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ABSTRACT 
 
Gelpi, G.R., Pérez, D.O. and Velis, D.R., 2019. Seismic wavelet phase estimation by l1-
norm minimization. Journal of Seismic Exploration, 28: 393-411. 

 
 A new method to estimate the phase of the wavelet when only seismic data is 
available is presented. Starting from the classical convolutional model of the seismic 
traces, the proposed technique is based in two hypotheses: (1) the wavelet phase can be 
adequately approximated by a constant; and (2) the series of reflection coefficients is 
non-Gaussian and/or sparse. Under these hypotheses, the deconvolution is viewed as an 
inverse problem regularized by the l1-norm. The optimum wavelet phase is then obtained 
by selecting the constant phase rotation that leads to the deconvolved trace with 
minimum l1-norm. We test the proposed method on synthetic and field data and we 
compare the results against those obtained by the classical method based on the Kurtosis 
maximization of the seismic data. The results show that the proposed technique is more 
accurate and reliable than the Kurtosis-based approach, especially when the effective data 
bandwidth is relatively poor and/or the non-Gaussianity hyphotesis is not fully satisfied. 
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INTRODUCTION 
 
 Wavelet estimation is of paramount importance in the processing and 
interpretation of seismic data, including trace inversion, deconvolution, well 
tie and lithological analysis (Yilmaz, 2001; Lu, 2005; Herron, 2011; Yuan 
and Wang, 2011). While the estimation of the amplitude spectrum does not 
present major difficulties (Robinson and Treitel, 2002), the estimation of the 
wavelet phase is often a challenge when dealing with noisy data, poor 
effective data bandwidth and/or non-sparse reflectivity series.   
 

Usually, the phase estimation problem is treated deterministically 
using the classical convolutional model and well log information (Herron, 
2011; Ma et al., 2015). However, a statistical approach is required when well 
log data is not available in the area of study. In this sense, several authors 
have developed methods to estimate the wavelet phase directly from seismic 
data. Velis and Ulrych (1996), for example, followed the works of Tugnait 
(1987) and Lazear (1993) to estimate mixed phase wavelets using higher-
order statistics. Similarly, methods based on the maximization of the 
Kurtosis (a fourth-order statistics) have been extensively studied by several 
authors (Longbottom et al., 1988; van der Bann, 2008; van der Bann and 
Fomel, 2009; Ma et al., 2015; Xu et al., 2012). Since the Kurtosis of a 
wavelet decreases as the phase diverges from zero, these methods look for 
the constant phase rotation that maximizes the kurtosis of the seismic trace. 
Kurtosis-based methods are robust in presence of noise and effective when 
the reflectivity is sparse. Contrarily, they are rather insensitive to changes in 
phase for data with narrow bandwidth or near-Gaussian reflectivities (Velis 
and Ulrych, 1996). 

 
The method that we propose aims at overcoming the aforementioned 

difficulties. Unlike the Kurtosis-based methods that maximize the Kurtosis 
of the data, we minimize the l1-norm of the deconvolved traces. In practice, 
we obtain the optimum phase by searching for the constant phase rotation 
that leads to deconvolved traces with minimum l1-norm. By virtue of the 
sparse deconvolution process, the method allows us to estimate the phase of 
the seismic wavelet directly from the seismic data even when the effective 
data bandwidth and the reflectivity sparseness are relatively poor. One may 
argue that the two key hypothesis, sparseness and constant-phase, may 
impose strong limitations on the applicability of the technique. However, 
sparseness is an hypothesis that has been effectively used to solve the 
seismic deconvolution problem by various authors (Taylor et al., 1979; 
Oldenburg et al., 1983; Sacchi, 1997; Velis, 2008; Pérez et al., 2013, 2017, 
e.g.). Although the real subsoil structure is rather continuous than sparse, it 
is well-known that actual reflectivity coefficients derived from well-log data 
follow a non-Gaussian distribution (Walden and Hosken, 1986; Velis, 2003). 
Regarding the wavelet phase, it is also well-known that it can be simpler 
than  we think, as shown by Neidell (1991). Indeed, the constant-phase 
assumption has been successfully used for many applications, including 
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well-to-seismic ties, deconvolution and zero-phasing seismic data (Levy and 
Oldenburg, 1987; White, 1988; Neidell, 1991; van der Bann, 2008; Edgar 
and van der Bann, 2011; Wang et al., 2014, e.g.). 

  
The paper is organized as follows. First, we explain the proposed 

wavelet phase estimation method, define all relevant equations and 
parameters, and provide a step-by-step description of the algorithm. Second, 
we test the method using synthetic and field data examples comparing the 
performance of the l1-norm technique against the classical Kurtosis-based 
approach. In addition, we carry out a sensitivity analysis to assess the impact 
of various data conditions on the effectiveness of their results. Finally, we 
summarize the main conclusions. 
 
 
THEORY 

 
 Given a seismic section S composed of nt traces, we aim to obtain an 
estimation of the phase φ of the source wavelet w. To this end, we rely on 
three hypotheses: (1) the convolutional model is valid; (2) the wavelet phase 
φ can be adequately approximated by a constant value; and (3) the series of 
reflection coefficients x associated with each trace is non-Gaussian and/or 
sparse. As described in the Introduction, we assume that the optimum 
wavelet phase is the constant phase rotation that minimizes the l1-norm of 
the sparse-spike deconvolved traces. 
  

Given w, the sparse-spike deconvolution of S is carried out, trace by 
trace, by minimizing 
 

 
where s is the seismic trace, x the reflectivity series and W the convolution 
matrix associated with w. The cost function J(x) is composed of two terms 
that impose different constraints on x. The first term represents the misfit 
between the modeled and the observed data. Its minimization ensures that 
the estimated solution honors the observed data within a given tolerance. 
The second term represents the regularization term. Its minimization 
promotes sparse-spike solutions. The overall impact of the regularization is 
controlled by the trade-off parameter λ, which we must determine 
beforehand.  
 

For the sake of simplicity, in this work we explore the space of the 
phase values using a grid search procedure, although more efficient 
alternatives like gradient-based methods can be used. In each step of the grid 
search the rotated wavelet is given by 
 



	396 

where φ is the constant phase rotation, w0 is a zero phase wavelet and HT{·} 
is the Hilbert transform (Levy and Oldenburg, 1987; Robinson and Treitel, 
2002). We obtain the zero phase wavelet by calculating the amplitude 
spectrum average over all available traces within a given time-offset window 
and performing the inverse Fourier transform. To improve the estimation, 
we apply a Hamming taper to smooth the average spectrum and to include 
some prior information about the wavelet length if it is available (van der 
Bann, 2008). 
  

For each rotated wavelet, we carry out the sparse-spike deconvolution 
of each trace s by minimizing eq. (1). Then, and for the sake of robustness, 
we assign the mean value of all the l1-norms of the estimated reflectivities to 
the corresponding phase rotation. Once the grid search procedure is 
completed, we choose the optimum phase rotation as the one that leads to 
the reflectivity with minimum mean l1-norm. It is worth notice that rotations 
up to ±20◦ do not significantly modify the shape of the wavelet and it is not 
easily distinguished at a glance (Levy and Oldenburg, 1987). Therefore, 
solutions differing within that range are equally acceptable. Algorithm 1 
details the aforementioned process. 
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Step 6 in Algorithm 1 repeatedly requires the minimization of eq. (1). 
The field of study of the algorithms developed to efficiently perform this 
task is vast and is constantly growing. Just to give some examples we can 
name the algorithms IRLS (Beaton and Turkey, 1974), ISTA (Daubechies et 
al., 2004) or TwIST (Bioucas-Dias and Figueiredo, 2007). In this work we 
use the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and 
Teboulle, 2009), as described in Pérez et al. (2013). FISTA is an extension 
of the classical gradient algorithm to solve large-scale linear inverse 
problems in a simple way. At each iteration only matrix-vector 
multiplications, and no matrix inversions, are required. In this context, 
FISTA provides sparse-spike solutions in a simple and effective way. 
Readers are referred to the cited article for a detailed description of the 
algorithm. 

  
As for the trade-off parameter λ, it is worth to mention that it is not 

unique and may exist a range of λ values for which the corresponding 
solutions honor the observed seismic data equally well. Often, the selection 
of the trade-off parameter is based on personal judgments, especially when 
the data noise is unknown (Farquharson and Oldenburg, 2004). In this 
context, we will show that there is a range of λ values for which the 
minimum of the corresponding l1-norm curves coincide, within a small 
tolerance error, with the actual phase. 
 

 
NUMERICAL RESULTS 
 
 We consider 3 synthetic examples and one field data example. The 
first synthetic example aims at demonstrating that the selection of the trade-
off parameter in eq. (1) is not critical. The second example shows a 
statistical sensitivity analysis of both the proposed and the Kurtosis-based 
methods to data bandwidth and reflectivity sparseness. In the third example 
we challenge both methods using data generated with a portion of the 2D 
Marmousi2 model (Martin et al., 2006). It is worth noting that in the first 
two examples, the amplitude spectrum of the seismic wavelet is estimated 
directly from the data, as explained in the Theory section. In the third 
synthetic example, the actual amplitude spectrum is used, instead. Finally, 
we applied and compared the two methods on field data considering 
overlapping windows in time to take into account wavelet non-stationarity. 
 
 
Synthetic data examples 
 
Example 1: Selecting the trade-off parameter 
 
 In this example we analyzed the behavior of the estimated phase 
rotations with respect to the elected trade-off parameter λ. The literature 
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reports various methods to select it (Farquharson and Oldenburg, 2004; 
Malinverno and Briggs, 2004; van den Berg and Friedlander, 2008; 
Hennenfent et al., 2008). In general, the selection depends on the noise level 
of the data at hand. It is worth notice that a reckless selection may lead to 
solutions that do not honor the observed data. Even so, in this numerical 
example we show that for the phase estimation a rigorous adjustment is not 
necessary, as there exists a wide range of λ for which the solutions are 
acceptable.  
 

For the analysis we considered the noisy trace shown in Fig. 1b, which 
we generated by convolving a sparse reflectivity series  (Figs. 1a)  with a 
30Hz Ricker wavelet rotated −30°. We then added band-limited Gaussian 
noise with σ = max(|s|)/5 (i.e. S/N = 5). For each phase in the range -90° to 
90°, we deconvolved the trace using 6 different λ’s in the range 0.005 to 0.1. 
Fig. 2 shows how the l1-norm of the deconvolved trace varies with φ for the 
selected 6 different λ values. Despite the wide range of the trade-off 
parameter, we observe that the minima of all the curves are close to the 
expected φ value. This result suggests that the selection of λ is not critical 
for the correct estimation of the wavelet phase. 

  

 
Fig. 1. Synthetic example 1: (a) reflectivity model, (b) noisy trace and (c) deconvoled 
trace using the wavelet phase estimated by the l1-norm method. 
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The optimum phase rotation is finally obtained by selecting the one 
that leads to the minimum l1-norm. The corresponding deconvolved trace is 
shown in Fig. 1c (λ = 0.05). As we can see, the estimated reflectivity clearly 
resembles the actual model, in spite of a visible underestimation of the 
spikes’ amplitudes. This undesired effect is expected when leading with 
sparse solutions, as observed by several authors (Figueiredo et al., 2007; 
Gramfort et al., 2013, e.g.). A debiassing step might be used to properly 
compensate for this amplitude loss (Pérez et al., 2013). 
 
 
Example 2: Sensitivity analysis 
 
 In this example we carried out a sensitivity analysis of the method to 
data bandwidth (BW) and reflectivity sparseness. To this end we generated 
sets of 1D noise-free synthetic data with different BW and sparseness. 
Reflectivities are Bernoulli-Gaussian models where the sparseness can be 
quantified by the percentage P of reflection coefficients identically non-zero. 
We considered values of P in the range 5 to 100% and wavelets with BW in 
the range 20 to 100 Hz, with steps of 2.5 for both variables. The wavelets 
were rotated 45°. Then, for each pair of values P and BW, we generated 100 
realizations, where each realization consisted on generating a trace by 
convolving the rotated wavelet with a random reflectivity with the 
appropriate sparseness. 
 

 
 
Fig. 2. Synthetic example 1: l1-norm curves for λ = 0.005, 0.01, 0.025, 0.05, 0.075 and 
0.1. The arrow denotes the direction of increasing λ. 
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To calculate the effectiveness of the method for any given BW and P 

pair, we estimated the phase from the corresponding 100 traces. Then, from 
those 100 solutions, we calculated the probability of estimating φ within a 
tolerance of ±20°. We carried out this procedure for all values of BW and P 
in the aforementioned ranges. For comparison purposes, we contrasted the 
estimated solutions with those obtained using the classical Kurtosis-based 
method. Contrarily to the well-known variance, a second-order statistics, 
Kurtosis is a fourth-order statistics that preserves phase information. It 
provides a measure for the “tailedness” of the distribution. Then, it can be 
interpreted as a measure of non-Gaussianity. The angle corresponding to the 
maximum kurtosis of the seismic trace determines the candidate wavelet 
phase, because in that case, each wavelet would become zero-phase and 
closer to a spike. 

  
 Fig. 3 shows the results of the sensitivity analysis. The first row shows 
the probability of  estimating the correct phase within ±20°, using both the 
l1-norm and the Kurtosis-based methods. The second and third rows show 
the estimated mean phases and their corresponding standard deviations, 
respectively. In general, we can see that the l1-norm method is more robust 
than the Kurtosis-based method. In effect, the black region, where the 
probability of obtaining the correct phase within the given tolerance is high, 
is much larger for the l1-norm method than for the Kurtosis-based method. 
As expected, the probability increases with BW but decreases with P in both 
cases. The second and third rows of Fig. 3 reinforce these conclusions, 
showing the advantages of the proposed method over the classical Kurtosis-
based technique when data BW and sparseness are relatively poor. Note how 
mean values decrease significantly for large P and/or small BW. This is 
explained by the fact that in these situations, the distribution of the mean 
phase estimates becomes uniform in the search range (i.e., no phase 
information), which in this case is centered at zero degrees. On the other 
hand, the higher the BW and the sparseness, the closer the peak of the 
resulting distribution to the actual phase, as shown in Fig. 3, second row. For 
the sake of completeness, Fig. 4 shows the histograms of the 100 solutions 
corresponding to BW = 40 Hz, and P=5%, 10% and 20%. They show how 
the performance of both the l1-norm and the Kurtosis-based methods 
decrease as the reflectivity models become less sparse, and vice-versa. Still, 
the l1-norm method is more robust than the Kurtosis-based technique, 
consistently showing estimations closer to the actual phase. 
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Fig. 3. Synthetic example 2. First row: Probability of encountering the correct phase 
within a tolerance of ±20° using the l1-norm and Kurtosis-based methods. Second row: 
Estimated mean phases. Third row: Estimated phases standard deviations. 
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Fig. 4. Synthetic example 2: Histograms of the l1-norm and Kurtosis estimations for BW 
= 40 Hz and various P. 
 
 
Example 3: Test on the Marmousi2 model 
 
 In this example we tested the proposed method on 2D synthetic data 
and compared it against the Kurtosis-based approach. To generate the data 
we used a reflectivity that we extracted from the Marmousi2 elastic model 
(Martin et al., 2006), as shown in Fig. 5a. We generated noise-free seismic 
sections by convolving the reflectivity series with Ormsby-like wavelets 
spanning a BW range from 20 to 100 Hz, with a phase rotation of 30°. For 
statistical purposes, we generated 100 realizations by adding band-limited 
Gaussian noise. Figs. 5b and 5c show two sample sections where BW = 
30Hz and 80 Hz, and S/N = 3. Contrarily to the previous two examples, in 
this test we did not estimate the amplitude spectrum from the data. Instead, 
we used the actual spectrum to avoid the errors associated with its estimation 
and focus the analysis on phase information only. 
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Fig. 5. Synthetic example 3: a) Reflectivity model extracted from Marmousi2, b) section 
with BW = 30 Hz, c) section BW = 80 Hz. In both cases, S/N = 3. 
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Fig. 6. Synthetic example 3. Performance of the l1-norm and Kurtosis-based methods:  
(a) noise free data, (b) S/N = 15 and (c) S/N = 3. 
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The results are shown in Fig. 6. The first panel shows the estimated 
phases for the noise-free case. Although most solutions are in a range of 
±20° around the actual phase for both methods, the l1-norm approach was 
more accurate than the Kurtosis-based method for all the tested data BW’s, 
being very accurate even for the lowest BW values. The second and third 
panels of Fig. 6 show the mean estimated phases, and their corresponding 
standard deviations, after the 100 realizations. As expected, the accuracy of 
the solutions improve for increasing BW and S/N ratio. Even so, in both 
cases the mean solutions estimated using l1-norm method overcome those 
estimated using the Kurtosis-based approach, for all BW values. In contrast, 
the Kurtosis-based solutions show smaller standard deviations than the l1-
norm solutions. Thus, for a given BW and S/N, the Kurtosis-based technique 
is more robust than the l1-norm method. On the other hand, its solutions are 
significantly biased, especially for the lowest BW values. 
 

 
 
Fig. 7.  Synthetic example 3: sparse-spike deconvolutions for the cases with BW = 30 Hz 
(first row) and 80 Hz (second row). 
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For illustrative purposes, Fig. 7 shows the corresponding sparse-spike 
deconvolutions of the data shown in Figs. 5b and 5c. In all cases the 
deconvolutions were carried out using λ = 0.01. A slight improvement is 
observed when using the l1-norm phase over the Kurtosis-based one for the 
case with BW = 30 Hz. In the BW = 80 Hz case, the differences are 
negligible. 
 
 
Field data example 

 
 The field section shown in Fig. 8a contains 200 traces, covering a time 
interval of 1.6 s with a sampling interval of 2 ms. To take into account the 
wavelet non-stationarity and possible phase changes throughout the section, 
we followed a strategy similar to that of van der Bann (2008). In this sense, 
we estimated individual wavelets for overlapping windows covering 
different ranges in time, and assigned the corresponding estimate to the 
center of the analysis window. For this example, we selected time windows 
of 0.8 s with an overlap of 0.4 s. This layout gave us a grid of 3 by 1 
windows covering the whole dataset.  
 

Figs. 9a and 9b show the estimated wavelets using the l1-norm and the 
Kurtosis-based approaches, respectively. We observe that in the second and 
third time windows the estimates are similar, with phase differences below 
25 degrees (see Table 1). Contrarily, the phase difference between the two 
estimates for the first window is close to 80 degrees. This discrepancy is 
reflected in the deconvolved sections shown in Figs. 8b and 8c, where the 
greatest differences are observed for the reflectors between 0.3 and 0.4 s. 
Figs. 8d and 8e show in detail the regions indicated with the white rectangles 
in Figs. 8b and 8c. These sparse-spike deconvolved sections were obtained 
after minimizing eq. (1) with λ = 0.75 and using the corresponding wavelets 
shown in Figs. 9a and 9b. For the sake of completeness, Fig. 10 shows the 
results for an isolated trace (trace #100). We can observe that the 
deconvolution using the wavelets estimated by means of the l1-norm method 
(Fig. 10b) is more sparse and shows more well-defined reflectors than the 
deconvolution that relies on the wavelet estimates by means of the classical 
Kurtosis-based approach (Fig. 10c). 
 

 
Table 1. Field data example: estimated phases for each overlapping window (in degrees). 

 
 
 
 
 
 
 

Time 
window 

l1-norm Kurtosis 

1 -38 38 
2 -83 -58 
3 -53 -76 
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Fig. 8. Field data example: (a) Seismic section; (b) and (c) sparse-spike deconvolved 
sections using the wavelets estimated by means of the l1-norm and the Kurtosis-based 
approaches, respectively; (e) and (d) regions indicated by the white rectangles in (b) and 
(c). The black arrows show the main differences between the two solutions. 
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Fig. 9. Field data example: wavelets estimated in each analysis window using (a) the l1-
norm method, and (b) the Kurtosis-based approach. 
 
 
 
CONCLUSION 

 
 Well-logs are usually considered as a ground truth to obtain wavelet 
phase information. However this information is not always available in the 
area of study. The method we present in this work can unveil the phase of 
the seismic wavelet directly from seismic data without any additional 
information. It assumes a non-Gaussian reflectivity and a constant phase. 
The optimum phase can be easily estimated by searching for the sparse-spike 
deconvolved trace whose l1-norm is minimum. We showed that the phase 
estimates are rather inaccurate when the non-Gaussian hypothesis is not 
sufficiently fulfilled (Fig. 3). Even though, the proposed method provided 
usefull estimates for rather non-sparse reflectivities. We tested the proposed 
approach on synthetic 1D and 2D data under various S/N ratios, wavelet 
bandwidths and degrees of reflectivity sparseness. In all cases the proposed 
method showed more consistent and accurate estimates than those obtained 
using the classical Kurtosis-based technique. Contrarily, the Kurtosis-based 
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approach was more robust to noise, but yielded biased estimates that rapidly 
deteriorate with decreasing bandwidth and sparseness. Finally, we illustrated 
the new approach using field data and overlapping windows to take care of 
the wavelet non-stationarity. We showed that the phase estimates derived by 
means of the l1-norm method led to more sparse and well-defined 
reflectivities than those obtained by means of the classical Kurtosis-based 
approach. 
 
 

	

 
Fig. 10. Field data example: (a) trace number 100; (b) and (c) sparse-spike deconvolutions 
using the wavelets estimated by means of the l1-norm and the Kurtosis-based approaches, 
respectively. 
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