midpoint-offset domains. The migration results for realistic 
synthetic and real data from the Siberia and from the Kara Sea clear proves 
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the advantages of the developed algorithms. The obtained stacked images 
and the CIGs are much cleaner and more coherent in comparison with the 
results of Kirchhoff migration. Consequently, the picking of the events on 
the common image seismograms should be more robust and hence the 
application of common image point (CIP) tomography should be more 
robust and they should make work of CIP tomography more sustainable, 
therefore the resulting tomographic models should be more correct. It 
should be noted that, in contrast to Kirchhoff migration, the beam imaging 
algorithm "chooses" the most coherent events from the data for each image 
point, therefore, the results in the beam case are less noisy and more 
coherent than the results of Kirchhoff migration. 
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