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ABSTRACT 
 
Cai, H.P., Wu, Q.P., Ren, H.Y., Li, H.Q. and Qin, Q., 2019. Pre-stack texture-based 
semi-supervised seismic facies analysis using global optimization. Journal of Seismic 
Exploration, 28: 513-532. 
 

There are some problems in conventional seismic facies analysis methods, such as 
easily plunge into local optimal solution, low sensitivity and without using prior 
knowledge. To solve the above-mentioned problems, we propose a pre-stack 
texture-based semi-supervised seismic facies analysis method with global optimization. 
Firstly, the pre-stack seismic texture attributes are introduced to highlighting the 
information of micro-spatial and amplitude variation with azimuth/offset in seismic 
reflection data. Then, the self-organizing map (SOM) neural network is used to compress 
a large amount of redundant information of the samples on the premise of maintaining the 
topology of the data. Finally, the artificial bee colony (ABC) algorithm is used to realize 
the global optimization of the clustering of neurons in the SOM output layer under the 
constraints of prior knowledge. Besides, according to the probability estimation results 
based on the probabilistic neural network (PNN), we define the confidence measures to 
quantitative analysis the classification results. The synthetic test and practical application 
results show that the proposed method can not only significantly improve the recognition 
ability of the seismic microfacies, but also improve the horizontal resolution and the 
accuracy of the seismic facies map. These satisfactory results illustrate the proposed 
method is an effective tool for seismic facies analysis. 
 
KEY WORDS: seismic facies analysis, pre-stack seismic texture attributes,   

semi-supervised learning, self-organizing map (SOM), 
 artificial bee colony (ABC), probabilistic neural network (PNN). 
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INTRODUCTION 
 

Seismic facies analysis is based on the division of seismic sequences, 
the seismic waveforms in a particular sequence are divided into different 
seismic facies regions by using the parameters difference, and then the 
inferences of lithofacies and sedimentary environment can be made. Seismic 
facies analysis has become an indispensable method in the field of 
describing and detecting seismic reservoir characteristics (Nivlet, 2007). In 
recent years, referring to the principle of pattern recognition and basing on 
seismic-data-driven, seismic attributes and other auxiliary information to 
describe the spatial distribution of geological bodies can be obtained only 
from the massive seismic data, and there are gradually formed some 
unsupervised seismic facies analysis methods whose theory and method are 
more consummate (de Matos et al., 2007). Zhang et al. (2015) combine the 
SOM with particle swarm optimization (PSO) algorithm to implement an 
unsupervised seismic facies analysis, and improve the calculation efficiency 
and the accurate of the facies map. Roy et al. (2014) and Zhao et al. (2015) 
using the generative topographic mapping (GTM) classification algorithm to 
obtain a probability estimates of whether a given voxel is falls into a specific 
category, and implement the seismic facies estimation. Song et al. (2017) 
adapt the regularized fuzzy c-means (RegFCM) algorithm to implement the 
seismic facies analysis with spatial constraints, and improve the spatial 
continuity of the facies map. Song et al. (2018) introduce an adaptive phase 
K-means algorithm to alleviate the horizon error in waveform classification. 

 
K-means clustering method is an important method for unsupervised 

seismic facies analysis. It divides N objects into K clusters by making higher 
similarity in each cluster and lower similarity between the different clusters, 
the measurement of its similarity can be calculated by the Euclidean distance 
from each object to their cluster center. Clustering analysis of seismic data 
by K-means requires a predefined number of clusters, in addition, it is also 
vulnerable to noise and outliers, and can not keep the topology of input data. 
Kohonen (1982) proposed the SOM neural network, which is an 
unsupervised pattern recognition method. By maintaining the topology of the 
original data through the output layer neurons, SOM has been widely used in 
seismic facies analysis (Marroquín, 2009). However, the mapping between 
output neurons and facies categories may lead to fuzziness or even confusion 
of facies boundaries when SOM is used to process strong redundant seismic 
data. In addition, this method does not use the valuable prior knowledge such 
as drilling, logging and geology. 

 
Many existing seismic facies analysis methods are based on raw 

seismic waveforms. However, due to the effect of earth filtering, the 
frequency band of seismic data shows low frequency and narrowband 
characteristics, which makes it difficult for original seismic waveforms to 
describe the subtle changes in seismic reflection information. In the past 
decades, significant progress has been made in various seismic attributes 
calculation methods applied to underground exploration (Chopra and 
Marfurt, 2005). Many geophysicists combine time frequency analysis, 
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instantaneous attributes, elastic parameter inversion and texture analysis with 
SOM to identify seismic facies automatically (de Matos et al., 2007). Faced 
with numerous seismic attributes，Qi et al. (2016) introduce a degree for each 
attribute by computing the correlation coefficient between histogram for the 
attribute and histograms for a suit of user-defined facies, and make the 
choice of attributes, then they combine the GTM and Bhattacharyya distance 
to obtain the probability that a given voxel belongs to a specific facies. Gao 
(2006, 2011) defined the seismic texture as the spatial arrangement of the 
adjacent seismic amplitude, and pointed out that compared with the average 
amplitude in identifying the seismic characteristics, the seismic texture 
analysis can effectively emphasize the spatial variability of the seismic 
reflection amplitude. In recent years, seismic texture attributes have been 
applied to structure interpretation (Gao, 2006), detecting salt bodies (Tamir 
and Ghassan, 2014; Shafiq et al., 2015; Guillen, 2015)，reservoir prediction 
and characterization (Chopra and Alexeev, 2006; Yenugu, 2010), 
sedimentary environment analysis (Ruffo, 2007; Angelo, 2009). Chopra 
(2006), Gao (2011), Chuai (2014), have successfully applied the seismic 
texture attributes to implement the seismic facies analysis, but all of them are 
based on post-stack seismic data, Marfurt (2014) pointed out that the 
development of pre-stack attributes is an important part of the future 
development of seismic attributes. Song et al. (2016) proposed a method of 
seismic facies analysis based on pre-stack seismic texture attributes and 
preliminarily used it to identify the development zones of faults and karst 
caves. 

 
In many research fields, unlabeled data is relatively easy to obtain, 

but the acquisition of labeled data requires massive resources, in order to 
make full use of the valuable label information, semi-supervised learning 
methods have been widely used in these fields such as network intrusion 
detection (Erman et al., 2007), image classification (Hong and Zhu, 2015; 
Dornaika and Traboulsi, 2017), brain image segmentation (Portela et al., 
2014; Saha et al., 2016), text classification (Zhang et al., 2015; Altinel and 
Ganiz, 2016), seismic facies analysis (Qi et al., 2016), and porosity 
estimation (Lima et al., 2017). This paper propose a pre-stack texture-based 
semi-supervised seismic facies analysis method with global optimization, 
this method can not only extracts more information of micro-spatial and 
amplitude variation with azimuth/offset from pre-stack seismic data, but also 
effectively utilizes the small amount of prior label information. This 
proposed method optimizes the mapping relationship between the SOM 
output layer and the seismic facies, and alleviates the confusion of facies 
boundary in the seismic facies map. 

 

PRINCIPLE AND METHODS 

In order to obtain a more accurate seismic facies map, this paper 
proposed a semi-supervised artificial bee colony based self-organizing map 
(SSABC-SOM) clustering method. Qi et al. (2016) use GTM to map the 
attributes onto a latent space, and by calculating the Bhattacharyya distance 
between the probability density function (PDF) of the testing voxel and the 
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PDFs of the supervised voxels on the latent space, the probability that this 
given voxel belongs to a specific facies is obtained. The proposed 
SSABC-SOM method uses the ABC algorithm and the existing labels 
information to optimize the clustering of association neurons in SOM output 
layer, and finally obtains the optimal mapping from the output layer neurons 
to the seismic facies. Meanwhile, we define the confidence measures to 
quantitative analysis the result. The workflow of our seismic facies analysis 
method is shown in Fig. 1, and the specific processes of the method are as 
follows:  

1) Extract the texture attributes of each reflection bin from the 
pre-stack seismic data. 

2) Train the SOM network based on the training set which contains 
the labeled and unlabeled samples. 

3) Label the response neurons in the SOM output layer of the labeled 
samples and clarify their Must-link and Cannot-link relationships.  

4) Make an optimizing K-means clustering of SOM output layer 
neurons by using the ABC algorithm and the clarified connection 
relationships that obtained from step 3. 

5) Repeat step 4 until the stop condition of ABC is satisfied, and the 
optimal mapping relationship between the SOM output neurons and the 
seismic facies is obtained.  

6) Input the samples into the SOM network, recording their BMUs, 
and their corresponding seismic facies are obtained according to the 
optimized mapping relationship.  

7) Evaluate the results by calculating the confidence indicators 
defined in this paper. 

 
 

Pre-stack texture attributes 
 
Compared with the characteristics of a single seismic waveform, 

texture features consider not only the response waveform of a reflection 
itself, but also the spatial information of multiple directions, which is an 
integration of seismic waveforms, spatial information and reservoir 
characteristics. Under the assumption that the spatial distribution of each 
pixel in the image contains the image texture information, Haralick et al. 
(1973) proposed a grayscale co-occurrence matrix (GLCM) statistical 
method and defined 14 texture attributes, in research of Ulaby, et al. (1986) 
they pointed out that in 14 GLCM texture attributes, only energy, contrast, 
homogeneity and correlation are irrelevant. Fig. 2 shows the process of 
building the GLCMs of a 2D grayscale image. The pre-stack texture 
elements and GLCMs statistic directions of a reflection bin are shown in Fig. 
3 and Table 1, respectively. Nx, Ny, Nz shown in Fig. 3 are the length of 
each gather volume in the inline, crossline and time directions. M represents 
the number of traces from one reflection point. Typically, Nz is related to the 
sampling rate of the waveform, Nx and Ny are range from 3 to 9 (Gao, 
2007). 
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Extract pre-stack seismic texture attributes

Training SOM network

Clarifying the Cannot-link &  Must-link relationships 
between the response neurons of the labeled samples

Optimizing the clustering of association neurons in the 
SOM output layer by the ABC algorithm and the clarified 

connection relationships

Inputting samples and mapping their BMUS to seismic 
facies

Generating facies maps

Confidence evaluation

SSABC-SOM

 
Fig. 1. Workflow for seismic facies analysis. 

 
Fig. 2. The process of building GLCMs. 
 

 
 

Fig. 3. Pre-stack texture elements of a reflection bin. 



 
518 

Table 1. GLCMs statistic directions of each reflection bin. 

 

Directions 
Orientation 

Inline Crossline Time Gather 
Direction 1 1 0 0 0 
Direction 2 0 1 0 0 
Direction 3 0 0 1 0 
Direction 4 1 1 0 0 
Direction 5 -1 1 0 0 
Direction 6 0 0 0 1 

 

After extracting the pre-stack texture elements of a reflection bin, we 
normalize the seismic data according to formulas (de Matos et al., 2011) 
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where D(x,y,z,m) represents the normalized element value, Ng is the matrix 
size of GLCM, K(x,y,z,m) is the amplitude value of the sample located in 
(x,y,z,m) in the pre-stack texture elements and Round() is the integer function. 
In a direction 𝑤  from Table 1, the GLCM element E(i,j) and its 
corresponding probability value pij of this direction can be calculated by 
formulas 
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After building the GLCMs, four irrelevant texture attributes of 
energy, contrast, homogeneity and correlation are extracted from each 
GLCM by formulas 
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Self-organizing map 

SOM is a kind of unsupervised competitive learning method, which 
is composed of 2-layer neurons. The network architecture is shown in Fig. 4, 
the first layer is the input layer whose dimensionality is consistent with the 
input sample vector, and the second layer is the output layer, in which an 
output layer node represents a neuron and these neurons are arranged in 
rectangular or hexagonal rules. A full connection is taken between the input 
and output layer while the neurons in the output layer are lateral inhibitory 
connections. Suppose the training set {X1,…,XN} containing N vectors and 
each vector represents the texture attributes extracted from pre-stack seismic 
data. In each training cycle i(𝑖 ∈ [1,𝑁]), the best math unit (BMU) whose 
weight vector is most similar to the sample can be found by identify the 
shortest distance between the sample Xi and each neurons in the output layer. 
Once the BMU is determined, the weight vectors of the BMU and the 
neurons close to it can be updated by formula 

 ( 1) ( ( )* ( ( , ), )*( - ( )))( )j j j i jtW W t dist BMU v t X W tt hη+ = +  ,     
 

(9) 
 

where Wj represents the weight vector of BMU and its neighborhood neurons, 
η(t) is a learning rate that decreases with time, h( ) is the neighborhood 
function whose independent variable dist(BMU, vj) is the distance between 
the neuron vj and the BMU, generally, h( ) set as a Gaussian function and is 
shrinks with time. After training, the adjacent output layer nodes can be 
considered to correlate the similar samples in the input data. 
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Fig. 4. Network architecture of SOM. 

 

Artificial bee colony algorithm 

ABC is a swarm intelligent optimization algorithm proposed by 
Karaboga(2005) by imitating the intelligent foraging behavior of bees. This 
algorithm can be divided into 4 parts: initiating food sources, employed bees 
search food, onlooker bees follow and scout bees replace food sources. A 
food source indicates a potentially feasible solution to the problem, and its 
initialization method is 

 * ( )mj j j jx l r u l= + −  ,                                (10)  
 

 
where xmj represents the j-th dimension element of the m-th food source, note 
that m and j are the numbers selected from set {1,2,…,Ne} and set {1,2,…,D}, 
respectively. Ne is the size of the employed bees and D is the dimension size 
of the solution, r is a random number within [-1, 1], and lj, uj represent the 
lower and upper bound of the j-th dimension of the solution, respectively. 
After initializing Ne food sources, employed bees exploit these food sources 
and new sources around them. The new food sources are produced in the 
following ways 

 *( )mj mj kj mjv x r x x= + −  ,   (11)  

where vmj represents the j-th dimension element of a new food source around 
the food source xm, xkj is the j-th dimension element of an existing source xk, 
k is a random number within [1, Ne]. Once the new food source vmj is 
generated, the corresponding employed bee makes a greedy selection 
between xm and vm based on the fitness value of these two food sources. The 
fitness value of food source xm is calculated by formula 
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where f (xm) is the objective function value of the food source xm. After all 
employed bees completing their search, onlooker bees selectively exploit 
foods around the exploited food sources base on the information returned by 
employed bees. The probability of the m-th food source be chosen by an 
onlooker bee is 

 
1

m
m Ne

ii

fitness
p

fitness
=

=
∑  . ((13)  

 
Every onlooker bee first selects the food source to follow according 

to the roulette wheel mechanism, and uses the formula (11) to find a new 
food source around the chosen one. Then the onlooker bee makes a greedy 
selection between the new food source and the chosen one base on the 
formula (12). Assuming that the maximum allowable number of foraging is 
limit, if a food source has not been replaced after limit times of foraging, it 
means that this food source may trap in local optimum, the corresponding 
employed bee will give up this food source and put it into a taboo table. 
Then this employed bee becomes a scout bee and uses the formula (10) to 
find a new food source outside the taboo list. The best food source will be 
updated after each round of foraging. The algorithm loops through the 
operation of employed bees, onlooker bees, and scout bees until the stop 
condition is met and the optimal food source is obtained. 

 
 

Time complexity analysis 
 
The SSABC-SOM process consists of three steps, (1) training SOM 

network, (2) introducing label information, (3) optimal clustering of neurons 
in SOM output layer. Let N be the number of samples in the training set, D 
be the dimension of each sample, X be the number of labeled samples, K be 
the number of facies and M be the number of neurons in the output layer of 
SOM network. Assuming that the partial time complexity of the first step is 
O(A), we define N in terms of S as N = O(S), then the O(A) is equal to O(S2) 
(Roussinov, 1998). The time complexity of K-means is O(nkl), where n is 
the number of elements, k is the number of cluster centers and l is the 
number of iterations (Jassar, 2016), therefore, the time complexity of 
clustering SOM output layer neurons using K-means is O(MKL), where L is 
the maximal iteration. We can conclude that the overall time complexity of 
the traditional unsupervised method based on SOM and K-means is O(A) + 
O(MKL). In step 2, the time complexity of finding the corresponding 
neurons with labeled samples is O(XM), and we can obtain the constraint 
relationship in O(1), therefore the time complexity of this step is O(XM) + 
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O(1). The upper bound of the complexity of ABC algorithm is O(BDZ), 
where B is the total number of bees and Z is the maximal iteration 
(Banharnsakun, 2011), therefore, the time complexity of the steps 3 is 
approximated to O((M-Y)KL*BDZ), where Y is the number of neurons 
corresponding to the labeled samples. We can conclude that the overall time 
complexity of the proposed SSABC-SOM method is approximated to O(A) 
+ O(XM) + O((M-Y)KL*BDZ). In general, the maximal M should be equal to 
5* 𝑁 (Estévez, 2012). In practical seismic facies analysis, N is usually 
large enough to make N >> 𝑁, which makes O(A) >> O(MKL) and O(A) 
>> O(XM) + O((M-Y)KL*BDZ), therefore, compared with the traditional 
method, the SSABC-SOM method does not increase significant time 
complexity, the overall time complexity mainly depends on O(A). 

 
 
Confidence analysis 

 
The seismic facies maps obtain from clustering methods such as 

SOM used in this study only show the label, which means it can not make a 
definite quantitative analysis on the classification result of a certain sample, 
and can not get the indicators that evaluate the overall clustering results. On 
the basis of SSABC-SOM method and combining with the PNN, this paper 
calculates the probabilities of each sample that belongs to each category, and 
the indicators for measuring the classification effect is defined according to 
the calculated probabilities. 

 
PNN is a non-parametric probability density estimation method that 

based on Bayes classification rule and originated from Parzen probability 
density estimation method, it is consist of four layers of neurons, including 
input layer, pattern layer, summation layer and output layer. The network 
structure of the network is shown in Fig. 5. 

 

 
Fig. 5. Network structure of PNN. 
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In this paper, the optimal clustered neurons in the SSABC-SOM 
output layer are set as the pattern layer of the PNN network. For a sample x, 
the probability that this sample belongs to a class is calculated by formula 

 

 
1

|| ||1
( | ) ( )

N
i

d
ik

k x w
p x k W

N σ σ=

−
= ∑  , (14)  

where p(x|k) is the probability that the sample x belongs to the k-th class, Nk 
is the number of neurons belonging to the k-th class in the SSABC-SOM 
output layer, d is the dimensionality of x, wi is the weight vector of the ith 
neuron within the k-th class in the output layer of SSABC-SOM. σ is the 
scale factor, W( ) is Kernel function and the Gaussian function is taken in 
this paper. 
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By the formulas (14) and (15), the probabilities of the sample 

belonging to each class under the SSABC-SOM network is obtained. For a 
sample x, three indicators distinction (D), affiliation (A) and confidence (C) 
for quantitative evaluation the clustering effect are defined as follows 
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=  , (16) 
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2

D AC +
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where Large(p,1) and Large(p,2) represents the maximum and 
second-largest probability of ( | ), [1, ]cp x k k N∈ , respectively. In other 
methods such as FCM and LIBSVM, Large(p,1) and Large(p,2) represent 
the same meaning, that means we can use these indicators to evaluate the 
results obtained by these methods. 
 

Distinction describes the degree of separation of the identified facies 
from the rest facies, the higher the measurement, the more obvious the 
separation from other facies, and the less likely it is to be confused. 
Affiliation describes the fusion between the identified facies and the facies 
representative, the higher the measurement, the more similar it belongs to 
this category. Confidence combined distinction and affiliation, the higher 
confidence indicates that the classification result of the sample is more 
reliable. 
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SYNTHETIC TEST 
 
  To verify the superiority of pre-stack texture features and the 
effectiveness of the proposed method, we use 30 Hz Ricker wavelet and the 
Aki-Richards approximation (Aki and Richards, 1980) to generated 4D 
synthetic pre-stack seismic data based on the stratigraphic structure model 
shown in Fig. 6a. This model contains four layers construct media whose 
S-wave propagation velocities, P-wave propagation velocities and densities 
are shown in Fig. 6, the second layer contains three different large seismic 
facies and a micro fault. In this study, 40 pre-stack seismic traces collected at 
different angles of incidence are simulated. In order to increase the 
complexity of the signals, we add Gaussian noise filtered in the seismic 
bandwidth (10-15 Hz 50-60 Hz) (Song, 2017) to the 4D synthetic traces with 
S/N = 8 dB. After adding noise, the pre-stack seismic traces at the locations 
of A1, A2, A3 and A4 are shown in Fig. 7. 
 

 

Fig. 6. (a) 3D stratigraphic structure model. (b) Geologic model. 
 
  After the stacking processing, the partial post-stack seismic data 
section along AA’ line are shown in Fig. 8a, and the post-stack seismic data 
at the locations of A1, A2, A3 and A4 are shown Fig. 8b. This study chose the 
data set from the 40 ms time window around the bottom of second layer to 
analyze seismic facies. Comparing Figs. 8 and 7, the slight differences 
between pre-stack traces were disappeared after stacking, which results in a 
high similarity of their post-stack waveforms on the target interval. We 
obtained the facies maps using traditional LIBSVM, SOM, FCM and the 
SSABC-SOM method, the results are shown in Fig. 9, comparing the facies 
maps obtained from the same method, pre-stack texture features obtained 
relatively good facies map while post-stack waveforms are completely 
indistinguishable, which proves the superiority of pre-stack texture features 
in describing seismic facies. Comparing the facies map obtained from the 
traditional SOM method (Fig. 9f) and the facies map obtained from the 
SSABC-SOM method (Fig. 9h), it proves the advantages of the global 
optimization. Comparing Figs. 9e, f, g and h, these facies maps confirm the 
effectiveness of the proposed SSABC-SOM method, it can not only obtain 
the correct facies  distribution with a few errors, but also depict the 
microfacies well. 
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Fig. 7. (a), (b), (c) and (d) are the pre-stack seismic traces of location A1, A2, A3 and A4, 
respectively. 
 

 
 
Fig. 8. (a) Partial post-stack seismic data section along AA’ line. (b) Post-stack seismic 
waveform at location A1, A2, A3 and A4. The red line denotes the target horizon, the green 
lines represent the top and bottom of the windowed interval. 
 

 
These classification results are also quantitatively analyzed by the 

confidence analysis method proposed in this paper. We compare the 
indicators of distinction, affiliation and confidence of each sample, and the 
results are shown in Fig. 10. We also calculate the average values for 
different indicators of each class, and the results are shown in Table 2, this 
table shows that the three indicators for different methods based on 
post-stack waveform are very close to 0, which proves that these 
classification result are completely undesirable, and in those results based on 
pre-stack texture features, the proposed SSABC-SOM method achieves the 
best indicators in general. Figs. 10a, b and c show the classification 
indicators based on LIBSVM method, due to insufficient supervision 
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information, indicators in the second, third and fourth class are relatively low, 
and the traditional SOM method still does not perform well in these classes. 
The indicators based on FCM method are shown in Figs. 10g, h and i, 
although they have been improved in the fourth class, they remain poorly 
represented in the second and third classes. In Figs. 10j, k and l, the 
indicators of all classes are excellent, even on the microfacies and 
boundaries, there still can get large values, which quantitatively confirms the 
effectiveness of the proposed SSABC-SOM method. 
 

 
 
Fig. 9. Facies map obtain from (a) LIBSVM, (b) SOM, (c) FCM and (d) SSABC-SOM 
based on post-stack waveform. Facies map obtain from (e) LIBSVM, (f ) SOM, (g) FCM 
and (h) SSABC-SOM based on pre-stack texture features. 
 

 
 
Fig. 10. Distinction, affiliation and confidence maps. (a), (b), and (c) corresponding to the 
result in Figs. 9e. (d), (e), and (f ) corresponding to the result in Figs. 9f. (g), (h), and (i) 
corresponding to the result in Fig. 9g. (j), (k) and (l) corresponding to the result in Fig. 9h. 
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Table 2. Confidence measures of different methods with post-stack waveform and pre-stack texture features 

 

CLASS 

Indicators 

 

Methods 

Post-stack waveform based Pre-stack texture attributes based 

Distinction Affiliation Confidence Distinction Affiliation Confidence 

1 

LIBSVM 

0.00313 0.00177 0.00245 0.90270  0.82581  0.86425  
2 0.00162 0.00063 0.00113 0.05252  0.02777  0.04015  
3 0.00201 0.00104 0.00153 0.07084  0.03900  0.05492  
4 0.00348 0.00196 0.00272 0.32407  0.19405  0.25906  

Overall 0.00256 0.00135 0.00196 0.33753  0.27166  0.30460  
1 

SOM 

0.00351 0.00198 0.00270 0.90350 0.83068 0.86709 
2 0.00120 0.00060 0.00089 0.04853 0.02532 0.03692 
3 0.00282 0.00134 0.00211 0.12711 0.06908 0.09810 
4 0.00358 0.00190 0.00273 0.33961 0.21085 0.27523 

Overall 0.00280 0.00151 0.00212 0.35470 0.28398 0.31933 
1 

FCM 

0.00423 0.00212 0.00318 0.98125  0.96757  0.97441  
2 0.00122 0.00061 0.00092 0.26746  0.16155  0.21450  
3 0.00302 0.00152 0.00227 0.26301  0.15865  0.21083  
4 0.00371 0.00186 0.00279 0.93749  0.88762  0.91256  

Overall 0.00305 0.00153 0.00229 0.61230  0.54385  0.57808  
1 

SSABC-S
OM 

0.00472  0.00237  0.00354  0.98062  0.96481  0.97272  
2 0.00488  0.00245  0.00366  0.95889  0.92606  0.94247  
3 0.00462  0.00232  0.00347  0.75449  0.65946  0.70698  
4 0.00436  0.00219  0.00328  0.98254  0.96925  0.97589  

Overall 0.00465  0.00233  0.00349  0.91914  0.87990  0.89952  

 
 
APPLICATION TO FIELD DATA 
 
  We now apply the proposed method to a data set collected from a 
known area in southwestern of China, on the interest horizon, the 
development thickness of karst body in each well position is obtained 
according to the log data. A crossline section of this post-stack data set is 
show in Fig. 11a. We extract the data set according to a time gate of [-15 ms, 
+35 ms] around the interest horizon to analyze the facies, the continuity 
property slice along the interest horizon is shown in Fig. 11b. According to 
logging data, well M11 and M19 are located in strong karst environment, 
well M8, M18 and M204 are located in karst area, and well M205 is located 
in non-karst environment. According to these information, this study divides 
this work area into three facies: strong karst, karst and non-karst. This 
pre-stack seismic data of this work area contain six wide azimuth gathers 
with different azimuth, we extract the pre-stack texture features of this data 
set, and then choose the FCM method that performed better than LIBSVM 
and SOM in synthetic test to compare with the proposed SSABC-SOM 



 
528 

method. Fig. 12 shows the final horizontal distribution maps of karst 
development thickness. In term of the qualitative analysis, comparing the 
result obtained by FCM method, the result obtained by SSABC-SOM is 
clearer and neater, and the facies map is more consistent with the continuity 
property slice shown in Fig. 11b. In term of correct classification of well 
locations, in the map obtained by FCM method, only half of the wells are 
correctly classified, the locations of well M19 and M8 are classified as 
non-karst area, and the location of well M204 is classified as strong karst 
area, which is not consistent with the logging information. In the result 
obtain by SSABC-SOM method, the environment of each well are correctly 
classified. 
 

 
 
Fig. 11. (a) The crossline section of the post-stack data set along the line AA’ shown in 
(b), the used data is the interpretation horizon marked in green line and the data within a 
time gate of [-10ms, +30ms] around the horizon. (b). The continuity property slice along 
the interest horizon. 
 

 

Fig.12. Horizontal distribution maps of karst development thickness, (a) is obtained by 
FCM method, (b) is obtained by SSABC-SOM method.  

 
For quantitative analysis, both the results shown in Fig. 12 are 

analyzed by the confidence analysis method presented in this paper, and the 
results are shown in Fig. 13. In most locations, indicators of Fig. 12b are 
larger than indicators of Fig. 12a. We calculate the percent statistical 
distribution of distinction, affiliation and confidence for two results by 
formula 
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( ( ) *100iNp i
N

= %  , 
 
(19) 

9 
where Ni represents the number of samples whose indicator value is i, N is 
the total number of samples. The percent statistical distribution results are 
shown in Fig. 14. The percentages for result of SSABC-SOM method are 
more in high indicators section and less in low indicators section than that 
for result of FCM method, which proves the result of the proposed 
SSABC-SOM method is more reliable. 
 

 
 
Fig. 13. Indicator maps of the results shown in Fig. 12. (a), (c) and (e) is the distinction, 
affiliation and confidence map of the result obtained by FCM method. (b), (d) and (f ) is 
the distinction, affiliation and confidence map of the result obtained by SSABC-SOM 
method. 
 

 
 

Fig. 14. Indicators statistics of the results shown in Fig. 12. 
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CONCLUSION 
 

Seismic facies analysis is an important method for regional 
stratigraphic interpretation, sedimentary system determination, and 
sedimentary development history interpretation, it can be used to predict the 
oil source area and the reservoir belts. There are some problems in seismic 
facies analysis through the traditional waveform classification methods such 
as some seismic reflect information of micro geologic is disappears in 
post-stack data, and the small amount of log data is not used effectively. 
Here, we extracted the texture features from pre-stack data and preserved the 
tiny information of stratum. Then the logging data and ABC algorithm were 
employed to the training of classifier, which reduced the multiple solvability 
of target recognition, and the result that is more consistent with the actual 
geological conditions is obtained. Finally, combined with PNN, we 
quantitatively analyzed the classification results. 

 
In the synthetic test, a 3D stratigraphic structure model that contain 

different facies was designed to generate the pre-stack seismic data, and the 
corresponding post-stack data set is obtained by stacking processing. By 
comparing the processing results of these data sets with different methods, 
the superiority of pre-stack texture and the effectiveness of the proposed 
SSABC-SOM method are demonstrated. 

 
Finally, the method proposed in this paper is applied to field data. 

Compared with the traditional method, the SSABC-SOM method obtained a 
better facies map, meanwhile, the confidence analysis results also show the 
effectiveness of the method. 

 
In our study, the processing of pre-stack data such as extract the 

pre-stack texture features takes most of the time of the project due to the big 
size of the pre-stack seismic data, how to compress the pre-stack data under 
the premise of keeping fine information remains a question for the future. 
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