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ABSTRACT 
 
Dai, Z.G., Liu, Z.H. and Wang, J.Y., 2019. Iterative adaptive approach for seismic data 
restoration. Journal of Seismic Exploration, 28: 333-345. 
 

Reconstruction of missing traces of seismic data from finite samples is a problem in 
seismic data processing. In this paper, an iterative adaptive approach is proposed to 
restore seismic data with randomly missing traces, specifically, which is suitable to 
recover a large number of missing traces. The proposed method is based upon the 
weighted least square theory. Unlike previous low-rank methods that use the low-rank 
property of the Hankel matrix on each frequency slice, we exploit the harmonic structure 
of frequency slice, and develop an iterative adaptive manner for seismic temporal 
frequency slices to obtain an accurate spectral estimation. The missing data is filled using 
a linear minimum mean-squared error estimator. Numerical experiments show that our 
method provides much better performance for reconstruction compared to that of the 
classical low-rank methods such as iterative soft thresholding, low-rank matrix fitting and 
orthogonal rank-one matrix pursuit. 

  
KEY WORDS: seismic data restoration, iterative adaptive approach, 
     weighted least squares, spectral estimation. 
 
INTRODUCTION 
 

In seismic exploration, missing traces have been a common problem 
because of the limitation of physical and economic constraints. Seismic data 
with missing traces cause substantial problems in a variety of seismic 
applications, including the inversion, migration, multiple suppression and so 
on. Therefore, recovering these missing traces is of great importance for 
seismic research. 
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Various methods based on different techniques have been developed to 

reconstruct missing seismic data. Prediction filter methods have been 
implemented by exploiting the linear predictability of the signal in different 
domains and can efficiently address spatially aliased regularly sampled data 
(Spitz, 1991; Claerbout and Nichols, 1991; Li et al., 2018). However, they 
are inapplicable to irregularly sampled data. Techniques based on wave-field 
continuation operator use the physical characteristics of seismic wave fields 
in subsurface media for restoration, such as the shot gather continuation 
(Bagaini and Spagnolini, 1993), offset continuation (Bolondi et al., 1982) 
and dip-move-out (DMO) processing methods (Deregowski, 1986; Canning 
and Gardner, 1996). Unfortunately, they require considerable computing time 
and the interpolation performance relies heavily on the information of the 
underground medium. The transform-based methods mainly include Fourier 
(Duijndam and Schonewille, 1999; Liu and Sacchi, 2004; Zwartjes and 
Sacchi, 2006), Radon (Thorson, 1985; Sacchi and Ulrych, 1995; Kabir and 
Verschuur, 1995) and curvelet (Hennenfent et al., 2010; Zhang et al,. 2015), 
which find the coefficients in the transform domain via least squares 
inversion and obtain reconstructed data via an inverse transformation. 
However, they are restricted to spatial aliasing and only suitable for band 
limited data. 

   
Recently, rank-reduction methods have achieved significant success in 

seismic data restoration. In this kind of methods, seismic data are assumed to 
be low-rank structure by applying some transformation such as Hankel 
(Trickett et al., 2010) and texture-patch transformation (Ma, 2013). The 
Cadzow filtering methods organize spatial data at each frequency slice into a 
block Hankel matrix, and then apply rank-reduction algorithms via the 
singular value decomposition (SVD) to reconstruct seismic data (Oropeza 
and Sacchi, 2011). However, they are not computationally feasible for 
large-scale data due to operating repeatedly SVD. Several techniques based 
on matrix completion have been adopted to solve the computational problem 
of SVD. Cai et al. (2008) develop one efficient singular value thresholding 
algorithm (IST) and they perform soft thresholding operations on the singular 
values of a certain matrix by a iterative manner. Wen et al. (2012) propose a 
low-rank matrix factorization algorithm (LMaFit) which exploits nonlinear 
successive overrelaxation to interpolate the missing data without performing 
the SVD. Wang et al. (2014) only computes the left and right top singular 
vectors by the power method and avoid the SVD, and they present 
orthogonal rank-one matrix pursuit algorithm (OR1MP) for restoring missing 
seismic data. 

  
In this paper, an iterative adaptive approach (IAA) is introduced to 

reconstruct two-dimensional (2D) seismic data with randomly missing traces. 
The proposed IAA method based on the weighted least squares theory first 
obtains accurate spectral estimation from each frequency slice of given data 
using an iterative adaptive manner. A recovery step of missing data is 
performed via a linear minimum mean-squared error (MMSE) estimator. 
Moreover, the IAA method is applicable for restoration of a large number of 
missing traces. Numerical experiments on synthetic and real seismic data 
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show that the proposed method provides much better performance than the 
existing low-rank methods such as IST, LMaFit and OR1MP. 

 
This paper is organized as follows. We first provide a description of 2D 

seismic data with linear events. Then, we present the IAA method to obtain 
spectral estimation from the avaiable data. Subsequently, we study the 
missing data recovery using a linear MMSE estimator. Next, numerical 
experiments are provided to validate the reconstruction performance of our 
approach for seismic data restoration. Finally, conclusions and future work 
are presented. 

 
 

THEORY ANALYSIS 
 
2D seismic data model 
 

We consider that 2D seismic data with ray parameter which in a small 
window can be represented as follows (Chen and Sacchi, 2015): 

    yn ω( ) = sk ω( )e − j 2πω pk (n−1)Δx

k =1

K

∑ ,   n =1,2!,N ,    (1) 

where 1j = − , N, kp  and ω  denote trace numbers, ray parameter and 
temporal frequency, respectively. Here, xΔ  is the spatial interval between 
two adjacent traces, and ( )ks ω  denotes complex amplitude corresponding to 
the k-th plane wave. Because the following analysis is valid for all 
frequencies, we omit the symbol ω  and let k kp xτ ω= Δ , and then rewrite 
the model (1) as follows: 
 

    yn = ske
− j 2πτk (n−1)

k =1

K

∑ ,   n =1,2,!,N     .          (2) 

The data model in (2) can be equivalently written as follows: 

  

    
1

( )
K

k k
k

s τ
=

= =∑y a As   ,     (3) 

where, a(τ k ) = [1,e
− j 2πτk ,!,e − j 2π (N −1)τk ]T A = [a(τ1),a(τ2 ),!,a(τK )] , 

y = [ y1, y2 ,!, yN ]
T

 and s = [s1,s2 ,!,sK ]
T

, and ( )T⋅ denotes the transpose. 
The number of linear events K is usually unknown in practice. Therefore, the 
regin of interest is discretized into some grid points, and the grid point is 
considered as a potential kτ . 
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    We consider a reconstruction problem of missing traces and the 
observed samples, denoted by y Ω , is corrupted seismic data with missing 
traces. Ω  denotes subscript for available seismic traces and Ω⊂{1,2,!,N }  
(of size L N< ). Given partial samples y Ω , our object is to recover the 
complete data y. 

 
We define the sampling matrices ΩU  and ΩU , which are composed 

of  0 and 1, and obtain the following formula: 

      ,  Ω Ω Ω Ω= =y U y y U y   ,  (4) 

where	 Ω ! 1,2,",N{ } \Ω  is the complementary set of Ω . 

Because the sampling matrices satisfy =T
LΩ ΩU U I  and =T

N L−Ω ΩU U I , the 
missing data model (4) can be further reformulated as follows: 

      yΩ = UΩ
y = U

Ω
As ! A

Ω
s    ,            (5) 

where AΩ
= [a

Ω
τ1( ),aΩ τ2( ),!,aΩ τK( )]  and ( )kτΩa  is a subvector of ( )kτa  

indexed by Ω . 

 
IAA for spectral estimation 
  

IAA is a non-parametric iterative adaptive approach based on weighted 
least squares, which has been recently attracting attention (Zhang et al., 2016; 
Feng et al., 2018). IAA first obtains an accuate spectral estimation from the 
given data by an iterative adaptive manner, and then reconstructs the missing 
data using a linear MMSE estimator. 

 
Let 

   
pk = sk

2
,  k =1,2,!,K 	                (6) 

denote the signal power estimate at the grid point kτ . The interference 
covariance matrix at kτ  in the given data has the following expression 
(Stoica et al., 2009; Xue et al., 2011): 

       ( ) ( ) ( )H
k k k kpτ τ τΩ Ω Ω Ω= −Q R a a   .  (7) 

The covariance matrix of y Ω , denoted by ΩR , is expressed as: 

	 	
1

{ } ( ) ( )
K

H H
k k k

k

E p τ τΗ
Ω Ω Ω Ω Ω Ω Ω

=

= = =∑R y y a a A PA 	 ,        (8) 
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where ( )diag=P p  with p = [ p1, p2 ,!, pK ]
T , and diag( )⋅  denotes the 

diagonal matrix, and ( )H⋅  denotes conjugate transpose. 
  

IAA estimates the spectral amplitude ks  at the grid point kτ  which 
is based on a weighted least squares criterion can be formulated as (Yardibi 
et al., 2010): 

       ( ) 1
2min

k
k ks
s τ −

Ω
Ω Ω−

Q
y a    ,  (9) 

where 
|| x ||W

2 ! xHWx .  
 

The solution to the optimization problem (9) at kτ  is as follows 
(Stoica et al., 2009; Karlsson et al., 2014; Glentis et al., 2011): 

       ŝk=
a
Ω
H (τ k )QΩ

−1 τ k( )yΩ
a
Ω
H (τ k )QΩ

−1 τ k( )aΩ(τ k )
,  k=1,2,!,K   .  (10) 

It follows from that eq. (7) and the matrix inversion lemma, the 
amplitude spectral in eq. (10) becomes the following: 

       ŝk=
a
Ω
H (τ k )RΩ

−1y
Ω

a
Ω
H (τ k )RΩ

−1a
Ω
(τ k )

,  k =1,2,!,K   .  (11) 

Because ΩR  depends on ks  which is unknown, eq. (11) is 
implemented using an iterative manner. The initialization is completed by 
setting LΩ =R I  and  

       
sk
(0)=

a
Ω
H τ k( )yΩ
a
Ω
τ k( )

2
,  k =1,2,!K

  ,  (12) 

where ⋅  denotes the Euclidean norm. 

 
Seismic missing traces recovery 
 

In this section, we use the estimated amplitude spectral ˆks  to restore 
the missing samples Ωy . The linear relationship between the missing data 
and the available data can be expressed as follows (Stoica et al., 2009; 
Karlsson et al., 2014): 
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        ˆ ΩΩ =y Ty    ,   (13) 

where T  is a linear operator. The mean-squared error (MSE) of ˆ Ωy  is as 
follows (Stoica et al., 2009): 
 

{ }1 1 1

1

ˆS ( ) {( ) ( )}

                =Tr{ }

                = Tr ( ) ( )  + r{ }

               r{ }

H

H H

H H

H

E Ω ΩΩ Ω Ω

Ω ΩΩ ΩΩ Ω

− − −
Ω Ω Ω ΩΩΩ ΩΩ Ω ΩΩ ΩΩ

−
ΩΩ ΩΩ ΩΩ

Μ Ε = − −

− − +

− − Τ −

≥ Τ −

y Ty y Ty y

TR T TR R T R

T R R R T R R R R R R

R R R R

  (14) 

where Tr{}⋅  is the trace of a matrix, { }HEΩ Ω Ω=R y y
 and 

       
1

{ } ( ) ( )
K

H H
k k k

k

E p τ τΩ Ω ΩΩΩ Ω Ω Ω
=

= = =∑R y y a a A PA   .  (15) 

The lower bound in eq. (14) can be achieved when  

       1ˆ −
ΩΩΩ=T R R   ,     (16) 

which can ensure the MMSE estimate of Ωy  (Sayed, 2003). 
 

Using eqs. (13), (15) and (16), the estimation of the missing data can be 
computed as follows: 	  

       
H 1 1

1

ˆ ( ) ( )
K

H
k k k

k

p yτ τ− −
Ω Ω Ω Ω Ω ΩΩ Ω Ω

=

⎡ ⎤= =⎣ ⎦∑y a R a A PA R y   .     (17) 

Because of T T
Ω ΩΩ Ω + =U U U U I , the estimation of complete data ŷ  can 

be obtained by using the following formula: 
  

       

T T

T T

1

ˆ ˆ( )

   =

  ( )T T H

Ω Ω Ω Ω

Ω Ω Ω Ω

−
Ω Ω Ω ΩΩ Ω

= +

+

= +

y U U U U y

U y U y

U U A PA R y
  .        (18) 

 

The IAA method for recovering missing traces is summarized as 
follows: 
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Table 1. IAA algorithm for seismic data restoration. 
 

 
Step 1: Input the observed data XΩ

∈ !M ×L  and set ΩU , 
ΩU , ΩA , 

ΩA  and ε . 
Step 2: Apply Fourier transform to ΩX  and obtain FFT( )Ω Ω=Y X . 
Step 3: for 1t M= →   

      ( ,:)tΩ Ω=y Y .  

         pk
(0)= sk

(0) 2 = a
Ω
H τ k( )yΩ

2
a
Ω
τ k( )

4
,  k =1,2,!,K .  

         ( )(1) (0)diag=P p .  
         for 1i t= →   

( ) ( )i i H
Ω Ω Ω=R A P A . 

pk
i( )= a

Ω
H (τ k )RΩ

−1y
Ω
a
Ω
H (τ k )RΩ

−1a
Ω
(τ k )

2
,  k =1,2,!,K . 

           if ( ) ( 1) ( 1)|| || || ||i i i ε− −− <p p p  
              break. 
           else 
              ( )(i+1) (i)diag=P p . 
         end 
          1ˆ=( )T T H −

Ω Ω Ω ΩΩ Ω+y U U A PA R y . 

          ( )ˆ ˆ,:t =Y y . 
      end 
Step 4: Output the reconstructed seismic data ( )ˆ ˆIFFT=X Y .  
 
 
NUMERICAL SIMULATION 
 

We conduct two synthetic examples and one real seismic dataset to test 
the reconstruction performance of the proposed approach. We compares the 
proposed IAA with the IST, OR1MP and LMaFit to restore the seismic data 
with randomly missing traces. To evaluate the restoration performance , we 
define the signal-to-noise ratio (SNR) as follows:   

      

2

10 2SNR 10 log
ˆ
F

F

⎛ ⎞
⎜ ⎟= ⋅ ⎜ ⎟⎜ ⎟−
⎝ ⎠

X

X X
   ,          (19) 

where 
F
⋅  denotes the Frobenius norm, and X  and X̂  denote the complete 

seismic data and its reconstruction, respectively. 
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Fig. 1(a) displays a synthetic seismic data with two linear events. The 

data size is 128×128. Fig. 1(b) shows the results under missing ratio 0.5. In 
this case, the rank parameter of OR1MP and LMaFit is set to 2. Figs. 1(c)-(f) 
show the reconstruction results via IST, OR1MP, LMaFit, and the IAA 
methods, respectively. In this example, IST and OR1MP obtain better 
reconstructed results compared to those of the LMaFit method, and the 
proposed IAA method achieves the best reconstructed result with a 
reconstruction SNR value of 83.04 dB. To more clearly illustrate the results, 
we present the SNR values of the random 10 single-trace original seismic 
data which are removed in observed data using the IST, OR1MP, LMaFit 
and IAA, respectively.  

 
 
 

	
 
Fig. 1. Reconstructions for synthetic data with two linear events. (a) Original data. (b) 
missing ratio: 0.5. (c) IAA , SNR = 83.04 dB. (d) IST, SNR = 48.75 dB. (e) OR1MP, 
SNR = 38.14 dB. (f) LMaFit, SNR = 36.04 dB. 

 
 
 
The corresponding results are shown in Fig. 2(a). It can be seen clearly 

that the proposed IAA method produces the highest reconstruction SNR 
value among the 10 single traces. Fig. 2(b) shows the SNR values using the 
four different methods as the missing ratio increases from 0.1 to 0.7. Fig. 2(b) 
shows that increasing samples result in higher SNR values. It is evident from 
Fig. 2(b) that the reconstruction SNR values obtained by the proposed IAA 
consistently outperform those of the other three methods. In particular, the 
proposed IAA method preserves the high quality reconstruction even though 
the missing ratio is more than 0.6. 
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Fig. 2. (a) SNR values of 10 missing traces via four different methods for linear events.  
(b) Comparisons of SNR values versus missing ratio for linear events. 
 
 
 

Next, we consider the synthetic seismic data with nonlinear events. The 
data size is 131×100 as shown in Fig. 3(a). The corrupted data in which 50% 
of the random traces are missing and is shown in Fig. 3(b). The rank 
parameter of the OR1MP and LMaFit methods is set to 2. The reconstructed 
results using IST, OR1MP, LMaFit and IAA are shown in Figs. 3(c)-(f ). It is 
observed that our IAA method has the best reconstructed result with an SNR 
value of 25.82 dB. In addition, the SNR values of the random 10 single-trace 

 
 
 

	
 
Fig. 3. Reconstructions for synthetic data with tow nonlinear events. (a) Original data. (b) 
Missing ratio: 0.5. (c) IAA , SNR = 25.82 dB. (d) IST, SNR = 15.79 dB. (e) OR1MP, 
SNR = 14.91 dB. (f ) LMaFit, SNR = 9.17 dB. 
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original seismic data that are missing in the observed data using the four 
different methods are shown in Fig. 4(a). The results show that IAA performs 
better on the 10 selected random traces than the other methods. In addition, 
the reconstruction SNR changes as the missing ratio increases from 0.1 to 0.7, 
as shown in Fig. 4(b). Obviously, Fig. 4(b) shows that the IAA method 
achieves higher SNR values under different missing rates, which illustrates 
its good reconstruction performance. 
 
 
 

	
 
Fig. 4. (a) SNR values of 10 missing traces via four different methods for nonlinear events. 
(b) Comparisons of SNR values versus missing ratio for nonlinear events. 
 
 

During the next experiment, we assessed numerical results on real 
seismic data. Fig. 5(a) shows a 2D post-stack seismic data from east Texas. 
The data size is 1000×60. Fig. 5(b) shows the result under the missing ratio 
0.5. For the OR1MP and LMaFit methods, the rank parameter is set to 20. 
Figs. 5(c)-(f ) show the reconstructions using IST, OR1MP, LMaFit and IAA, 
respectively. The SNR value for restoring data using the IAA approach is 
24.36 dB. From an SNR point of view, the proposed IAA method achieves 
high-quality reconstruction. Fig. 6(a) shows a comparison of SNR values of 
10 missing traces using four different methods and the proposed IAA method 
obtains the highest SNR value. we consider the missing ratio varying from 
0.1 to 0.7. It is clearly seen from Fig. 6(b) that the IAA significantly 
outperforms the IST, OR1MP, LMaFit methods. 
 
 
CONCLUSIONS 
 

In this paper, we introduce a new IAA-based method and show it could 
to be used to restore 2D seismic data with randomly missing traces. The IAA 
first estimates the sepctral amptitudes from the seismic temporal frequency 
slices by an iterative adaptive manner. Then, the missing seismic data are 
obtained using a linear MMSE estimator. We test our method on synthetic 
and real post-stack seismic data. Our numerical results show that IAA is an 
effective method which can recovery of the missing traces from 2D seismic 



	
343 

data. The IAA results are the best compared to those obtained from the IST, 
OR1MP, and LMaFit methods, particularly for high missing ratios. Finally, 
our proposed IAA approach can be extended to three-dimensional seismic 
data and data contaminated with noise, which are being investigated and will 
be introduced in a future work. 

 
 

 
 
Fig. 5. Reconstructions for post-stack seismic data. (a) Original data. (b) Missing ratio:0.5 
(c) IAA , SNR = 24.36 dB. (d) IST, SNR = 22.51 dB. (e) OR1MP, SNR = 22.96 dB.  
(f ) LMaFit, SNR = 19.98 dB. 
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Fig. 6. (a) SNR values of 10 missing traces via four different methods for post-stack 
seismic data. (b) Comparisons of SNR values versus missing ratio for post-stack seismic 
data. 
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