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ABSTRACT

Ma, Q.Q. and Sun, Z.D., 2019. Direct inversion of Young's modulus and Poisson's ratio
using exact Zoeppritz equations based on double constraints. Journal of Seismic
Exploration, 28: 175-204.

Young's modulus and Poisson's ratio are important elastic parameters that can be
derived from prestack seismic inversion and subsequently used to evaluate rock brittleness,
fluid discrimination, and predict sweet-spots for oil and gas production. Conventionally,
Young's modulus and Poisson's ratio are estimated indirectly from P-wave, S-wave, and
density data according to well-established petrophysical relationships or computed
directly from the approximate equations. However, the former approach can introduce
uncertainties in the calculation of Young's modulus and Poisson's ratio because of
accumulated biases and the difficulty of calculating density. The latter approach can also
generate uncertainties, because the inversion method based on the approximate equations
has poor performance with regards to utilizing far offset seismic amplitude information.
Therefore, the novel exact Zoeppritz equations are applied to obtain more stable and
accurate values of Young's modulus and Poisson's ratio. Firstly, a set of new forms of
exact equations in terms of Young's modulus reflectivity, Poisson's ratio reflectivity, and
density reflectivity are derived. Then, Bayesian theory and double constraints are
introduced to construct the objective function. The double constraints include the
Trivariate Cauchy distribution constraint and the modified low-frequency constraint. The
Trivariate Cauchy constraint can improve vertical resolution of inversion results. The
modified low-frequency constraint can obtain more reliable low-frequency information
without reducing the resolution of inversion results. The objective function is complicated.
The ideas of generalized linear inversion and the iterative reweighed least-squares
algorithm are applied to solve this function. Tests with synthetic data show that the
inverted Young’s modulus and Poisson’s ratio of the proposed method are still reasonable
in moderate noise condition. Tests with field data show that the inverted results agree well
with well-logging data.

KEYWORDS: Young's modulus, Poisson's ratio, generalized linear inversion,
exact Zoeppritz equations, Bayesian inversion, double constraints.

0963-0651/19/$5.00 © 2019 Geophysical Press Ltd.



176

INTRODUCTION

With the increasing demand for energy, the emphasis of oil and gas
exploration has shifted from conventional to unconventional oil and gas
resources (Sun et al., 2011). Methods of identifying potential hydrocarbon
accumulations from seismic data, known as quantitative interpretation, have
been popular since the 1970s and 80s, starting with bright-spot and
amplitude-versus-offset analysis (Castagna and Backus, 1993; Ostrander,
1984; Shuey, 1985). More recently, obtaining elastic parameters that can
reflect the lithology and fluid properties from stacked and pre-stack seismic
data has been a popular research area in exploration geophysics (Avseth et al.,
2005; Gidlow et al., 2003; Quakenbush et al., 2006). Brittleness index plays
an important role in unconventional oil and gas exploration (Yang et al.,
2015).

Estimating specific petrophysical parameters directly from pre-stack
data may result in greater physical insight than traditional parameters, like
P-wave velocity, S-wave velocity, and density. For example, reservoir
geophysicists proposed using brittle mineral content in rocks (Mavko, 2010;
Yang et al., 2015) and elastic parameters (Altindag, 2002; Guo et al., 2012;
Liu et al., 2015; Rickman et al., 2008) to construct brittleness evaluation
parameters. According to Liu et al. (2015), Ritesh et al. (2013), and Sena et al.
(2011) for example, Young's modulus and Poisson's ratio could be used to
evaluate brittleness index and hydrocarbon fluid discrimination, and predict
"sweet-spots" for oil and gas production. Ostrander (1984) showed that
high-porosity gas-bearing sandstones had anomalously low values of
Poisson's ratio. Conventionally, Young's modulus and Poisson's ratio are
calculated indirectly from P-wave, S-wave, and density data, which can be
calculated directly by pre-stack inversion (Sena et al., 2011). However, it is
difficult to estimate the density data and results are often unstable (Downton,
2005; Khare et al., 2007; Liu et al., 2012; Shi et al., 2010). Moreover, the
indirect calculation methods mentioned above can lead to cumulative bias
(Zong et al., 2012). Zong et al. (2012, 2013) derived a new approximate
equation based on Young's modulus and Poisson's ratio, and established an
elastic impedance inversion method for Young's modulus and Poisson's ratio.
However, all these studies were based on the approximate Zoeppritz
equations. These approximate equations satisfy the requirements of
small-to-moderate incident angles and weak reflection coefficients (Aki and
Richards, 1980; Jun et al., 2015). Therefore, using the approximate equations
to estimate Young's modulus and Poisson's ratio usually limits the accuracy of
inversion results in scenarios that do not meet these assumptions. In contrast,
utilizing the exact Zoeppritz equations can not only avoid the cumulative bias
introduced by approximate equations but can also directly and conveniently
invert the elastic parameters, which improves the accuracy and robustness of
inversion (Behura et al., 2010; Huang et al., 2015; Tarantola et al., 1986;
Zhou et al., 2017).

In this study, we propose a direct inversion method of Young's
modulus and Poisson's ratio, based on an exact formulation of the Zoeppritz
equations. It has the advantage of not using density data, thereby avoiding
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the accumulated errors of indirect methods, and being accurate in situations
of large incident angles or strong reflection coefficients. The next section will
explain the derivation of this novel method.

The forward operators of the exact Zoeppritz equations are complex
and nonlinear. Intelligent algorithms and GLI are usually used to solve
nonlinear problems (Zhou et al., 2017). Although many researchers have
studied intelligent algorithms (Bai et al., 2014; Priezzhev et al., 2008; Veeken
et al., 2009; Yang et al., 2008; Yuan et al., 2009; Zhang et al., 2007), they
have not been widely adopted because of their huge computational
complexity. Generalized linear inversion (GLI) is based on Taylor's series
expansions (Cooke et al., 1983). Theoretically, after several iterations, highly
accurate inversion results can be achieved. Researchers such as Kurt (2007),
Larsen et al. (1999), Li et al. (2010), Lu et al. (2015), Zhang et al. (2013), and
Zhou et al. (2016) have reported on improvements to the stability of the
method when inverting seismic data to obtain P-wave, S-wave, and density
parameters. However, the Jacobian matrix, which is the core of the GLI
calculation, is often a source of instability in the inversion due to an
excessively large conditional number. Therefore, it is necessary to add
appropriate regularization constraints to the objective function for improving
the stability of the inversion.

In Bayesian inversion, the posterior probability distributions of the
model parameters are generated by introducing the prior information of the
model parameters and the likelihood function of the noise. The minimum
value of the inversion objective function can be converted into the
maximization problem of the posterior probability distribution. Introducing
the prior information of model parameters as a regularization constraint of
inversion can effectively improve the ill-posed nature of the inversion
problem. The prior information of the model parameters can follow different
statistical distributions, depending upon the situation. Buland and Omre
(2003) created a linearized AVO inversion method based on the Bayesian
framework. Karimi et al. (2010) proposed a Bayesian closed-skew Gaussian
inversion method in which the posterior probability distribution obeyed a
skew probability density function. Downton et al. (2005) proposed that the
reflection coefficients obeyed three different types of long-tail distributions,
which improved the resolution of the inversion relative to the results of
Gaussian distributions. Considering the geological background, Alemie and
Sacchi (2011) introduced a Trivariate Cauchy prior distribution for
regularizing the ill-posed problem of AVO inversion. Compared with
univariate statistical distributions, this method considered the statistical
correlation among the three parameters, which increased the reliability and
accuracy of inversion results.

Relative acoustic impedance can be transformed into the absolute
impedance by merging reliable low-frequency model information (Cerney
and Bartel, 2007). This low-frequency information not only provides an
overall level to the data, it also increases the bandwidth and hence increases
the resolution and accuracy (Berkhout, 1997) of the inversion results. The
low-frequency information of seismic data is related to the seismic source and
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acquisition techniques. Presently, the lowest frequency of the low-frequency
vibrator is about 3 Hz (Tao et al., 2011), and the lowest frequency of the
geophone is about 2 Hz (Li et al., 2013). However, because of the huge cost
of low-frequency seismic data acquisition, conventional seismic acquisition
methods use 5 Hz for the source and 10 Hz for the receiver (Zhang et al.,
2015). That is, seismic data with frequency lower than 10 Hz is seriously
affected by noise. Moreover, surface wave suppression also affects the
low-frequency component. The prior distributions mentioned above are only
related to the vertical resolution of the inversion results; the low-frequency
component, cannot be obtained directly from the seismic data, thus other
constraints are required. Many studies have used a smoothing constraint to
improve the noise-reducing performance of the inversion and supplement the
low-frequency information of the inversion results (Tian et al., 2013; Zong et
al., 2012). Although the smoothing constraint term can supplement the
low-frequency component of the inversion results, selecting suitable weights
for the constraint terms can be difficult. Inappropriate weights may result in a
reduction of the resolution of the inversion results. Zhang et al. (2016)
introduced a soft low-frequency constraint, which can improve the robustness
and the adaptability of the inversion results.

Building on the previous studies, we propose and implement an
innovative technique for the direct extraction of the Young's modulus and
Poisson's ratio from pre-stack seismic data. To improve the accuracy of
inverting data with large angles of incidence, the method utilizes GLI based
on exact Zoeppritz equations to construct forward operators in terms of
Young’s modulus and Poisson’s ratio. Meanwhile, combining the Bayesian
theory, the Gaussian distribution is used for the likelihood function and the
Trivariate Cauchy distribution is used for the prior distribution of the model
parameters. In this way, the ill-posedness of the problem can be effectively
reduced. Then, we introduce a low-pass filter matrix to construct a
low-frequency constraint term. The modified low-frequency constraint term
can not only obtain stable low-frequency information but also does not reduce
the resolution or accuracy of the inversion results. Because the objective
function is nonlinear. The iterative reweighted least-squares algorithm is
applied for solving the optimization problem.

THEORY

Exact Zoeppritz equations expressed in terms of Young's modulus and
Poisson's ratio

To avoid the calculation error introduced by approximate equations, we
use the exact Zoeppritz equations to construct the AVO forward operators.
Knott (1899) and Zoeppritz (1919) derived the exact equations of the
reflection and transmission coefficients. These equations are functions of the
incident angles and elastic parameters of the medium. The exact Zoeppritz
equations assume that two solid half-spaces are welded at an elastic interface.
In this paper, we denote the P-wave velocity, S-wave velocity, and density of
the upper half-space by Vp1, Vs1 and 1 , respectively; Vp2, Vs2 and 2 denote
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the same for the lower half-space, respectively. Using the exact Zoeppritz
equations, reflection and transmission coefficients of P-wave and S-wave (Rpp,
RPS, TPP, TPS) can be described.
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where a and b represent the P-wave incident angle and the S-wave reflected
angle at the interface, respectively, and a' and b' denote the P-wave
transmitted angle and S-wave transmitted angle, respectively.

The classical exact Zoeppritz equations are shown in eq. (1). With
some parameter substitutions, the classical exact equations can be expressed
as new forms of exact equations in terms of Young's modulus reflectivity,
Poisson's ratio reflectivity, and density reflectivity. First, the coefficient
matrix of eq. (1) can be modified and expressed as a function of P-wave
velocity reflectivity, S-wave velocity reflectivity, density reflectivity, and
Vp1/Vs1.

' '

' '

2 ' '

2

' '

sin cos sin cos
cos sin cos sin

(2 ) (2 )(2 )sin 2 (2 )(2 ) cos 2sin 2 cos 2
(2 ) (2 )(2 ) (2 )(2 )

(2 )(2 )cos 2 (2 )(2 )sin 2sin 2cos 2
(2 )(2 ) (2

vs d vp vs d

vs d vp vs d

vp d vs d

vp d

a b a b
a b a b

R R R a R R ba b
R R R R R

R R b R R bbb
R R R









    


    

   
  

  

sin
cos
sin 2
cos 2

)(2 )

pp

ps

pp

ps

vs d

R a
R a
T a
T b

R 

 
 

    
    
     
    
          

  

(2)

where

Rvp is the P-wave velocity reflectivity

 2 1

2 1

2 p pp
vp

p pp

V VV
R

V VV


 



Rvs is the S-wave velocity reflectivity
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To obtain different elastic parameters more directly and conveniently,
many studies have proposed different approximate equation of the exact
Zoeppritz equations. Zong et al. (2013) established the relationships among
the P-wave modulus reflectivity RM, S-wave modulus reflectivity R ,
density reflectivity, Young’s modulus reflectivity RE, and Poisson’s ratio
reflectivity R , which can be written as
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where Young's modulus and Poisson's ratio of the upper half-space are
denoted by 1E and 1 , respectively, and E2 and  2 denote the Young's
modulus and Poisson's ratio of the lower half-space, respectively; sV is the
average S-wave velocity of the upper and lower media, and pV is the
average P-wave velocity of the upper and lower media.

By differential transformation, the relationships among P-wave
modulus, S-wave modulus, P-wave velocity, S-wave velocity, and density
reflectivity can be shown as
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Substituting eqs. (3)  (9) into eq. (2), a new form of the Zoeppritz
equations in terms of Young's modulus reflectivity, Poisson's ratio reflectivity,
and density reflectivity can be expressed as
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Table 1. Fundamental parameters for four classes of AVO anomalies used in synthetic
modelling to test our new formulation of the exact Zoeppritz equations.

AVO type Lithology Vpm/s Vsm/s Density kg/m3

Class I Shale 3095 1515 2400
Gas-bearing
sand

4050 2524 2210

Class II Shale 2645 1170 2290
Gas-bearing
sand

2780 1665 2080

Class III Shale 2190 820 2160
Gas-bearing
sand

1600 900 1980

Class IV Shale 3240 1620 2340
Gas-bearing
sand

1650 1090 2070
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To compare the accuracy of the new equation with that of the
approximate equation of Zong et al. (2013) based on Young's modulus and
Poisson's ratio, we conduct a quantitative analysis of four classes of AVO
anomalies (Castagna et al., 1997) for a gas-sand overlain by shale. The
fundamental parameters of four classes of AVO anomalies are listed in Table
1. Class I is a gas-bearing sand with a higher impedance than the overlying
shale. For Class II, the gas-bearing sand has similar impedance to that of the
overlying unit. A Class III gas-bearing sand has lower impedance than the
overlying shale. As the incident angles become larger, the absolute values of
the reflection coefficients become larger. Class IV is similar to Class III:
although, for Class IV, as the incident angles become larger, the absolute
values of the reflection coefficients become smaller over small-to-moderate
angles. We compare the reflection coefficients estimated from the new exact
equations (named “new-method” in Fig. 1), the approximate equations of
Zong's (2013) (named “YPD” in Fig. 1), and the classical exact equations
(named “Zoeppritz” in Fig. 1). The specific formula of “YPD” is

2
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More specifically, Figs. 1a, b, c, and d show the reflection coefficients
estimated from the three methods in different kinds of AVO models (Class I,
Class II, Class III, and Class IV), respectively. It can be seen from Fig. 1 that
the reflection coefficients of the new exact equations are almost identical to
those of the classical exact equations; however, the reflection coefficients of
the approximate equations are somewhat different. These differences are
particularly noticeable in the situation of large incident angles, which is to be
expected as the validity of most approximations is typically limited to angles
of 30 or 40°.

For eq. (10),  can be obtained from initial models. Rpp, the P-wave
reflection coefficient, can be estimated by a nonlinear function [eq. (10)] in
terms of RE, R , and Rd. In our study, these three reflection coefficients are
taken as the model parameters to be inverted. Considering the computational
complexity, speed of convergence, and the accuracy of convergence, we
adopt a GLI to solve the problem. We obtain the forward function:

D = GM , (11)

where D' can be obtained from the observed seismic data and the initial
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models, G is the forward operator, and M is the model parameter; the
specific expressions are given in Appendix A. In this study, the initial models
are generated by extracting the low-frequency data from well-log data. The
model parameters can be inverted directly by eq. (11). However, G of eq.
(11) has a large condition number, which produces the ill-posed problem.
Therefore, it is necessary to introduce the prior distribution of the model
parameters’ reflection coefficients, according to Bayes' theorem, as a
regularization term to make the inversion problem well-conditioned.

(a) (b)

(c) (d)

Fig. 1. Comparison of reflection coefficients of the classical exact equations, the
approximate equations, and the new exact equations for four classes of AVO anomalies
with incident angles from 1 to 90 degrees. (a) AVO Class I; (b) AVO Class II; (c) AVO
Class III; (d) AVO Class IV; in all cases the red lines indicate the classical exact equations,
the black lines indicate the approximate equations (YPD), and the blue dotted lines
indicate the new exact equations.
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Objective function

Bayes' theorem can improve the inverted accuracy of elastic
parameters by introducing prior information, which can effectively reduce
the variance in the statistical distribution of the parameters. Assuming that
the elastic parameters of the subsurface medium are in accord with the prior
distribution, P(M), where M represents the model parameter. The noise
information for the pre-stack seismic gathers can be obtained by comparison
of observed and synthetic seismic data. The noise likelihood function can be
written as ( )P D' M . Since the distribution of observed seismic data is only
determined by the distribution of the noise, ( )P D' M also expresses the
posterior probability density function of observed seismic data, D' . So, the
posterior probability density function of the model parameter ( )P D'M can
be expressed as

( )( ) ( )P P PD' D' MM M . (12)

From eq. (12), we know that the posterior probability density function
of the model parameters is proportional to the product of the prior
distribution of model parameters and the noise likelihood function. The main
idea of Bayesian inversion is to determine the distribution of elastic
parameters of subsurface media by estimating the maximum value of the
posterior probability density function of the model parameters. Assuming
that the regular noise such as multiple waves and converted waves in the
pre-stack gathers has been removed, leaving only random noise n
( n=D'-GM ), we can assume that the noise likelihood function obeys a
Gaussian distribution:
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2( ) ) 1((2 ) exp

2
MN TP      

 
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where the matrix 2
nnC I represents the covariance matrix of the noise,

2
n denotes the variance of the noise, and I is an MN MN dimensional

identity matrix.

The prior information reflects the statistical characteristics of the model
parameters. The prior distributions of the model parameters can be assumed
to have different statistical distributions (Gaussian probability distribution,
Cauchy probability distribution, Huber probability distribution, etc.) and thus
different inversion results can be obtained. Commonly, the prior distributions
of model parameters can be divided into univariate and multivariate
statistical distributions. However, when using a univariate statistical
distribution as a prior constraint on model parameters, it is a necessary
condition that the model parameters are independent of one another within
the same sample. The multivariate group of statistical distributions includes
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the multivariate Gaussian and the Trivariate Cauchy probability distributions.
The multivariate Gaussian probability distribution provides a correlated AVO
solution by introducing a covariance matrix of the three-term reflection
coefficients. However, the Gaussian distribution can only generate constant
weighting coefficients. In other words, it generates equal weighting
coefficients for each reflection coefficient, so that the larger reflection
coefficients cannot be emphasized and sparse solutions cannot be produced.
In contrast, the Cauchy distribution can generate non-uniform weighting
coefficients for each reflection coefficient during the inversion process,
which can highlight large reflection coefficients and produce sparse solutions.
Therefore, utilizing the Cauchy distribution as a prior constraint in the
regularization term can generate sparse solutions, which can improve the
resolution of the inverted results. The Trivariate Cauchy probability
distribution is a special case of the multivariate t-distribution, which has
three variables and one degree of freedom. The Trivariate Cauchy probability
distribution of prior constraint can not only generate correlated AVO
solutions, but can also provide sparse solutions. It is given by the following
expression:
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where ψ is a correlation matrix that can be estimated using the expectation
maximization algorithm of Alemie and Sacchi (2011), and iD is a 3 3N N
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Substituting the likelihood distribution in eq. (13) and the prior
distribution in eq. (14) into eq. (12), we obtain a formula such as the one
shown below:
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By taking the logarithm of both sides of eq. (16), and carrying out some
algebraic operations, the problem of estimating the maximum value of the
posterior probability density function is transformed into minimizing the
following equation:
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The first term on the right side of eq. (17) mainly controls the accuracy
of inversion results; the second term on the right side of eq. (17) mainly
controls the sparsity of inversion results; and 22 n  controls the weight of
the prior distribution constraint of inversion. When  is larger, the sparsity of
the inversion results is higher. If the value of  is too small, the accuracy of
the inversion results will be degraded (Rabben and Ursin, 2000).

However, due to the noise, a single sparse-spike constraint is not
sufficient to ensure the stability of the inversion results. By introducing a
low-frequency constraint, the robustness of the inversion results can be
improved. Conventionally, in many studies, a smoothing constraint is
introduced for the low-frequency constraint. This smoothing constraint term
S can be rewritten as

( ) ( )

( ) ( ) ( ) ( )

T
E

T T
d



 

  

   
E E E E

σ σ σ σ d d d d

S P M L P M L

P M L P M L P M -L P M -L ,
(18)

where E ,  , and d are the weighting coefficients of the smoothing
constraint for the Young's modulus, Poisson's ratio, and density reflectivity,
respectively. EP , σP , and dP compose the integral matrices; taking EP as
an example, it can be expressed as

, (19)

and EL , σL , and dL are low-frequency components of the natural
logarithm of the initial elastic parameters, which can be obtained from
well-log data. Taking EL as an example, it can be expressed as

, (20)
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where E is the Young's modulus. Eq. (18) shows the minimum L2-norm of
the differences between the natural logarithm of the inversion results and
low-frequency components of the natural logarithm of the initial models. The
inversion results approach the low-frequency components of the initial
models to ensure that the inversion results have the correct low-frequency.
However, this method may result in a reduction of the resolution of the
inversion results. Therefore, we introduce a low-pass filter matrix iH ( i E ,
 , and d ) to construct low-frequency constraints, and the specific
expressions of low-pass filter matrices are given in Appendix C. Hence, the
modified low-frequency constraint can be written as

' ( ) ( )
( ) ( ) ( ) ( )

T
E

T T
d



 

  

   
E E E E E E

σ σ σ σ σ σ d d d d d d

S H P M L H P M L
H P M L H P M L H P M-L H P M -L (21)

Eq. (21) shows the minimum L2-norm of the differences between the
low-frequency components of the natural logarithm of the inversion results
and the low-frequency components of the natural logarithm of the initial
models. The low-frequency components of the inversion results approach the
low-frequency components of the initial models. Therefore, the modified
low-frequency constraint does not affect the medium-frequency and
high-frequency components of the inversion results. The modified
low-frequency constraint can not only obtain reliable low-frequency
components, but also does not reduce the resolution or accuracy of the
inversion results. Then, the final objective function can be obtained as

1

1'( ) ( ) ( ) ln(1 )
2

N
T

i
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

      T
iM D' GM D' GM MΦM S'

, (22)

Because eq. (22) is nonlinear, we use an iterative reweighted least-squares
algorithm to solve the nonlinear expression. After obtaining the inversion
results of the three-term reflectivity ( ER , σR , and dR ), the values of
three-term elastic parameters ( E , σ , and ρ ) can be obtained by using the
integral method, and it can be written as
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APPLICATIONS

Synthetic data test

The proposed method is applied to synthetic data derived from real model
data (Fig. 2) for testing the superiority and the noise suppression of this
inversion method. Based on the exact Zoeppritz equations, we use the elastic
parameters given in Fig. 2 to calculate the P-wave reflection coefficients at
different incident angles (from 10° to 50° with 10° intervals).

The synthetic seismogram shown in Fig. 3(a) is generated by a
convolution of the calculated P-wave reflection coefficients with a Ricker
wavelet whose dominant frequency is 35 Hz. To test the noise suppression of
the proposed inversion method, we add random Gaussian noise to the
synthetic data, with different signal-to-noise ratios (S/N): S/Ns of 10, 5, and
2 as represented in Figs. 3(b)–(d), respectively.

Fig. 4 shows that different low-frequency constraints can produce
different inversion results. Figs. 4(a) and (b) represent the inversion results of
modified low-frequency constraints and conventional low-frequency
constraints, respectively, which apply the same prior Trivariate Cauchy
constraint to the model parameters. The forward operators are based on
approximate equations with an S/N of 5. Fig. 4(c) shows the error of the
inversion results based on different low-frequency constraints. The accuracy
of inversion results using the modified low-frequency constraints is higher
than that of the conventional low-frequency constraints. In practice, the
selection of the weighting coefficients of the conventional low-frequency
constraint is usually based on the experience of the data processors who try
to achieve the best inversion results by iteratively modifying the weighting
coefficients. The conventional low-frequency constraint is very sensitive to
the weighting coefficients, which can be subjective. However, the modified
low-frequency constraint is relatively insensitive to the weighting
coefficients and can improve the resolution and accuracy of the inversion
results. Thus, it is preferable to use the modified low-frequency constraint in
this context.

Figs. 5(a)  (h) illustrate the real (red line), initial (green line), and
inverted (blue dotted line) Young's modulus, Poisson's ratio, and density
curves. The inverted curves are the inversion results of the novel method
proposed in this paper and the conventional method, with different S/Ns. The
conventional method mentioned above is based on the approximate equations
(Zong et al., 2013). We convert real logging data from logging scale to
seismic scale using a Backus average (Backus and Gilbert, 1968, 1970) to
obtain the real data. The initial model parameters are generated by smoothing
the real model data. Fig. 5(a) displays the inversion results of the novel
method based on the new exact equations and Fig. 5(b) presents the
inversion results of the conventional method based on the approximate
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equations. From Figs. 5(a) and (b), we find that the inversion results obtained
by the conventional method are generally similar to the real data, but the
results obtained by the new method are more accurate than those of
conventional method, especially for Poisson's ratio and density. To test the
stability of the new method, we add different degrees of noise to the
pre-stack angle gathers. From Figs. 5(c) to 5(h), we can observe that the
introduced noise has a great impact on the inversion results. As the noise
increases, the error in the inverted elastic parameters also increases. However,
for a given noise level, the inversion results of the new method proposed in
this paper are more consistent with the actual data than the inverted results
obtained using the conventional method.

Fig. 2. Real model data (red line) and initial model data (green line).
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(a) (b)

(c) (d)

Fig. 3. Synthetic angle gathers with different S/Ns of known real data. (a) noise-free,
(b) S/N = 10, (c) S/N = 5, (d) S/N = 2.
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(a) (b)

(c)

Fig. 4. Comparison of inversion results of different low-frequency constraints based on
the approximate equations with an S/N of 5. (a) Inversion results with modified
low-frequency constraints; (b) inversion results based on the conventional low-frequency
constraints; (c) error traces for the inverted data: the red lines are the error traces of the
inverted results based on the modified low-frequency constraints, and the blue lines are
the error traces of the inversion results based on the conventional low-frequency
constraints.
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(a) (b)

(c) (d)

Fig. 5. Comparison of inversion results between the novel method and the conventional
method with different S/Ns. (a) Inversion results based on the novel method with no noise;
(b) inversion results based on the conventional method with no noise; (c) inversion results
based on the novel method with an S/N of 10; (d) inversion results based on the
conventional method with an S/N of 10:1.
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(e) (f )

(g) (h)

Fig. 5. Comparison of inversion results between the novel method and the conventional
method with different S/Ns. (e) inversion results based on the novel method with an S/N
of 5; (f ) inversion results based on the conventional method with an S/N of 5; (g)
inversion results based on the novel method with an S/N of 2; (h) inversion results based
on the conventional method with an S/N of 2:1. In all plots, the red lines represent the real
model parameters, the blue dotted lines are the inversion results, and the green lines
indicate the initial model parameters.
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Field data test

Next, the new inversion method mentioned above is applied to field data.
To ensure that the final pre-stack information is as close as possible to the
real subsurface information, the seismic data were processed by a series of
amplitude-preserving procedures. Fig. 6 displays the seismic stack section,
which is produced from the effective angle gathers (range of 4°–46°). The
black line in Fig. 6 represents the trajectory of the known well. Based on the
petrophysical analysis of the field data, we know that high-quality reservoirs
are indicated by high Young's modulus, low Poisson's ratio, and low density
in the target area. Using the logging data and geologic horizons, we can
define initial models.

Fig. 6. Stacked seismic section from the field data used in the comparison. The black
dotted ellipse represents the target reservoir.

Then, we used the conventional method and the proposed new method
separately to invert the elastic parameters of the field data. The inverted
Young's modulus, Poisson's ratio, and density sections based on the
conventional method and proposed new methods are shown in Figs. 7 and 8,
respectively. It is clear that the inversion results of the new method are better
than those of the conventional method; the resolution of the results is also
improved. To further compare the inverted parameters of the two methods,
we extracted pseudo curves from the inverted results. The comparison of the
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real logging curves and the pseudo curves is shown in Fig. 8. In Fig. 9, red
lines indicate real logging curves, which are processed by a Backus average,
the green lines present the pseudo curves of inverted results based on the
conventional method, and the blue lines represent pseudo curves of inverted
results based on the proposed method. In contrast, the inversion results
obtained by the proposed method are closer to the true values than those
obtained by the conventional method. Table 2 shows the correlation
coefficients between the logging curves and pseudo curves of the
conventional and proposed inversions. The inversion results of the new
method are better-correlated with the real data. Therefore, it can be
concluded that the method we propose is more stable and more consistent
with the logged wireline data than the conventional method.

(a) (b)

(c)

Fig. 7. Inverted seismic sections based on the conventional method. (a) profile of the
inverted Young’s modulus; (b) profile of the inverted Poisson’s ratio; (c) profile of the
inverted density.
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(a) (b)

(c)

Fig. 8. Inverted seismic sections based on the novel method. (a) Profile of the inverted
Young’s modulus; (b) profile of the inverted Poisson’s ratio; (c) profile of the inverted
density.

Table 2. Correlation coefficients between the real logging curves and the pseudo curves of
the inversion results.

Method Young’s modulus Poisson’s ratio Density

Proposed method 0.9653 0.9619 0.8565

Conventional
method

0.9081 0.9012 0.7343
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Fig. 9. Comparison of well-log curves in the time domain and the inverted results at the
well location. The red lines indicate the real well-log data, the blue lines indicate the
inversion results based on the method proposed in this paper, and the green lines indicate
the inversion results based on the conventional method.

CONCLUSIONS

This study derived a set of novel exact Zoeppritz equations in terms of
reflectivities defined as functions of Young's modulus, Poisson's ratio, and
density in order to allow direct inversion for these parameters. Direct
inversion can reduce the cumulative deviation more than conventional
indirect inversion. The exact Zoeppritz equations were used to construct the
forward operators to avoid the calculation error inherent in approximate
equations, especially in the case of large angles of incidence.

The ill-conditioned inversion problem that results from the excessively
large conditional number of the Jacobian matrix can be reduced effectively
by incorporating Bayesian theory and introducing the prior distribution of the
model parameters as a constraint in the inversion. This paper utilizes the
Trivariate Cauchy probability distribution as a prior distribution to improve
both the stability and the vertical resolution of the inversion. Furthermore,
this study introduced a low-pass filter matrix to construct a low-frequency
constraint term to obtain stable low-frequency information. The modified
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low-frequency constraint does not reduce the vertical resolution or the
accuracy of the inversion results, unlike the conventional low-frequency
constraint.

Optimization of the objective function is achieved by utilizing the idea of
the GLI and an iterative reweighted least-squares algorithm. With the help of
these techniques, the accuracy and robustness of the inversion can be
improved. Tests on both synthetic and field data illustrate that the proposed
inversion method based on the new exact equations and the double
constraints can obtain more stable and accurate values for Young's modulus,
Poisson's ratio, and density than the conventional method.
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APPENDIXA

The complex nonlinear problem can be simplified by Taylor's first-order
expansion of the P-wave reflection coefficient, Rpp, in terms of the initial
P-wave reflection coefficient Rpp0; hence, we obtain the following function:

0 0 0
0

pp pp pp
pp pp E d

E d

R R R
R R R R R

R R R


  
  

   
   , (A-1)

where ppR is the actual observed reflection coefficient of P-wave, 0ppR is the
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P-wave reflection coefficient calculated from the initial model parameters of

Poisson's ratio reflectivity 0R , Young's modulus reflectivity 0ER , and

density reflectivity 0dR . 0pp

E

R

R




, 0ppR

R
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
, and 0pp

d

R

R




represent the first-order

partial derivatives of 0ppR with respect to ER , R , and dR , respectively; the

specific expressions are given in Appendix B. On the basis of the

convolutional model, the wavelet  is introduced on both sides of the eq.

(A-1), yielding

0d d g m  , (A-2)

where

ppd R   , 00 ppd R   ,

and
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TR R Rm    

.

Additionally, d represents the observed seismic data, 0d is the
synthetic seismic data obtained from initial models, m denotes the
perturbations of the model parameters. Clearly, m can be calculated by
eq. (11); however, the prior distribution of m is unknown. If m is used
as the inversion parameter, the constraints of inversion cannot be constructed.
The prior distribution of [ , , ]E d

TR R Rm  can be defined, thus we select m
as the inversion model parameter. By adding gm0 simultaneously to both
sides of eq. (A-2), the inversion parameter is converted from m to m:

0 0d d gm gm   . (A-3)

If we consider M angles and N samples per trace, eq. (A-3) will be
written as

0 0D-D +GM = GM , (A-4)

where
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Additionally, i is the M-th incident angle, and Nt is the N-th sample
of the seismic trace. ( )iW θ represents the extracted seismic wavelet matrix
with the incident angle i . ( )iEG θ , ( )iσG θ , and ( )idG θ represent the
diagonal matrices of the first-order partial derivatives of Rpp0 with respect to

ER , R , and dR , respectively. We take ( )iEG θ as an example, where

1

2

0

0

0

0 0

0 0
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0 0
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i

i
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R

R

R








 





 
 
 
 
 
 
 
 
 
 
 
  







EG θ





   


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M0 represents the matrix of the initial model parameters; taking RE0 as an
example, it can be expressed as

0 1 0 2 0 1[ , , ... ]( ) ( , ) ( , ) ( , ) T
i E i E i E i N NR R Rt t t   E0R θ

M represents the matrix of the model parameters; taking RE as an example,
it can be expressed as

1 2 1[ , , ... ]( ) ( , ) ( , ) ( , ) T
i E i E i E i N NR R Rt t t   ER θ

To simplify eq. (A-4), it can be written as

 0 0D = D - D +GM = GM . (A-5)

APPENDIX B

The new exact equations in terms of the Young's modulus , Poisson's
ratio and density reflectivities can be expressed as

' '

' '

2 ' '

2

' '

sin cos sin cos
cos sin cos sin

(2 ) (2 )(2 )sin 2 (2 )(2 ) cos 2sin 2 cos 2
(2 ) (2 )(2 ) (2 )(2 )

sin 2 (2 )(2 )cos 2 (2 )(2 )sin 2cos 2
(2 )(2 ) (2 )(2 )

a b a b
a b a b

A C B a A C ba b
A C B A C

b B C b A C bb
B C A C



 

 
  
     

 
     

       
    

sin
cos
sin 2
cos 2

pp

ps

pp

ps

R a
R a
T a
T b

   
   
   
   
       



(B-1)

where
2 (3 2)1 ( )

2
( 2)

(3 4)E d
kA R R Rk

k k 


 


 ,

1 ( )
2

2
3 4E dB kR R R
k   

 ,

and dC R .

For convenience, eq. (B-1) can be written as follows:

ZR = C (B-2)
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where Z is the coefficient matrix of eq. (B-1), R represents the reflection
coefficient and the transmission coefficient terms of eq. (B-1), and C
denotes the constant term on the right side of eq. (B-1). Then, by taking the
first derivative of eq. (B-2) with respect to ER , R  , dR , we can obtain the
following expressions:

1

E ER R
 


 
R Z= Z R , 1

R R 

 


 
R Z= Z R , 1

d dR R
 


 
R Z= Z R

,
(B-3)

By solving eq. (B-3), the first-order partial derivatives of the P-wave
reflection coefficients with respect to ER , R , and dR can be obtained.

APPENDIX C

The specific expression of the low-pass filter matrix H of the
low-frequency constraint can be written as

1T H =K F ΛFK
..

(C-1)

In eq. (C-1), the matrix K plays the role of extending the model
parameters by 3 times. The mathematical expression of the K matrix is

(C-2)

F and F-1 are the positive and inverse transform matrices of a discrete Fourier
transformation (DFT), respectively, they can provide a Fourier transform and
a Fourier inverse transform of the data. The Λ matrix in eq. (C-1) is a
diagonal matrix composed of Hanning window functions.


