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ABSTRACT 
 
Wang, D.D., Wang, S.D. and Li, H.L., 2020. The finite difference contrast source 
inversion with super memory hybrid conjugate gradient method. Journal of Seismic 
Exploration, 29: 73-97.  

 
The finite difference contrast source inversion (FDCSI) is an algorithm to solve the 

wave equation inverse scattering problem. This algorithm’s forward operator is only 
related to the background medium, which does not change during the iterative 
optimization process. Therefore, an LU decomposition is required only once for the 
forward operator, which has lower computation cost. Because of finite difference 
operator, FDCSI can be applied to inhomogeneous background medium. FDCSI 
transforms the inverse scattering problem of wave equation into an optimization problem, 
which can be solved by conjugate gradient method. But conventional conjugate gradient 
method converges slowly, which affects computing efficiency, and the Newton method 
increases computation and memory. In order to improve the convergence speed for 
frequency domain acoustic equation, the super memory hybrid conjugate gradient method 
(SMHCG) is introduced into FDCSI. SMHCG is improved on the basis of the super 
memory gradient method to adapt to FDCSI. SMHCG accelerates the convergence of 
objective function without any increase computation and memory. The advantages of 
SMHCG had been verified on the Marmousi model. 

  
KEYWORDS: contrast source inversion, scattering, super memory hybrid conjugate  
     gradient method, full waveform inversion. 
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INTRODUCTION 
 

Full waveform inversion is one high-precision reconstruction method 
for underground complex structure, which makes use of the kinematics and 
dynamics of seismic wave information and take the seismic wave equation 
as the carrier to realize the inversion of underground physical parameters, 
provide migration velocity and it can also be used for the reservoir 
development. Full waveform inversion can be performed both in the time 
domain (Tarantola, 1986) and frequency domain (Pratt and Worthington, 
1990). Full waveform inversion mainly consists of forward and inversion. 
Forward can be solved using iterative methods and direct solutions. 
Inversion is to modify the initial model by iterative optimization to meet the 
error requirement. Iterative optimization method is the most important part 
of the full waveform inversion. At present, most full waveform inversion 
optimization algorithm is divided into two categories. The first category is 
the gradient method based on the cost function gradient, for example 
steepest descent method (Choi et al., 2005; Jiang et al., 2009; Chi et al., 
2014) and conjugate gradient (Pratt, 1999; Kamei et al., 2014) method. The 
second category is the Newton optimize methods, such as Gauss Newton 
method (Pratt et al., 1998), truncated Newton method (Métivier et al., 2014) 
and Quasi-Newton method (Brossier et al., 2009). Although Newton's 
method converges faster than the gradient method, more computation and 
memory are needed. Generally, the inversion process requires huge amount 
of computation. It is of great significance to reduce the amount of inversion 
computation in the inversion. 

 
Van den Berg and Kleinman (1997) introduced the contrast source 

inversion (CSI) method based on inverse scattering theory. This method is 
based on the improvement of source-type integration method (Habashy et al., 
1994), which is a highly efficient nonlinear inversion method. This method 
updates the contrast source (the multiplication of the model parameters and 
the wavefield) and the contrast function (model parameters) by optimizing 
the objective function. In the whole iterative optimization process, this 
method needs only once full forward, so it can greatly improve the inversion 
efficiency. Moreover, van den Berg et al. (1999) extended the method to 
microwave imaging and achieved better results. For the first time, Pelekanos 
et al. (2003) applied contrast source inversion to elastomechanics imaging 
and proposed the regularization of multiplication to enhance the stability of 
the method. Van Dongen and Wright (2007) applied this method to 
three-dimensional acoustic imaging, and verified the effectiveness of the 
method. Wang et al. (2016) based on the integral equation (IE) formulation 
to achieved multi-frequency CSI, and used the WKBJ approximation 
method to get the Green function. However, the main disadvantage of CSI 
based on the integral equation (IE) formulation is only applicable to simple 
medium (homogeneous or layered medium), since the Green function of 
background medium can be obtained. Considering the limitation of the 
Green function, Abubakar et al. (2008, 2009) further expand the CSI 
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algorithm and proposed finite difference contrast source inversion (FDCSI). 
FDCSI is applied to seismic data inversion. This method is suitable for any 
background model, greatly broadening the scope of application of contrast 
source inversion. The forward operator of FDCSI algorithm is only related 
to the background model and the frequency. In the inversion process, if the 
background model and the frequency are not changed, there is no need to 
reconstruct the forward operator. In the single-frequency inversion process, 
due to the invariant forward operation, LU decomposition is required only 
once, which greatly improve efficiency. Base on those advantages, FDCSI 
has the ability to deal with large-scale data (Abubakar et al., 2011). Han et al. 
(2014, 2016) achieved FDCSI with elastic wave equation and acoustic wave 
equation, respectively, and achieved multi-parameter inversion. 

 
Although FDCSI algorithm is fast, the conventional conjugate gradient 

method converges slowly. Newton method can speed up the convergence 
rate, but it will increase calculation and memory consumption. In this paper, 
we use super memory hybrid conjugate gradient method (SMHCG) to 
optimize the cost function based on finite difference contrast source 
inversion. We obtain super memory hybrid conjugate gradient method 
(SMHCG) by improving the super memory gradient method (SMG) (Shi and 
Shen, 2005; Hu et al., 2016; Ou and Liu, 2014, 2017), so that it can adapt to 
FDCSI. The super memory hybrid conjugate gradient method (SMHCG) is a 
fast convergence optimization method. Compared with the conventional 
conjugate gradient method, the SMHCG method has a faster convergence 
speed. The new gradient is obtained by using the previous update gradient 
and n-th gradient, which doesn't increase the amount of computation and 
solves the problem of expensive computation and slow convergence speed 
well. We have obtained good results by model numerical experiment. 

 
 

FORWARD MODELING 
 
Forward is the basis of inversion. The two-dimensional frequency 

domain acoustic equation is described as follows 
 
  𝛻! + 𝑘! 𝑟 𝑝 𝑟 = 𝑆 𝑟,𝜔   ,                           (1) 

 
where ∇  is the Laplace operator, r is the space coordinate vector, k(r) is 
the wave number and p(r) is the wave field value. The wave number k(r) is 
as follows 
 

  
( ) ( )rcrk ω
=     ,                                   (2) 

 
where c(r) is the velocity of model, and ω is the circular frequency. 
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The frequency seismic numerical simulation method is presented by 
Lysmer and Drake (1972), which has more advantages than time domain and 
has been studied by many scholars (Pratt and Worthington, 1990; Shin, 1995; 
Sirguel and Pratt, 2004). In this paper, the optimal 9-point finite difference 
(Jo et al., 1996) is used as forward engine. This forward method uses the 
cartesian coordinates of the grid and the 45° rotating grid, using 9 difference 
schemes, the method reduces the grid point in each wavelength by five, the 
coefficient matrices consist of 9 bands. In this paper, in order to simplify the 
calculation, we assume that the medium model density is uniform. 

  
The model media is divided into Nx x Nz uniform grid region (including 

PML area) grids. According to the discrete grid, eq. (1) can be sorted into 
the following matrix form 

 
SHP =   ,                                       (3) 

 
where H  is the forward operator, P  is the value of the wave field which 
is a one-dimensional vector. The eq. (3) can be solved by LU decomposition 
(Davis and Duff, 2006) and iterative method. In this paper, we use the LU 
decomposition method to solve eq. (3), and the results of the LU 
decomposition can be applied to all sources. 
 
 
 
INVERSION METHOD 
 
Problem statement 

 
The contrast source inversion method is used to solve the inverse 

scattering problem (van den Berg and Kleinman, 1997). For this purpose, we 
first establish the inverse scattering problem. The two dimensional scattering 
systerm comprises the object domain D, observation domain S (geophone 
location) and total domain T, see Fig. 1. The r = (x, y) is the space 
coordinate vector in R2. If the parameters in D differ from the parameters of 
the background model, scattered wave will be generated and received by the 
detector arranged on the S-field. We use the scattered wave information 
received by the detector to reconstruct the medium parameters of the D 
domain. 
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Fig. 1. Schematic of scattering. 

 
For the sake of derivation, all of the following formulas are derived in 

matrix form. 
 
The total wave fields tolU  and incident wave fields incU  satisfy the 

following two equations in matrix form 
 

TrSHU j
tol
j ∈= ,                                         (4) 

 
TrSUH j

inc
jb ∈= ,                                        (5) 

 
where H is the sparse stiffness matrix of the model, Hb is the sparse stiffness 
matrix of the background model, j is the source number, Sj is the source 
term. 
 

The contrast function χ  is given by 
 

( ) ( )
( )

( ) ( )
( ) Dr
rc

rcrc
rk
rkr

b

b

b

∈
−

=−⎥
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⎤
⎢
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=

−

−−

,1 2

222

χ                        (6)  

 
where k and c are wave number and velocity of the model, bk  and bc  are 
wave number and velocity of the background model. 
 

The scattering wave field is given by 
 

TrUUU inc
j

tol
j

sct
j ∈−= ,                                     (7) 
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according to the relation of (7), we can get the scattering wave field equation 
as follows 
 
   TrUAU tol

jb
sct
j ∈= − ,1χ                                    (8) 

 
where bbb HKA 1−= , bK  is the wave number diagonal matrix of the 
background model, and χ  is a diagonal matrix of contrast function. 
 

Because the detector is arranged in the S domain, a mapping 
relationship is needed to map the scattered wave field to the S domain, so 
that the data equation can be obtained as follows 

 
 ( ) SrUAMU tol

jb
Ssct

j ∈= − ,1χ                                 (9) 
 
where SM  is an operator that maps the scattering wave field in the T 
domain to the S domain. 
 

According to eq. (7), we can get the form of the object (or domain) 
equation of state as follows 

 
( ) DrUAMUU tol

jb
Dinc

j
tol
j ∈+= − ,1χ                           (10) 

 
where DM  is an operator that maps the scattering wave field from the T 
domain to the D domain. 
 

For eq. (10), forward problem is to find sct
jU  for given χ , inverse 

scattering problem is to find χ  for given sct
jU . 

 
We define the contrast source (scattered source) as follows 
 

tol
jj UW χ=    .                                           (11) 

 
Then data eq. (9) and object (or domain) eq. (10) are transformed into 

the following form 
 

 
Uj

sct =MS Ab
−1Wj( ), r ∈ S                                 (12)

  Wj = χUj
inc + χMD Ab

−1Wj( ), r ∈ D   .                         (13) 

 
In the actual situation of seismic exploration, T domain and D domain 

are equal. To simplify the derivation, replace the T domain with the D 
domain. 
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The finite difference contrast source inversion method 

 
The FDCSI is a method that does not need to full forward in each 

inversion iteration (Abubakar et al., 2008, 2009). In the FDCSI method, the 
inverse scattering problem is considered as an optimization problem. 
However, FDCSI is different from conventional full wave inversion, it 
constructs contrast source  and contrast function iteratively based on data 
eq. (12) and object eq. (13). The form of cost function established on the 
basis of satisfying eqs. (12) and (13) is as follows 

 

  

( ) ( ) ( )
( ) ( )

∑
∑

∑
∑ −− +−

+
−

=

+=

j D

inc
j

j Djb
D

j
inc
j

j S

sct
jobs

j Sjb
Ssct

jobs

j
D

j
S

j

U

WAMWU

d

WAMd

WCWCWC

2

21

2

,

21
,

,,

χ

χχ
λ

χχ

  ,  (14) 

where ( )jS WC  is data errors, ( )χ,jD WC  is object errors, sct
jobsd ,  is the 

scattering record received on the surface. 

The L2-norm is defined as 

( ) ( )

( ) ( )drraraa

drraraa

DD

SS

∫
∫

=

=

2

2

    ,                                (15) 

where ( )a r  is the complex conjugate form of ( )a r . 

Define the data errors and object errors in the n-th iteration as follows: 

    
( )

( )njb
D

nnj
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jnnj
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,
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,,

,
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,,

−
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  .                   (16) 

The CSI algorithm is different from the conventional full waveform 
inversion. The CSI method is divided into two parts, first update the contrast 
source, and then update the contrast to complete an iterative process. 

  
According to the definition of gradient, the gradient of contrast source 

Wj  can be obtained as follows ( Abubakar et al., 2008b) 
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where *
bA 、 *SM and *DM  is the conjugate transpose operator (the adjoint 

operator) of bA 、 SM and DM . The normalization factor Sη  and  can be 

obtained by ( )
12

,
S sct

obs jj S
dη

−

= ∑  and ( )
12

1
D inc
n n jj D

Uη χ
−

−= ∑ . 

 
The conventional Polak-Ribière conjugate gradient method is used to 

update the comparison source, and the search direction is as follows 

   0,
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         (18) 

The contrast source update formula is given by 

 nj
W
njnjnj vWW ,,1,, α+= −   ,                               (19) 

where W
nj ,α  is an update-step.  

We assume that the update-step is known, so we can obtain the latest 
contrast source Wj,n . The latest contrast source is substituted in eq. (14) to 
get new equation, then we can obtain the value of update-step by minimizing 
the new equation. The update-step as follows 
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After obtaining the updated contrast source, the total wave field is 
updated by (10) and the contrast function is updated by eq. (11). The 
formula is as follows 

 

      )( ,
1

, njb
Dinc

j
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nj WAMUU −+=   ,                         (21) 

        
∑
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j
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χ     .                             (22) 

 
The initial model has a great influence on the inversion results. In the 

case of the known background model, we use the backpropagation field 
multiplied by a weight coefficient as the initial contrast source. We can also 
get the corresponding initial contrast function (Abubakar et al., 2009) 

D
nη
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The main computational cost of the whole inversion process is 
computing operators ( ) 1−

bA  and ( ) 1* −

bA , which are only related to the 
background model and the inversion frequency. However, the background 
model is not updated during the inversion of a single- frequency. Therefore, 
operators ( ) 1−bA  and ( ) 1* −

bA  are invariant during the inversion of a 
single-frequency. In the single-frequency inversion, we only need to use LU 
decomposition once to solve the operators ( ) 1−bA  and ( ) 1* −

bA , thus greatly 
improving the computational efficiency and speed. 

 
Although the FDCSI method needs only once full forward and saves 

the computation time, the conventional Polak-Ribière conjugate gradient 
method has the problem of slow convergence speed. Newton's method has 
the advantages of fast convergence but complicated calculation and 
time-consuming. In this paper, we propose a super memory hybrid conjugate 
gradient method based on the super memory gradient method, which 
accelerates the convergence rate. 
 
 
Super memory hybrid conjugate gradient method 

 
The super memory gradient method (SMG) uses the information of the 

previous gradient and the current gradient information to reconstruct a new 
gradient, and the new gradient is used to update the iterative equation (Shi 
and Shen, 2005; Hu et al., 2016; Ou and Liu, 2014, 2017). Compared with 
the conventional conjugate gradient method, the SMG can obtain more 
accurate update information by using more information of the previous 
gradients. The SMG method is superlinear convergence, so it can accelerate 
the convergence of objective function. The validity of SMG method has 
been verified in the conventional full waveform inversion experiment for 
frequency domain wave equation (Hu et al., 2016). For conventional full 
waveform inversion, there are two methods to obtain update step length, one 
is fixed step length, and the other is obtained by linear search method. For 
the first, the fixed step length of the SMG method has not used the 
convergence criterion to restrain the cost function, which leads to the 
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unstable results of the full waveform inversion in the high frequency section. 
For the second, it can get better results by using the linear search constraint 
condition to obtain the step length to update the iterative equation. 

  
The SMG method based on linear search constraints can perform better 

results, but linear search requires huge amount of computation. In the 
process of contrast source inversion, the update gradient of the contrast 
source is complex, and there are some problems when using linear search to 
determine the step length in the complex domain. As a result of the above 
problems, we improved the super memory gradient method and proposed 
Super memory hybrid conjugate gradient method (SMHCG) based on the 
contrast source inversion. The SMHCG method uses the information of the 
previous update direction and the current gradient information to reconstruct 
a new gradient, and updating iterative equation by conjugate gradient 
method. In this way, we can get optimal step length by eq. (20), and avoid 
linear search. Through numerical experiments, we find that there will be a 
phenomenon of convergence instability when the cost functional value is too 
small by iteratively updating. So, by intelligent judgement, when the 
convergence is unstable, we will use conventional gradient instead of super 
memory gradient and then construct conjugate gradient, which can 
effectively solve the phenomenon of inversion instability. In this paper, the 
contrast source is updated by SMHCG method, and the contrast function is 
updated by (21) and (22). 

 
The gradient of SMHCG is given by 
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The contrast source is updated with a new gradient as follows
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according to the following formula to update the step erW
nj
sup_

,α :
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The SMHCG FDCSI algorithm shown in Fig. 2. 

 
Fig. 2. Algorithm flow diagram. 
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NUMERICAL EXAMPLES 
 

In order to verify the convergence of SMHCG method, a horizontal 
layered model and a Marmousi model are used for numerical experiments. In 
this paper, we choose strategy that the inversion result of the previous 
frequency is used as the background model for the next frequency inversion. 
We assume that the density of the model is constant. We use ricker wavelet 
as source wavelet whose domain frequency is 10 Hz. Fig. 3a shows ricker 
wavelet in time domain, the domain frequency of ricker wavelet is 10 Hz. 
Fig. 3b shows spectrum of the ricker wavelet with the domain frequency of 
10 Hz. Although the domain frequency of ricker wavelet is 10 Hz, there is a 
lot of information about ricker wavelet when the frequency component is 
greater than 10 Hz. So, in horizontal layered model and Marmousi model, we 
will select some frequencies which is greater than 10 Hz for CSI. We 
employed PML for contrast source forward and inversion. 
 

    
(a)   (b) 

 
Fig. 3. (a) The Ricker wavelet in time domain, and (b) the spectrum of the Ricker wavelet 
with the domain fequency of 10 Hz. 
 
 
Horizontal layered model 

 
A simple layered model is shown in Fig. 4a and the velocity varies from 

2000 m/s to 2600 m/s. In the inversion process, the model is 1000m×490m 
and the spatial grid spacing 𝛥𝑥 = 𝛥𝑧 = 10 𝑚 . The acquisition system 
consists of 26 explosive sources and 101 receivers. Each shot sets 101 
receivers, and detector spacing of 10 m, shot spacing of 40 m. The detectors 
are uniformly distributed at z = 20 m. The sources are uniformly distributed 
at z = 20 m. The initial background model is a linear velocity shown in Fig. 
4b. Considering the results of inversion and selection criteria of frequency 
(Sirgue et al., 2004) we choose 6 frequencies for inversion (3 5 8 12 17 Hz) 
with 40 iterations per frequency. Memory M = 6, weight factor 𝜆 = 1.2.  
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   (a) 

 
    (b) 

 

Fig. 4. (a) True layer velocity model and (b) initial/background model in the inversion. 

 
Fig. 5a shows the inversion results using the CG method. Fig. 5b shows 

the inversion results obtained using the SMHCG method. Fig. 5c shows the 
longitudinal curves obtained from the CG and SMHCG methods at x = 500 
m. Fig. 6 shows the comparison of the convergence curves for the 17 Hz of 
cost function at single frequency.  
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   (a) 

 
(b) 

 
(c) 

Fig. 5. (a) CG method inversion results and (b) SMHCG method inversion results and  
(c) longitudinal curve comparison at x = 500 m. 
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From the longitudinal curves retrieved from the CG and SMHCG 

methods in Fig. 5c, it can be seen that the SMHCG characterizes the location 
of velocity abrupt changes more accurately than the CG method for the same 
number of iterations. The L2 norm of the SMHCG inversion model and the 
true model residual is 6447, and the CG inversion model and the true model 
residual L2 norm is 7037. It can be seen from Fig. 6 that SMHCG converges 
faster than CG method. With the same accuracy, the SMHCG method 
requires fewer iterations and reduces the amount of computation. 

 

 
Fig. 6. CG (blue) and SMHCG (red) method 17 Hz inversion convergence curve. 

 
Marmousi model 

 
The Marmousi model is the standard model to validate the inversion 

result, so we use the two-dimensional Marmousi model to validate the 
method. The true Marmousi model is shown in Fig. 7a. The velocity varies 
from 1500 m/s to 5500 m/s. The model is 9200 m × 4000 m and the spatial 
grid spacing 25x z mΔ = Δ = .The acquisition system consists of 47 explosive 
sources and 369 receivers located at surface z = 0 m. Each shot sets 369 
receivers, and detector spacing of 25 m, shot spacing of 200 m. The 
background model is obtained by two-dimensional mean filtering (25*25) of 
the true model shown in Fig. 7b. Considering the results of inversion and 
selection criteria of frequency we selected 9 frequencies (2, 3, 4, 5, 6, 8, 10, 
12, 16 Hz) (Sirgue et al., 2004) for inversion with 120 iterations per 
frequency. When the number of iteration per frequency is 120, the SMHCG 
algorithm for CSI is converged in Marmousi model, so we used 120 
iterations per frequency to verify the convergence of CG algorithm for CSI. 
Memory M = 7, weight factor 2.1=λ . 
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(a)                                  (b) 

Fig. 7. (a) True Marmousi velocity model and (b) initial/background model. 

 
Figs. 8(1a-9a) show the inversion results of 9 frequencies by the CG 

method, Figs. 8(1b-9b) show the inversion results of 9 frequencies by the 
SMHCG method. As the number of inversion frequencies increases, the 
inversion results become better and better, the inversion results of SMHCG 
are superior to CG. The inversion results in high frequency end mainly 
improves the details of the model, and the final inversion result by SMHCG 
method is more accurate. The L2 norm residuals between the real model and 
the final inversion results by the CG and SMHCG are 54847 and 49091. It 
can be seen that the SMHCG method has better results than the CG method. 

 

 
                (1a)                            (1b) 

 
(2a)                            (2b) 
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    (3a)                             (3b) 

 
(4a)                             (4b) 

 
(5a)                            (5b) 

 
(6a)                            (6b) 
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(7a)                             (7b) 

 
(8a)                             (8b) 

 
(9a)                            (9b) 

 
Fig. 8. Figs. 1a-9a show the inversion results of 9 frequencies by CG method: (1a) 2Hz, 
(2a) 3Hz, (3a) 4Hz, (4a) 5Hz, (5a) 6Hz, (6a) 8Hz, (7a) 10Hz, (8a) 12Hz, (9a) 16Hz. 
Figs. 1b-9b show the inversion results of 9 frequencies by SMHCG method: (1b) 2Hz,  
(2b) 3Hz, (3b) 4Hz, (4b) 5Hz, (5b) 6Hz, (6b) 8Hz, (7b) 10Hz, (8b) 12Hz, (9b) 16Hz. 
 

 
Figs. 9(1a-9a) show the cost function C  convergence curves of 9 

frequencies by CG, Figs. 9(1b-9b) show the cost function convergence 
curves of 9 frequencies by SMHCG. It can be seen that the SMHCG method 
has a faster convergence rate. When the iteration time is 120, the SMHCG 
optimization method has converged but the CG method has not converged. 
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   (4a)                       (4b) 

     
   (5a)                       (5b) 
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(6a)                         (6b) 

     
(7a)                         (7b) 

     
(8a)                         (8b) 

     
(9a)                         (9b) 

 
 
Fig. 9. Figs.1a-9a show the convergence curves of 9 frequencies by CG method: (1a) 2Hz, 
(2a) 3Hz, (3a) 4Hz, (4a) 5Hz, (5a) 6Hz, (6a) 8Hz, (7a) 10Hz, (8a) 12Hz, (9a) 16Hz. 
Figs.1b-9b show the convergence curves of 9 frequencies by SMHCG method: (1b) 2Hz, 
(2b) 3Hz, (3b) 4Hz, (4b) 5Hz, (5b) 6Hz, (6b) 8Hz, (7b) 10Hz, (8b) 12Hz, (9b) 16Hz. 
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Figs. 10a and 10b are longitudinal curves by the CG method and 

SMHCG method at x = 4000 m and 5000 m. It can be seen that the SMHCG 
method is better than the CG method in the inversion results. 

 

 
    (a)                                  (b) 

Fig. 10. (a) Longitudinal curve at x = 4000 m and (b) Longitudinal curve at x = 5000 m. 
 
 
Test to calculate efficiency 

 
In order to verify the effectiveness of this method, we conducted an 

efficient quantitative test of the Marmousi model. Define data residuals as 
follows 
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jobs
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dd
ERR

−
=    ,                          (30) 

 
where 

sct
jcald ,  is the forward scattering wave field. Nine frequencies (2, 3, 4, 

5, 6, 8, 10, 12, 16 Hz) are chosen for inversion, and the termination condition 
for each frequency iteration is: 005.0≤dERR . Because SMHCG adds only 
additive operations compared to CG methods, the SMHCG and CG methods 
can be considered equal time-consuming for a single iteration. So the 
inversion efficiency of SMHCG and CG methods is only related to the 
number of iterations. 
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Figs. 11 and 12 show the velocity model and the longitudinal velocity 

curve of the Marmousi model retrieved by the CG and SMHCG methods. It 
can be seen from the figure that the results of the two methods are basically 
the same, but the CG method needs to iterate 1363 times and the SMHCG 
method only needs 861 times. The SMHCG method is 36% more efficient 
than the CG method. Fig. 13 shows the comparison of the convergence 
curves of the two methods when the frequency is 8 Hz. It can be seen that the 
SMHCG method converges to the iterative termination accuracy faster than 
CG method. 

 

 
(a)                                 (b) 

Fig. 11. (a) CG method inversion result and (b) SMHCG method inversion result. 

 

 
(a)                                    (b) 

 
Fig. 12. (a) Longitudinal curve at x = 4000 m and (b) Longitudinal curve at x = 5000 m. 
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Fig. 13. CG (blue) and SMHCG (red) method 8 Hz inversion convergence curve of the 
objective function. 
 
 
DISCUSSION 

 
Although CSI can reduce computational cost and SMHCG algorithm 

can accelerate the convergence of the target function, both inversion results 
can not define the high velocity zone (at 3.5 km). The Marmousi model is a 
very complex model in exploration geophysics. The high velocity zone is a 
difficult part of inversion in the Marmousi model. And other inversion 
methods also have such problems. Besides, there are three problems: first, 
CSI is based on the hypothesis of weak scattering, there should not be much 
disparity between inversion model and background model; second, as the 
high velocity zone is located at the boundary of the model, the fold number is 
insufficient, and the effective information obtained is less; last, there are nine 
frequencies used for inversion, it is impossible to reconstruct the overlying 
strata accurately, which will affect the inversion of the high velocity zone. 

 
 

CONCLUSIONS 
 
The FDCSI is a method to solve the inverse scattering problem of the 

wave equation. In the inversion process, the background model does not 
change, so we only need to construct forward matrix and LU decomposition 
once. Therefore, the inversion efficiency is greatly improved. The 
conventional conjugate gradient method has the problem of slow 
convergence and time-consuming in solving the contrast source and contrast. 
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Based on the FDCSI method of acoustic equation, this paper introduces a 
super-memory hybrid conjugate gradient optimization method, which 
accelerates the convergence speed of the method without increasing the 
computational complexity, reduces the number of iterations, saves the 
computation time. In this paper, the SMHCG method is used to verify the 
Marmousi model, and the efficiency is improved by 36%, which is in favor 
of the inversion of 3D data. In this paper, we only study the contrast source 
inversion of the acoustic wave equation with constant medium density. 
Contrast source inversion of elastic media with complex media, variable 
density and variable Q value need to be studied. This method can be 
extended to variable density, multi-parameter viscoelastic medium contrast 
source inversion, so as to more truly reflect the underground media situation. 
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