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ABSTRACT 
 
Liu, J., Gu, Y. and Chou, Y.X., 2019. Seismic data reconstruction via complex shearlet 
transform and block coordinate relaxation. Journal of Seismic Exploration, 28: 307-332. 
 
 Due to practical and economic limitations, real seismic data is not densely sampled in 
all coordinates, which will affect the subsequent seismic data processing steps, such as 
migration, surface-related multiple elimination and inversion. Therefore, it is necessary to 
reconstruct the incomplete seismic data. This paper explains the application of the 
complex shearlet transform to seismic data reconstruction. With a L1 constraint and the 
Block Coordinate Relaxation (BCR) method, performance of the complex shearlet-based, 
real shearlet-based and well-accepted curvelet-based reconstruction are compared in 
terms of recovered f-k spectrum and signal to noise ratio (SNR). We also discuss the shift 
invariance of the complex shearlet transform and compare the performances of the BCR 
and the widely used Projection Onto Convex Sets (POCS) method. The numerical 
experiments on synthetic and real data with different under-sampling rates demonstrate 
the validity of the proposed method, especially for the case of large amounts of traces 
missing. 
 
KEY WORDS: seismic data reconstruction, complex shearlet transform, 
     curvelet transform, block coordinate relaxation. 
 
 

INTRODUCTION 
 

In the process of field seismic data acquisition, the geophones are 
regularly arranged and record the seismic signal generated by the sources. In 
order to avoid information loss, the Nyquist criterion should be fulfilled for 
the spatial sampling. But influenced by the acquisition environment, such as 
the presence of obstacles, forbidden areas, dead traces, and, most importantly, 
economic considerations, seismic data is always irregularly and incompletely 
sampled along spatial coordinates, which will introduce spatial aliasing. As a 
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result, the sparse seismic data can not satisfy the subsequent processing 
techniques such as velocity analysis, surface-related multiple elimination and 
migration. So the reconstruction of seismic data to a user-defined denser grid 
is a very important problem in the seismic community as the quality of 
reconstruction will impact the subsequent seismic processing steps. 
Furthermore, using an appropriate reconstruction method can reduce the 
acquisition cost and improve the acquisition efficiency. 

 
The reconstruction methods of irregular seismic data are commonly 

divided into three categories: First, there are methods based on the wave 
equation (Ronen, 1987; Chemingui and Biondi, 2002; Fomel, 2003), which 
combines the wave equation and a DMO (Dip Moveout) or an AMO 
(Azimuth Moveout) operator to reconstruct seismic data. However, the 
intensive computation of the wave equation and the difficulty of obtaining an 
accurate subsurface velocity model limit the application of such methods; 
second, the prediction filter-based methods (Spitz, 1991; Guo et al., 1996; 
Zhou, 1997; Porsani, 1999; Naghizadeh and Sacchi, 2007,2009) can improve 
the computation efficiency and reconstruction performance and are widely 
used in practice; third, the reconstruction methods based on mathematical 
transform and signal analysis (Herrmann and Hennenfent, 2008; Gao et al., 
2010; Naghizadeh and Innanen, 2011; Yang et al., 2012; Wang et al., 2014; 
Wang et al., 2015) utilize the signal characteristics in the transform domain 
to reconstruct seismic data, such as Fourier transform (Abma and Kabir, 
2006), Radon transform (Kabir and Verschuur, 1995), curvelet transform 
(Herrmann and Hennenfent, 2008, Cao et al., 2011, 2012; Cao and Wang, 
2014, 2015c; Cao et al., 2015a, Cao and Zhao, 2015b) and Seislet transform 
(Liu et al., 2017). In addition, the rank reduction method (Gao et al., 2013; 
Ma, 2013) has also aroused interest. 

 
According to the Compressed Sensing (CS) theory, the irregularly 

down-sampled seismic data can be effectively reconstructed by a 
sparsity-promoting L1-norm convex optimization approach, which indicates 
that the measured incomplete seismic data can be used to reconstruct the 
missing seismic data with high precision. Using the fact that the curvelet 
transform can sparsely represent linearly shaped features, Herrmann et al. 
(2008) applied the sparsity-promoting L1-norm minimization of curvelet 
coefficients to reconstruct seismic data.  

 
The shearlet transform (Guo et al., 2006) is a new kind of 

multi-dimensional function approximation method. Compared to the curvelet 
transform, the shearlet transform conforms a tight frame theory and has a 
strict mathematical derivation, its directional filters have no pseudo Gibbs’ 
phenomena arising from sampling. Compared to the curvelet transform, the 
discrete version of the shearlet transform is easy to implement and its 
complexity regarding the calculation is greatly reduced. As a result, the 
shearlet transform was quickly applied to various fields since it was 
proposed (Kutyniok and Labate, 2009; Pejoski et al., 2015; Pein et al., 
2016). 

 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kabir%2C+MM+Nurul
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Verschuur%2C+DJ
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The shearlet transform has very good localization features and its 
decomposition algorithm is similar to that of the wavelet transform 
(Kutyniok and Labate,2012) because it can be deduced through the tight 
frame system of multi-scale analysis. The characteristic of the shearlet 
transform makes it very suitable for processes like image edge detection and 
de-noising (Easley et al., 2008; Sheng et al., 2009; Wang, 2010; 
Genzel and Kutyniok, 2014; Kong and Peng, 2015). Feng et al. (2016) 
reconstructed 2D seismic data based on the shearlet transform using a POCS 
algorithm, where the NMO correction prior to reconstruction is adopted to 
strengthen the sparsity of the seismic data. Zhang et al. (2017) combined the 
shearlet transform with an Orthogonal Matching Pursuit (OMP) algorithm to 
reconstruct the 2D seismic data, and they also compared the reconstruction 
performance of different sparse transforms such as Fourier transform, 
discrete cosine transform, wavelet transform and curvelet transform. Liu et al. 
(2018) proposed the method based on the shearlet transform and the 
Projection Onto Convex Sets (POCS) with a L0-norm constraint to 
interpolate irregularly sampled 2D and 3D seismic data. 

 
Decomposition based on the shearlet transform has provided an 

optimally sparse approximation of a certain class of natural images, but the 
shearlet transform has no shift-invariant characteristics because of utilizing 
the Laplace pyramid structure in the multi-scale analysis. Kutyniok and 
Labate (2007) proposed to replace the Laplace pyramid with a 
non-down-sampled Laplace pyramid, which makes the shearlet transform 
having a shift-invariant characteristic. However, this method increases the 
redundancy of the non-down-sampling based shearlet transform greatly and 
it leads to a very slow computation speed. Lim et al. (2010) constructed the 
non-separable compactly supported shearlet generators, which can better 
approximate the classical band-limited generators whose Fourier transforms 
have wedge-like support. Many experimental results demonstrated that the 
method outperforms the other algorithms in most tasks when concerning 
speed (Kutyniok and Petersen, 2015; Kutyniok et al., 2016).  

 
Just like the wavelet case, a function 2 2( )L R   is said to be an 

admissible shearlet if it satisfies 
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where 2 ( )L   is a square integrable space, ̂  denotes the two-dimensional 
Fourier transform of  , w 1 and w 2 are the frequency components of the 
horizontal and vertical direction respectively. Therefore, the shearlet 
admissibility condition is only dependent on the absolute value of the 
Fourier transform of a candidate function. If the Fourier transform of a 
function is compactly supported away from the origin, the function is an 
admissible shearlet. In addition, the scaling or shearing of a shearlet 
generator can be characterized by the respective changes in the frequency 
plane, so similar to the Fourier transform with shift invariance in the 
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magnitude response, the complex shearlet transform, which has the 
characteristic of shift invariance, can be constructed utilizing the algorithm 
proposed by Kutyniok et al. (2016). Reisenhofer et al. (2016) presented a 
novel edge and ridge (line) detection algorithm that is based on the complex 
shearlet transform, and they used the method to extract flame fronts. 

 
The POCS algorithm has been widely used in image and irregular 

seismic data reconstruction because of its high efficiency and reconstruction 
performance (Ozkan et al., 1994; Patti et al., 1997; Abma and Kabir, 2006; 
Yang et al., 2012; Wang et al., 2015, 2016; Wang, 2016). The algorithm 
requires some closed convex constrainted sets defined in a vector space, then 
any initial estimation is projected to these constrainted sets and a high 
resolution image can be estimated. In this paper, we use the Block 
Coordinate Relaxation (BCR) method as a sparse promoting strategy. BCR 
was proposed to solve the basis pursuit based de-noising problem, which has 
the advantages of simplicity and rapid convergence speed (Bruce et al., 
1998). Based on the complex shearlet transform, we compare the 
performance of POCS and BCR method to reconstruct seismic data. 

 
The main contributions of the paper are as follows: first, we propose a 

method based the complex shearlet transform and BCR to reconstruct 
seismic data. The numerical experiments demonstrate that the method 
performs better than the real shearlet transform and the well-accepted 
curvelet transform methods. Second, we compare the performance of the 
complex shearlet transform and the real shearlet transform to reconstruct 
seismic data. Third, we also discuss the performance of the POCS and BCR 
algorithms. From the numerical results, it can be seen that the BCR 
algorithm has a more rapid convergence speed than the POCS algorithm. 

 
The paper is organized as follows. In the first section, we introduce the 

complex shearlet transform and the BCR method. Then the procedure of 
reconstructing 2D seismic data, which is based on the complex shearlet 
transform using the BCR algorithm, is illustrated. The Method section 
demonstrates the tests on 2D synthetic and real data with different 
under-sampled rates, which proves the validity of the proposed method. In 
the Numerical Examples section, we discuss the advantage of the complex 
shearlet transform compared to the real shearlet transform and also compare 
the performance of the POCS and BCR algorithms. The last section 
concludes the paper. 

 
 
METHOD 
 
The Complex shearlet transform 
 
   The wavelet transform has only point singularities because of its isotropy, 
which makes it have no ability to extract directional information and can not 
deliver highly sparse approximations of 2D signals. Therefore, many 
different transforms are proposed to extract the geometry information from 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hamid%20Krim.QT.&newsearch=true
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2D or higher dimensional data sets. Among these transforms, the curvelet 
transform works better for events that can be well approximated by local 
plane waves and has been widely applied in seismic data reconstruction. 
 

The shearlet transform (Guo et al., 2006) combines the composite wavelet 
transform with multi-scale analysis and constructs an optimally sparse 
representation of a multi-dimensional signal. The shearlets have more 
sensitive directionality and provide a more sparse representation compared 
to the curvelets and the contourlets (Candès and Donoho, 2004; Minh and 
Vetterli, 2005). Because the shearlet transform adopts shearing operators 
which has consistency with the digital lattice, the continuum and digital 
realm of shearlet transform was treated uniformly in the sense of the 
continuum theory allowing a faithful implementation (Kutyniok et al. 2012). 

 
A continuous shearlet system can be defined as follow: 
 

 
2 2

, ,{ ( ) : 0, , , }a s a s   tψ x R t R x R ,  
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 In order to get a better directional selectivity both from the horizontal 
and vertical point of view, the cone-adapted shearlets are usually used. The 
cone-adapted shearlet system is defined as (Kutyniok et al., 2016) 

 

1( , , ; ) ( , ) ( , ) ( , )S c  φ ψ ψ c φ ψ c ψ c ， 2 2 2

1 2( ), ( , )L c c   φ ψ ψ R c, ,
      (1)

 

where 
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 The cone-adapted shearlet system induces the tiling of the frequency 
domain that looks almost polar, as shown in Fig. 1.  
 

 

Fig. 1. Tiling of the frequency domain generated by the essential frequency support of a 

classical cone-adapted shearlet system. 1  and 2  are the frequency components of 

the horizontal and vertical direction, respectively. 

 

 
   Although the shearlet transform has many advantages such as sound 
theoretic basis and simple algorithm, it also has two less desirable aspects. 
First, the shearlet transform lacks shift invariance, which causes 
pseudo-Gibbs’ artifacts during reconstructing images. In order to make the 
shearlet transform have the characteristics of shift invariance, Kutyniok and 
Labate (2007) proposed to replace the Laplace pyramid algorithm with the 
non-down-sampled one, but the redundancy of the non-down-sampled 
shearlet transform is greatly increased, which leads to large computation 
efforts. Second, the Laplace pyramid algorithm used in the shearlet 
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transform is a linear multi-scale decomposition method, and has a poorer 
ability to capture structural details. The non-linear multi-scale decomposition 
method can improve the ability to capture and preserve structural details. 

 
Reisenhofer et al. (2016) modified the real shearlet transform and 

constructed the complex shearlets, which still yields local geometric 
information, but has certain desirable features that Fourier bases also have. 
In particular, the real parts of the generating functions are similar to be 
even-symmetric (like cosine) and the imaginary parts are odd-symmetric 
(like sine). In order to do this, the Hilbert transform is employed to construct 
the complex shearlet transform, which is shown as follows 

 

c c c
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where 
0
( )H   expresses the partial Hilbert transform, 0

ζ is  
T

1 0  or  
T

0 1 .  

Kutyniok et al. (2016) proposed a reliable digital implementation of the 
shearlet transform based on compactly supported frame. The sparse 
approximations provided by the algorithm yield the best results. Therefore, 
the complex shearlet transform can be implemented easily without 
increasing extra computation. The first row in Fig. 2(a) shows the frequency 
response of the conventional shearlet, the second row is the corresponding 
response of the complex shearlets. Fig. 2(b) shows the respective 2D shearlet 
filters corresponding to Fig. 2(a). 
 
    According to eq. (2), the discrete complex cone-adapted shearlet 
transform of the seismic data u can be expressed as 
 

      
c c c

2 , . 2 , .
( ) ( , , , , , )j jm l l

S       
k k

u u φ u ψ u ψ    .              (3)       

 
  There are several kinds of implementation methods for the shearlet 
transform, but most of those focus on the band-limited case. These 
approaches are based on the Parseval frame and suffer from the drawbacks 
such as high complexity, various artifacts and insufficient spatial localization. 
Kutyniok et al. (2016) developed a low complexity algorithm based on 
non-separable, compactly supported shearlet generators (Kutyniok et al., 
2016). According to the construction of the complex shearlet transform 
discussed above, its implementation is very similar to the real shearlet 
transform, almost without increasing any computational effort (Reisenhofer 
et al., 2016). 
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Fig. 2. (a) The shearlets in the wavenumber domain; (b) the shearlets in the spatial 

domain. In (a) and (b), the first row is corresponding to the real shearlets and the second 

row to the complex shearlets. 
 

 
Block Coordinate Relaxation method 

 
The regularly or irregularly sampled seismic data are usually expressed 

as 
  s c u M u ,                                         (4) 

 
where us is the observed data that contains the missing traces, M denotes the 
sampling matrix, uc is the complete data. Based on the CS theory, the 
incomplete data us can be reconstructed through a sparse transform and a 
sparsity-promoting strategy. The complex shearlet transform is a multi-scale 
and multi-direction sparse transform, so that the incomplete seismic data us 

can be reconstructed by using the complex shearlet transform and a 
sparsity-promoting strategy. It is always ill-posed to solve eq. (4). 
Considering the sparsity of the seismic data uc in the complex shearlet 
domain, the seismic data reconstruction is described as an optimization 
problem 
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cT

s
ˆ ˆarg min . . ( )

p
s t S  x x M x u

  
,                     (5) 

 
where x and x̂  represent the shearlet coefficient vector and its estimation 
respectively, p = 1 or 0 indicates L1 or L0 norm and cTS denotes the inverse 
complex shearlet transform. Eq. (5) can be converted to a non–constrained 
optimization problem, and the objective function is defined as 
 

     
2

cT
s

2
( ) ( )J S C    x u M x x（ ）    ,                         (6) 

 
where   is the regularization parameter, C(x) indicates a sparsity constraint, 
such as the L0 or L1 norm constraint. The L0 norm constraint is a NP 
(Non-deterministic Polynomial) problem, so the L1 norm constraint is 
usually used to approximate the L0 norm constraint. The L1 regularization 
can lead to a parsimonious representation of signal su  and can achieve 
super-resolution of the signal in time and frequency. Chen et al. (1996) built 
the concept of “Basis Pursuit” to solve the L1 regularization and proposed the 
primal-dual log-barrier interior point (IP) algorithm by means of converting 
the primal problem into a quadratic programming problem. Bruce et al. 
(1998) proposed the BCR method to solve the basis pursuit based de-noising 
problem, which has the advantages of simplicity and rapid convergence 
speed compared to the IP algorithm. The method has been used widely in 
fitting log-linear models (Bishop et al., 1975), image reconstruction using 
regularized objective functions (Starck et al., 2005), Bayesian estimation of 
auto regressive models (Alliney and Ruzinsky, 1994).  
 
   The sparsity-promoting algorithm used in the paper is based on BCR, 
with some required changes due to adopting the complex shearlet transform 
and using the sampling matrix. The iteration formulation of the data 
reconstruction is expressed as follows: 

 

   
s

c T c

1 s

( )

( ) ( ( ( ) )
k

k

k kS S
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u u I M u R）T
  ,                      (7) 

 

where uk denotes the k-th iterative solution, S
c
 denotes the forward complex 

shearlet transform , ( )
k

T  is the soft shrinkage function and is defined by 

 

( ) ( )
k k

x
x x

x
   =T ,                             (8) 

 
where k  is a threshold. The algorithm is described as follows: 
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Algorithm 1  Seismic data reconstruction based on the complex 
shearlet transform using the BCR method 
 
 
Input: the observed data su , the measuring matrix M , the number of 
iterations N , error eps. 
 
Output: the reconstructed data cu . 
 

1. Set up the complex shearlet transform parameters: scales, the level 

of shearing at each scale. 

2. Initialization: compute the complex shearlet transform coefficients 
of su to select an initialized threshold 0 ; let 0 su u . 

3. For k =1 to N  

4. Calculate the residual
-1 1( )k s k  R M u u . 

5. Calculate the complex shearlet transform of 

 1 1( )k k u R : C
1 1 1( )k k kS   x u R . 

6. Soft threshold the coefficient 1kx : 1( )
kk k x T x , ( )

k
T is the soft 

shrinkage function. 

7. Apply the inverse complex shearlet transform to the thresholded 

coefficients to obtain the reconstructed data: cT ( )k kSu x . 

8. Reinsert the original traces su  to the reconstructed traces: 

s ( )k k   u u I M u . 

9. 1( )k kf   , ( )f   is the linear or exponential threshold function. 

10.  If k N  or the reconstructed error > eps  

11.  then go to step 3 

12.  Else  

13.  Output the reconstructed data: c ku u . 

14.  End 

15.  Return  
     

In the above algorithm, if C(x) in eq. (6) is the L1 sparsity constraint, 
the soft threshold is used. However, replacing the soft threshold by a hard 
one towards the end of the iterative process may have better results because 
the L1 norm constraint is only a good approximation for the desired L0 one. 

 
NUMERIC EXAMPLES 
 

  First, synthetic seismic data sets are selected to prove the validity of the 
proposed method. Second, numerical examples using real seismic data 
further demonstrate the performance in a realistic setting. In order to 
evaluate the reconstructed performance, the SNR, which indicates the error 
between the reconstructed data and the original data, is defined. The 
recovered SNR is expressed as 
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orig 22

10

orig rect 2

10log ( )SNR 


u

u u
   ,                        (9) 

 

where uorig denotes the complete seismic data and urect is the reconstructed 

data. 
 
SYNTHETIC DATA 

 
Fig. 3a is a synthetic seismic shot, which is generated with a 

finite-difference code for a subsurface velocity model with 2D 
inhomogeneities. The number of traces is 256, and the interval between 
traces is 15 m, the temporal sampling is 4 ms. The data sets with 50% and 
70% traces missing, based on a jittered sampling, are shown as Figs. 3b–c. 
Figs. 3d-f show the f-k spectrum corresponding to (a)-(c), respectively.  

 
 

 
 
Fig. 3. The complete data and irregularly sampled seismic data. (a) The complete data; (b) 
the irregular data with 50% traces missing; (c) the irregular data with 70% traces missing. 
(d)-(f) are the f-k spectrum corresponding to (a)-(c). 
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Fig. 4. The reconstructed data (left column) and the corresponding residuals (right column) 
when 50% traces are missing (see Fig. 3b). The first row is for the complex 
shearlet-based method, the second row is for the real shearlet-based method and the third 
row is for the curvelet-based method. 
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Figs. 4 and 6 demonstrate the reconstruction results and residuals based 

on the complex shearlet and the real shearlet transform for every choice of 
missing traces, while the reconstruction results and residuals based on the 
curvelet transform are also shown. As expected, it shows that when the 
number of missing traces increases, the residual increases. It can be seen that 
the reconstructed data using the complex shearlet–based method agree better 
with the complete data shown in Fig. 3a than that using the real 
shearlet-based and curvelet-based method. 

 
Figs. 5 and 7 show the corresponding f-k spectrum of the reconstructed 

data sets. The aliases are suppressed effectively for the three transforms, but 
the shearlet-based methods are obviously superior to the curvelet-based. For 
the case of 50% missing traces (Fig. 5), the f-k spectra of the reconstructed 
data using the real and complex shearlet transform are almost same, and so 
are the reconstructed data sets shown in Fig. 4. 

 
 
  

 

 
 

Fig. 5. The f-k spectrum of the reconstructed data corresponding to Fig. 4 (a), (c) and (e). 

 
 
As shown in Fig. 7, when the amount of traces missing is 70%, the f-k 

spectrum corresponding to the complex shearlet transform is somewhat 
stronger than that corresponding to the real shearlet transform, especially for 
the areas in the red circles. This indicates a better reconstruction results, as 
can be verified in Fig. 6. It also can be seen from Figs. 6 and 7 that the 
curvelet-based method can not reconstruct data effectively with such large 
number of missing traces. In order to further compare the reconstruction 
performance, the SNR curves as a funcation of the iterations are plotted in 
Fig. 8.     
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Fig. 6 The reconstructed data (left column) and the corresponding residuals (right column) 
when 70% traces are missing (see Fig. 3c). The first row is for the complex shearlet-based 
method, the second row is for the real shearlet-based method and the third row is for the 
curvelet-based method. 
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 Fig. 7. The f-k spectrum of the reconstructed data corresponding to Fig. 6 (a), (c) and (e). 

 

 
Fig. 8 indicates the complex shearlet based method is superior to the 

real shearlet-based and the curvelet-based method and the recovered SNR is 
lower as the missing traces increase. The final SNRs are 25.92 dB and 12.39 
dB using the complex shearlet transform with 50% and 70% traces missing, 
respectively. The SNRs corresponding to the real shearlet are 25.25 dB and 
10.52 dB and the SNRs corresponding to the curvelet transform are 23.23 dB 
and 4.76 dB. Performance for the synthetic seismic data prove that the 
complex shearlet based method has a better reconstruction ability compared 
to the other methods when the number of missing traces is growing. 

 
Real data application     
 
   The real post–stack seismic data from an oilfield is utilized to further 
confirm the validity of the proposed method. Fig. 9a shows the complete 
data with 201 traces and the 1501 samples in each trace, in which the 
temporal sampling interval is 2 ms. The incomplete data sets with 50% and 
70% traces missing using a jittered under–sampling approach are shown in 
Figs. 9b-c. For convenience of comparison, we test each method with the 
same parameters of the BCR algorithm. The reconstructed results and 
residuals are shown in Figs. 10-11. 
 

  When the amount of traces missing is 50%, the reconstructed results 
using the complex shearlet and the real shearlet transform have almost the 
same performance and agree well with the complete data shown in Fig. 9a, 
and both methods are superior to the curvelet-based method, although the 
complex shearlet-based method is slightly better than the real shearlet-based 
method. But when the number of traces missing is 70%, the complex 
shearlet-based method clearly outperforms both the real shearlet-based and 
curvelet-based method, especially for the time interval of 0.8-2.0 s. To 
further compare the performances, the SNR curves with iterations for the 
data sets are shown in Fig. 12. 
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(a) 

 

(b) 

Fig. 8. SNRs with iterations. (a)-(b) is corresponding to the case of 50% and 70% traces 

missing, respectively. 

 

 

 
 
Fig. 9. (a) The complete field data and irregularly sub-sampled seismic data. (b) The 
complete data; the irregular data with 50% traces missing; (c) the irregular data with 70% 
traces missing. 
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Fig. 10. The reconstructed data (left column) and the corresponding residuals (right 
column) when 50% traces are missing. The first row is for the complex shearlet-based 
method, the second row is for the real shearlet-based method and the third row is for the 
curvelet-based method. 
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Fig. 11. The reconstructed data (left column) and the corresponding residuals (right 
column) when 70% traces are missing. The first row is for the complex shearlet-based 
method, the second row is for the real shearlet-based method and the third row is for the 
curvelet-based method. 
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   Fig. 12 indicates that results based on the complex shearlet transform are 
again  superior to the other two methods. From the SNR curves shown in 
Fig. 12, we can conclude that the complex shearlet transform is sparser and 
the performance is better compared to the real shearlet and the curvelet 
transform for the real seismic data example. 
 
 

 
(a) 

 

(b) 

 

Fig. 12. SNRs with iterations for the field data. (a)-(b) is corresponding to the case of 

50% and 70% traces missing, 

    
 
From the reconstructed results of the synthetic and the real data sets, we 

can draw a rough conclusion that the method based on the complex shearlet 
transform using BCR is efficient. It also can be seen from Figs. 8 and 12 that 
when the maximum iteration number is 80, the recovered SNRs are stable 
and the curves become almost horizontal after nearly 20-30 iterations for the 
synthetic data, which means that the quality of the reconstructed seismic data 
improves very little after 20-30 iterations, while for the real data, the number 
of required iterations is about 30-40. 
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DISCUSSION 
 
The advantage of the complex shearlet transform compared to the real 
shearlet transform 

 
The complex shearlet transform is based on the complex-valued 

functions shown as 
 
  

c even oddi      ,                                    (10) 
 
where 

even  is an even-symmetric real-valued shearlet which has the 
possibly anisotropic support constructed by applying shearing, scaling and 
translation operators to a wavelet-like generating function, and 

odd  is the 
Hilbert transform of 

even . Such construction makes the shearlet-based 
multi-scale representation systems conceptually closer towards the classical 
Fourier basis. So the complex shearlet transform not only has the 
multi-resolution, multi-direction, anisotropic and favorable spatial and 
frequency localization, but also has the shift invariance to the magnitude 
response. Therefore, the complex shearlet transform can capture the 
geometric characteristic more effectively compared to the real shearlet 
transform, the wavelet transform and the curvelet transform. 
  

 

 

 

Fig.13. The synthetic data of a three-layer model. 
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To illustrate this, Fig. 13 shows the synthetic seismic data of a simple 
three-layer model. Fig. 14 demonstrates the real shearlet and the complex 
shearlet coefficients of the synthetic seismic data. It can be seen from Fig. 14 
that the coefficients amplitude of the complex shearlet transform is greater 
than that of the real shearlet transform. Analysis reveals that the coefficients 
of the real shearlet transform are still real-valued and may produce certain 
shift variance. So, a smaller shift of the location of the reflected wave will 
result in a bigger variation of the coefficients of the real shearlet transform, 
which damages the information of the signal and leads to worse 
reconstruction results. The coefficients of the complex shearlet transform are 
complex-valued and the amplitudes do not vary with shifting, so the 
principle character of a signal can be preserved and the reconstructed results 
have higher signal to noise ratio. 

 
 

Performance comparison of POCS and BCR methods 
 
    Among the sparsity-promoting strategies for reconstructing irregularly 
sampled seismic data, the POCS method has been applied widely because it 
is easy to be implemented and generally performs well. The BCR algorithm, 
which is first proposed for solving the Basis Pursuit de-noising problem, is 
broadly applicable and conceptually simple. We compare the performance of 
the BCR and POCS algorithms using the complex shearlet transform to 
reconstruct the seismic data. The synthetic data from Fig. 3b is selected with 
the 50% traces missing. The parameters of the two algorithms such as 
iterations, threshold condition and convergence errors are configured to be 
the same. Fig. 15 shows the SNR curves of the two algorithms. At the initial 
iterations, the performance of the BCR is superior to that of POCS. The SNR 
of BCR is stable at about 30 iterations, while the POCS is stable after about 
40 iterations. So we can see that the BCR algorithm has a faster convergence 
than POCS. 
 

Although the complex shearlet transform has better performance 
compared to other transforms, there are still some problems that need to be 
considered further, such as the noisy or anti-aliasing seismic data 
reconstruction using the complex shearlet transform, 3D data cube 
reconstruction by developing a 3D complex shearlet transform, and using a 
more efficient optimization algorithm. 

 
 

CONCLUSION 
 
   In this paper, the irregularly sampled seismic data is reconstructed via the 
complex shearlet transform and the BCR algorithm. Using the Hilbert 
transform, we construct the complex shearlets, which have shift invariance 
features and are better suited for handling geometric structures in 
multi-dimensional data than using real shearlets. We utilize the BCR 
algorithm that has a global and fast convergence characteristic as a 
sparsity-promoting strategy. We also analyze the advantage of the complex 
shearlet  transform compared  to the real shearlet and the curvelet transform 
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Fig. 14. The real shearlet and complex shearlet coefficients of the synthetic seismic data 
shown in Fig. 13. (a) and (c) are the coefficients of the real shearlet on the third and 
fourth scale, respectively. (b) and (d) are the corresponding complex shearlet. Nine 
shearing directions are selected from each scale. The parameters of the shearlet system 
are: the number of scales is 4, the level of shearing occuring on each scale is [1 1 2 2]. 
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and compare the performance of the BCR and POCS algorithms. The 
numerical experiments on synthetic and real data with different 
under-sampling rates demonstrate the validity of the proposed method, 
which has more superiority than the other methods, especially when the 
amount of traces missing is increasing. 
 
 

 

 

Fig. 15. Performance comparison of BCR and POCS. 
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