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ABSTRACT 

 
Xiao, J.E., Li, Z.C., Zhang, K. and Liu, Q., 2019. Converted wave reverse time migration 
with Gaussian beams in VTI media. Journal of Seismic Exploration, 28: 205-220. 
 

With the development of seismic data acquisition technology, more and more 
multi-component seismic data are being acquired. Owing to the slow propagation velocity 
and wide propagation angle, the converted PS-wave contains more accurate subsurface 
information, which make it play an important role in multi-component seismic 
exploration. Compared with the P-wave, the converted PS-wave is more sensitive to the 
anisotropy, which cannot be neglected during the seismic migration. Reverse time 
migration with Gaussian beams combines the high calculation efficiency of Gaussian 
beam migration and the high imaging accuracy of reverse time migration, which can be 
used for the converted PS-wave imaging. In this paper, we derive the converted PS-wave 
ray tracing equations based on phase velocity and present the imaging condition of 
converted PS-wave, then we propose a converted wave reverse time migration with 
Gaussian beams method for VTI media. The numerical tests on anisotropic models 
demonstrate the effectiveness and applicability of the proposed method. 
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INTRODUCTION 
 

In recent years, the exploration target has been gradually turned to 
multi-component seismic exploration with the development of seismic data 
acquisition technology. The multi-component exploration technology also 
has been developed rapidly, especially the converted PS-wave technology. 
The anisotropy widely exists in subsurface media. The use of traditional 
isotropic migration methods to process the seismic data of anisotropic areas 
will lead to the problems such as the inability to locate reflected waves 
accurately, the incomplete convergence of diffraction waves and the lack of 
energy focus, which will adversely affect the migration velocity analysis and 
reservoir prediction. The converted PS-wave is typically more affected by 
the anisotropy compared with the P-wave. It is necessary to develop a 
converted PS-wave imaging method applicable to anisotropic media. 

 
The current converted wave imaging methods can be divided into three 

categories: (a) the common converted point (referred to as CCP) horizontal 
stacking method (Tessmer G et al., 1990; Ma, 1995); (b) converted PS-wave 
dip-moveout correction (DMO) (Rooijen, 1991; Alfaraj and Larner, 1992); 
(c) converted PS-wave pre-stack migration technology. With the increasing 
complexity of exploration targets, the CCP and DMO methods could no 
longer meet the exploration requirements of complex structural exploration 
areas. The pre-stack migration consists of pre-stack time migration (Wang et 
al., 2002; Dai and Li, 2006; Li et al., 2007) and pre-stack depth migration. 
As a key imaging technology for the areas with strong lateral velocity 
change and complex structures, the pre-stack depth migration methods have 
gradually become the research hotspots. The pre-stack depth migration 
methods can be further divided into the ray methods and the wave-equation 
methods. 

  
The ray methods are characterized by the high efficiency and flexibility. 

As an improved ray method, Gaussian beam migration not only inherits the 
flexibility and efficiency of Kirchhoff migration (Hill, 1990, 2001; Nowack 
et al., 2003; Gray, 2005; Gray and Bleistein, 2009), but also overcomes the 
inherent defects of Kirchhoff migration, such as caustics, shadows, and 
multiple arrivals (Yue, 2011). Alkihalifah (1995) extended the poststack 
Gaussian beam migration to anisotropic media by deriving the anisotropic 
kinematic and dynamic ray tracing equations. Zhu et al. (2005, 2007) 
implemented the anisotropic prestack Gaussian beam migration by 
redefining the anisotropic kinematic and dynamic ray tracing equations 
based on phase velocity. Han et al. (2014) proposed a Gaussian beam 
prestack depth migration of converted PS-wave in TI media by introducing 
the anisotropic ray tracing systems based on elastic parameters. 

 
The wave-equation methods consist of the methods based on one-way 

wave equation (Yu et al., 2007; Sun et al., 2010) and the methods based on 
two-way wave equation (referred to as reverse time migration) (Baysal et al., 
1983; Guitton et al., 2006). The methods based on one-way wave equation 
have a higher imaging accuracy than that of the ray methods, but they cannot 
deal with the imaging problems of steeply inclined structures. Reverse time 
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migration implements the backward continuation of seismic wavefields in 
the time direction, then the imaging results are obtained by the 
cross-correlation of forward and backward continuation wavefields. It 
overcomes the limit of steep dips, but it has a higher requirement for velocity 
field and computer hardware. 

 
Based on Kirchhoff integral, Popov et al. (2010) proposed a reverse time 

migration algorithm that adopted the weighted superposition of Gaussian 
beams to construct the Green function. Huang et al. (2014) used the Green 
function represented by Gaussian beams to implement the forward and 
backward continuation of seismic wavefields, then realized the reverse time 
migration with Gaussian beams. Zhang et al. (2015) presented an 
angle-domain reverse time migration with Gaussian beams in VTI media by 
introducing the anisotropic ray tracing equations based on elastic parameters. 
Bi et al. (2015) realized the elastic reverse time migration with Gaussian 
beams that combined the high imaging accuracy of elastic wave reverse time 
migration and the high computational speed of elastic Gaussian beam 
migration. 

 
In this paper, we present a converted wave reverse time migration with 

Gaussian beams method for VTI media. We develop an anisotropic 
converted PS-wave ray tracing algorithm: the P-wave ray tracing equation 
and SV-wave ray tracing equation are used at source and receiver, 
respectively. Then we construct the Green function by the elastic wave 
Gaussian beams, finally the imaging results are obtained by the 
cross-correlation of forward and backward continuation wavefields. The 
numerical tests on anisotropic models demonstrate the effectiveness and 
applicability of the proposed method. The algorithm proposed by this paper 
is more concise and has a higher computational efficiency than the 
anisotropic algorithm based on elastic parameters. 

 
 

THEORY 
 
Anisotropic converted wave ray tracing based on phase velocity 

 
The path and traveltime of the central ray are obtained by the kinematic 

ray tracing, while the dynamic parameters P and Q are calculated by 
dynamic ray tracing. 

  
Kinematic ray tracing 

 
Červený (1972) presented the anisotropic kinematic ray tracing 

equation based on elastic parameters, but the computational efficiency was 
relatively low and the eigenvalues needed to be calculated at each step of ray 
tracing. To solve these problems, Zhu et al. (2005, 2007) redefined the 
anisotropic kinematic ray tracing equation based on phase velocity. Here we 
generalize it to the converted PS-wave ray tracing in anisotropic media, 
which can be expressed as follows: 
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where VPi and VSi are the group velocities of P-wave and SV-wave, 
respectively. vP and vS are the phase velocities of P-wave and SV-wave, 
respectively, they take the form: 
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where ε  and δ  are the Thomsen (1986) anisotropic parameters, vP0 and vS0 are the vertical velocities of P-wave and SV-wave, θ  is the angle of 
phase velocity, σ  takes the form:  

          
2
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v
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Dynamic ray tracing 

 
The ray center coordinate system was no longer orthogonal in 

anisotropic media, and a weight variable along the ray path needed to be 
introduced to eliminate the impact of this non-orthogonality. Hanyga (1986) 
gave the anisotropic dynamic ray tracing equation based on the elastic 
parameters. But they were too complicated to calculate and the weak 
anisotropic parameters of the subsurface media should be specified. Zhu et al. 
(2005, 2007) derived the anisotropic dynamic ray tracing equation based on 
phase velocity. For anisotropic converted PS-wave ray tracing, it takes the 
form: 
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where P and Q are the dynamic ray tracing parameters, , , ,MN MN MN MNA B C D  
are the correlation coefficients, which can be expressed as: 
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where yM and yN are the coordinates of the ray center coordinate system,  

  M
M

q y
τ∂= ∂ . 

 
 
The continuation of seismic wavefields  

 
Fig. 1 displays the 2D ray center coordinate system. n and t are the two 

base vectors of the coordinate system. n is the unit vector that is 
perpendicular to the ray and points to the same side of the ray. t is the unit 
vector tangent to the ray.  

 
Fig. 1. 2D ray center coordinate system. 
 

According to the solution of 2D parabolic wave equation (Babic, 1980; 
Červený, 1982), the Gaussian beam displacement formulas of P-wave and 
SV-wave take the form: 
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where ( , , , )p s n tωu  and ( , , , )sv s n tωu  are the displacements of P-wave and 
SV-wave, respectively,  pΨ  and svΨ  are the weighting coefficients. ( )p s  
and ( )q s  are the dynamic ray tracing parameters, ( )pv s  and ( )svv s  are the 
velocities of P-wave and SV-wave, respectively, ( )sρ  is the density. 
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The displacement vector ( ; ; )m sU ωx x  aroused by the source point sx  
can be obtained by the superposition of elastic Gaussian beams that exits 
from sx  with different emergence angles, which can be written as: 

 
( )( ; ; ) ( ; ; ),
( )

n n nx s
m s m s

z s

dpU u
p

ω ω≈ Ψ ∫
xx x x x
x                     (7) 

 
where ( )x sp x and ( )spz x are the horizontal and vertical components of the 
initial ray parameter, ( ; ; )m su ωx x  is the Gaussian beam wavefield of P-wave 
or SV-wave, n represents P-wave or SV-wave, nΨ  is the weighting 
coefficient, it takes the form: 
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where ( )n

sv x  is the velocity of P-wave or SV-wave, w0  is the initial width 
of the Gaussian beam, rω  is the reference frequency. 
 

Pao (1976) derived the elastic wave Kirchhoff-Helmholtz integral 
equation of isotropic media. After neglecting the physical term, we can 
obtain the backward continuation elastic wave displacement vector 
wavefield at time 0t : 

 

   0
0 0 0( ; ; ) ( , ) ( , ; , ) ( , ) ( , ; , ) ,

T

m r i r lm r i r lm rt S
u t dt ds t t G t t u t t t⎡ ⎤= −⎣ ⎦∑∫ ∫x x x x x x x x   (9) 

 

where ( , )i ru tx  is the elastic wave seismic records received on the surface, S 

is a closed surface that surrounds a region. ( , )i rt tx  is the stress at rx , 

0( , ; , )lm rG t tx x  and 0( , ; , )lm r t t∑ x x  are the Green displacement tensor and 

stress tensor, respectively, they take the form: 
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where jn  is the unit vector that is perpendicular to the integral surface and 
points to the normal direction, ijklC  is the stress tensor. δ  is the Kronecker 
Delta function, λ  and µ  are the lame elastic parameters, ( ; ; )n

lm rg ωx x  is 
the Green function of P-wave or SV-wave. 
 

Assuming that S  is the free surface (the free stress boundary 
conditions take the form: ( ; ) 0, ( 0); (0, 1)jt x x S z nω = ∈ = = − ), eq. (9) can be 
simplified as: 
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The high-frequency asymptotic solution of the partial derivative of the 

Green function takes the form: 
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where ( )n
k rp x  is the initial slowness of P-wave and SV-wave. ( )n

l re x and 
( )n

me x  are the polarity vectors. 
 

Substituting eqs. (10), (11) and (12) into eq. (9), we can obtain the 
decoupled elastic wave backward continuation formulas of P-wave and 
SV-wave:  
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where  1 ( )n
rW x  and 2 ( )n

rW x  are the weight coefficients, they take the form: 
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where γ  is the velocity ratio of SV-wave to P-wave. 
 

The forward continuation wavefields characterized by the elastic wave 
Gaussian beams can be written as: 
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The anisotropic imaging formula of converted PS-wave  

 
Fig. 2 shows the propagation process of converted PS-wave. The 

displacement components of converted PS-wave at the reflection points O1 
and O2 are opposite because of the different incident angles. Therefore, the 
X-components of seismic records received at R1 and R2 have opposite 
polarities. In the proposed method, we introduce a symbol function 
according to the incident angle to implement the polarization correction in 
the imaging results directly. 
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Fig. 2. The polarization of converted PS-wave at the reflector.  

 
 
According to the reflection imaging principle (Claerbout, 1971), the 

imaging formula of converted PS-wave takes the form: 
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NUMERICAL EXAMPLES 
 
Fault model 

 
In this section, we use the Fault model to test the effectiveness of the 

proposed method. The model consists of a fault and two horizontal layers 
with different anisotropic parameters, as shown in Fig. 3. The vertical and 
horizontal grid points are 301 and 1801 with a 10 m spacing. The 
synthetic seismogram is generated using anisotropic ray tracing forward 
modelling method, and the source wavelet is the Ricker wavelet with a 
dominant frequency of 25 Hz. There are 281 shot records received on the 
surface with 50 m interval. There are 201 receivers per shot with a 20 m 
tracing interval. The recording time is 3.0 s with a 1ms sampling interval. 
Fig. 4 shows the X-component and Z-component of the shot record. 

 
The imaging result obtained by the isotropic converted PS-wave reverse 

time migration with Gaussian beams is shown in Fig. 5a, where the fault is 
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not accurately imaged. There are defocusing artifacts and imaging noise 
around the reflection interfaces. The events apparently curve up at the edge 
of the anisotropic layers. Figs. 5b and 5c display the imaging results using 
anisotropic reverse time migration with Gaussian beams based on elastic 
parameters and the proposed method, respectively. Both of the imaging 
results are excellently matched with the exact model. The anisotropic layers 
are clearly depicted and the imaging noise is eliminated. However, due to the 
different ray tracing equations, the events in the imaging result obtained by 
the proposed method are better focused and continuous, especially around 
the fault. The comparison of computational efficiency is shown in Table 1. 
From the calculation time of single shot, we can know the proposed method 
has a higher computational efficiency than that of the method based on 
elastic parameters. The comparison of the imaging results and computational 
efficiency indicate the effectiveness of the proposed method. 

  

 
(a)                            (b) 

 
(c)                               (d) 

 
 
Fig. 3. Fault model. (a) The velocity field of P-wave. (b) The velocity of SV-wave. 
(c) Epsilon. (d) Delta. 
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 (a)                         (b) 

 
 
Fig. 4. The shot record at CDP 251: (a) X-component; (b) Z-component. 
 

         
   (a)                                (b) 

 

 (c) 
 

Fig. 5. Imaging results of the fault model: (a) The isotropic method; (b) The anisotropic 
method (based on elastic parameters); (c) The proposed method. 
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Table 1. The comparison of computational efficiency. 

 
Methods  The calculation time of per shot 

The isotropic method 118.2 s 
The anisotropic method based on elastic parameters 142.8 s 

The proposed method 125.6 s 
 
 
SL model 

 
Next, the applicability of the proposed method is demonstrated on a SL 

model. There are five layers (including inclined layers, relief structures, etc.) 
in the model with different anisotropic parameters, as shown in Fig. 6. The 
model is 3.5 km deep and 14.01 km long, with 10 m grid spacing. The 
anisotropic ray tracing forward modelling method is used to generate the 
synthetic seismogram. The source wavelet is Ricker wavelet with a dominant 
frequency of 25 Hz. The synthetic seismogram consists of 251 shot records 
with 301 receivers per shot. There are 4001 time sampling points, the 
sampling interval is 1 ms. The shot record is displayed in Fig. 7. 

 
We also use three methods (the isotropic method, the method based on 

elastic parameters, the proposed method) to test the model. The imaging 
result obtained by isotropic method is shown in Fig. 8a. Due to the neglect of 
anisotropic factors, the inclined layers and relief structures are not imaged at 
the true position. The defocusing effects around reflectors are also visible in 
the imaging result and the events of the reflectors are not well focused (as 
indicated by the box). Figs. 8b and 8c display the imaging results using the 
anisotropic method based on elastic parameters and the proposed method, 
respectively. Clearly, the migration results in Figs. 8b and 8c are better than 
that of Fig. 8a. The structures are well positioned and the defocusing effects 
around the reflectors are also eliminated. Compared Figs. 8b with 8c, it can 
be seen that the proposed method has a better imaging quality, where the 
energy of events are more uniform distribution. 

 
To further display the influence of anisotropy on converted PS-wave 

imaging, we extract the ADCIGs located at CDP = 701. The events in the 
ADCIGs extracted by isotropic method (as shown in Fig. 9a) are not located 
at the true position and obviously curve up at large incidence angles. While 
in the ADCIGs extracted by anisotropic methods, the events are flat and well 
positioned, as shown in Figs. 9b and 9c. And the events in the proposed 
method are more focused and continuous than that of the method based on 
elastic parameters. 

 
From the comparison of the imaging results and ADCIGs, we can 

conclude that the proposed method can provide a better imaging quality than 
that of the isotropic method and the anisotropic method based on elastic 
parameters. 
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(a)                             (b) 

 

 
(c)                               (d) 

 
Fig. 6. SL model: (a) The velocity field of P-wave; (b) The velocity of SV-wave;  
(c) Epsilon; (d) Delta. 
 

 
(a)                                (b) 

 
Fig. 7. The shot record at CDP 541: (a) X-component; (b) Z-component. 

 



 218 

 
 (a)                              (b) 

 
(c) 

 
Fig. 8. Migration results of SL model: (a) The isotropic method; (b) The anisotropic 
method (based on elastic parameters); (c) The proposed method. 
 

  
           (a)                    (b)                      (c) 
 
Fig. 9. The extracted ADCIGs of SL model at CDP=701: (a) The isotropic method; 
(b) The anisotropic method (based on elastic parameters); (c) The proposed method. 
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CONCLUSIONS 
 

By modifying the anisotropic kinematic and dynamic ray tracing 
equations, we develop an anisotropic converted PS-wave ray tracing 
algorithm and apply it to the converted wave imaging. We adopt the elastic 
wave Gaussian beams to construct the Green function, then realize the 
forward continuation and backward continuation of wavefields, and finally 
the imaging results are obtained through the reflection imaging principle. 
According to converted PS-wave propagation characteristics, we also 
introduce a symbolic function to implement the polarization correction in 
imaging results directly. Through the numerical tests we can know that the 
proposed method not only has a higher computational efficiency, but also 
can image the anisotropic structures accurately. 
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