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ABSTRACT 
 
Yun, N. and Sim, C., 2020. An improved nearly-analytic exponential time difference 
method for solving seismic wave equations. Journal of Seismic Exploration, 29: 99-124.  
 

We present an improved nearly-analytic exponential time difference (INETD) 
method, which is a version of the nearly-analytic exponential time difference (NETD) 
method proposed by Zhang. The NETD method is based on a combination of the 
exponential time difference (ETD) scheme with the nearly-analytic discrete (NAD) 
operator. In solving the acoustic and elastic wave equations, NETD first uses the NAD 
operator to approximate the high-order spatial differential operators, and then the 
resulting semi-discrete ODEs are solved by the ETD method. Because NETD is based on 
the structure of the Lie group method, it can achieve more accurate results than the 
classical methods. The main purpose of the present article is to improve the stability and 
the time accuracy in the original NETD method. To this end, we first derive an implicit 
ETD scheme and apply it to approximate the time derivatives instead of the explicit 
scheme in the original NETD method. For this new method, we analyze in detail its 
stability condition, the dispersion relation and the theoretical and numerical errors, and 
compare it with the NETD method. In addition, for the 2D case, using INETD, NETD 
and the fourth-order Lax-Wendroff correction (LWC) methods we simulate acoustic and 
elastic wave-fields, and compare numerical results for these different methods. Our 
theoretical analyses show that the stability condition of the  INETD method is more 
relaxed than that of the original NETD method. The temporal accuracy of the INETD 
method is increased from second order in the original  NETD  method to third order, and 
spatial accuracy remains the same as that of the original. Moreover, the INETD method 
has the same computational costs and storage space as the NETD method and the 
numerical dispersion is less than the NETD method. The results of numerical experiments 
demonstrate the high efficiency of this method for acoustic and elastic wave modeling. 

 
KEY WORDS: nearly-analytic discrete method, exponential time difference method,  
 Lie group method, numerical dispersion, numerical approximations 
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INTRODUCTION 
 

This article contains a variation of the nearly-analytic exponential time 
difference (NETD) method. The NETD method is an effective numerical 
scheme for solving the acoustic and elastic wave equations, which is based 
on a combination of the exponential time difference (ETD) scheme to 
approximate the time derivatives and the nearly-analytic discrete (NAD) 
operator to approximate the space derivatives. 

 
The development of effective and accurate numerical techniques has 

become increasingly meaningful for investigation of seismic waves in 
complicated and anisotropic media. There are many numerical methods 
available, including the finite element method (FEM), the finite difference 
method (FDM), the pseudospectral (PS) method, the reflectivity method, the 
boundary integral equation-discrete wavenumber method, the spectral 
element method, and so on. Each method has its inherent advantages and 
disadvantages (Yang et al., 2004). For example, FD methods have easy 
implementation, low-memory requirement, fast calculation and high 
parallelism (Kelly et al., 1976; Dablain, 1986; Wang et al., 2002). However, 
the FD suffers from serious numerical dispersion when too few spatial 
sampling points per wavelength are used or when models have large velocity 
contrasts between adjacent layers (Fei et al., 1995; Yang et al., 2002; Zheng 
et al., 2006). However, high-order methods or finer space grids can also be 
used to reduce the numerical dispersion, but there are also a lack of 
guarantee of a necessarily lower phase velocity error of the wave, and  
increases of memory requirements and CPU computation time. Meanwhile, 
the pseudospectral (PS) method (Huang et al., 1992; Kosloff et al., 1982, 
1984; Fornberg, 1998) is attractive, but it requires the Fourier transform of 
wavefield, which is computationally expensive and has difficulty in handing 
sharp boundaries (Mizutani et al., 2000). 

 
To effectively solve this problem, a nearly-analytic discrete operator 

was first introduced to approximate the high-order partial differential 
operators in seismic wave equations (Yang et al., 2003, 2004, 2006, 2007). 
This method can effectively suppress the numerical dispersion, and has 
fourth-order spatial accuracy. Based on the NAD approximation, many 
schemes have been developed (Yang et al., 2009, 2010a, b, 2012; Chen et al., 
2010; Tong et al., 2013; Li et al., 2017), and each testifies to its superiority 
in suppressing numerical dispersions over conventional algorithms. 
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In recent years, NAD-type methods have been applied in wave 

propagation modeling in porous media with fluids (Yang et al., 2007, 2014) 
and seismic migration (Li et al., 2013; Xie et al., 2014; Feng et al., 2015). 
Also, schemes that combine geometric integration with the NAD method to 
solve seismic wave equations have been developed (Ma et al., 2011, 2014, 
2015; Liu et al., 2017). The geometric integration method for solving ODEs 
is designed to preserve the qualitative properties of the original systems. 
These integration methods include the symplectic method, the symmetry 
method, the first integral preservation method (Hairer et al., 2006, and the 
references therein), the Lie group method (Munthe-Kaas, 1999; Iserles et al., 
2000; Robert, 1991) and so on. Geometric integrations are shown to be 
superior to the general-purpose methods in some aspects, especially in long 
time computation, owing to their preservation of the qualitative properties. 
Thus, combining of geometric integrations with NAD may lead to decreases 
in numerical dispersion and numerical error over other classical methods.  

 
Motivated by this fact, Zhang et al. (2014) developed a nearly-analytic 

exponential time difference (NETD) method. NETD uses an exponential 
time difference (ETD) scheme to approximate the time derivatives and the 
nearly-analytic discrete (NAD) operator to approximate the space 
derivatives. The ETD scheme used in this method can be also derived from 
the idea of the Lie group method. Therefore, the NETD method by 
combining the Lie group method with the NAD method to solve seismic 
wave equations effectively suppresses the numerical dispersion and 
preserves the qualitative properties of PDEs. Through theoretical and 
numerical analysis, they showed that NETD method provides more accurate 
results, has high computational efficiency, and a low memory requirement 
compared to the Lax-Wendroff correction (LWC) and the staggered-grid  
(SG) methods. However, the NETD method has some disadvantages; for 
example, its stability criterion is	 relatively compact and has only 
second-order time accuracy. It is important to improve the stability of the 
NETD method and increase its time accuracy for practical calculations. 

 
From this view point, we focus on this problem. We present an 

improved NETD (INETD), for solving acoustic- and elastic-wave equations. 
The INETD scheme is composed of the following two steps: (i) Derivation a 
new implicit ETD scheme, (ii) Combination of the implicit ETD for the 
temporal discretization with the NAD method for the spatial discretization. 
This produces an improvement in the stability and the time accuracy over 
the NETD, because the explicit ETD scheme is used to approximate the time  
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derivatives in the NETD. In general, the implicit scheme has a good stability 
property, but it requires more expensive computations than the explicit 
scheme, because it solves the system of equations at every temporal step. 
We show that the INETD method needs the same computational costs and 
storage space as the NETD method. On the other hand, we find another 
possibility for improving the stability of the INETD method. It is to use the 
terms up to the third order in the truncated power series expansion used to 
explicitly solve the INETD system of linear equations. Our analysis shows it 
brings about a remarkable improvement in the stability of the method. On 
the whole, the our INETD method are shown to be superior to the FDM, the 
PS and the NETD methods in some aspects such as suppressing numerical 
dispersions, high accuracy, computational efficiency, a low memory and the 
improvement of stability. 

 
This article is organized as follows. First, we review the basic NETD 

scheme for solving the acoustic wave equation in a 2D homogeneous 
medium. Then, we derive the INETD scheme. Next, we investigate in detail 
the properties of the INETD method. We derive the stability condition for 
the 1D and 2D cases. We estimate the theoretical and numerical errors of the 
INETD method, and compare against the NETD method. And then, we 
derive the dispersion relation and give the numerical dispersion results. 
Finally, for the 2D case we use the INETD, the original NETD and the 
fourth order LWC methods to simulate acoustic wave fields, and present 
some comparisons of numerical results for different methods. And then a 
homogeneous elastic model and a two-layer elastic model are further 
selected to investigate the computational validity of elastic wave-field 
simulations.  

 
Our theoretical and numerical results show that the INETD is an 

improvement over the original NETD in stability, numerical error and 
numerical dispersion. 
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BASIC NEARLY-ANALYTIC EXPONENTIAL TIME DIFFERENCE 
(NETD) METHOD	 	
 

In this section, we review and analyze the derivation of the original 
NETD method (Zhang et al., 2014) for solving the acoustic wave equation. 

 
 

Exponential time difference method  
 

Consider the stiff system 

d ( , )
d
u u u t
t
= +L N 	 	 ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (1) 

where L  is a higher-order linear term and N  is a lower-order nonlinear 
term. To solve eq. (1), the equation is multiplied by an integrating factor 
 

	 	 	

d (exp( ) ) exp( ) ( , )
d

t u t u t
t

− = −L L N 	 	 	 ,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (2) 

 
and then eq. (2) is integrated over a single temporal step of length ,τ  
 

1

0

exp( ) exp( ) exp( ) ( ( ), ) ,n n
n nu u s u t s t s ds

τ

τ τ+ = + − + +∫L L L N 	 	 	 	  (3) 
  
where nu  denote the numerical solution on the n-th time layer nt . To 
approximate the integration in eq. (3), using the approximation as 

     ( )( ) ( ), ,nn n nu t s t s u t+ + ≈N N  ,                            (4) 

the numerical scheme for solving eq. (1) is obtained as: 

     ( ) ( )( ) ( )1 1exp exp ,n n n
nu u u tτ τ+ −= + −L L L I N    .            (5) 

 
Basic computational formulae 
 

The acoustic wave equation in 2D homogeneous medium is written as 
2

2
02

u c u
t
∂

= Δ
∂

,                                         (6) 
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where u and 0c  are the displacement and the acoustic velocity, respectively, 

 and 
2 2

2 2x z
∂ ∂

Δ = +
∂ ∂

 is the Laplace operator. The same notations as that in 

the basic NETD (Zhang et al., 2014) are used in our present study, i.e., 

, , , , , ,
T Tu u u w ww u w

t x z x z
∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

U W . 

 
Eq. (6) can be rewritten as 

2 2
2
0 2 2( )

t

c
t x z

∂⎧ =⎪⎪ ∂
⎨
∂ ∂ ∂⎪ = +
⎪ ∂ ∂ ∂⎩

U W

W U U .	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (7) 

 
 The high-order spatial derivatives in eq. (7) are determined by the 
displacement U and its gradients using the fourth-order NAD operator as 
shown in Appendix A of Zhang et al. (2014). Then eq. (7) can be 
transformed into an ODE system as follows: 
 

d
dt
U
W

⎛

⎝
⎜

⎞

⎠
⎟
j ,k

=
0 I
Ω 0

⎛

⎝
⎜

⎞

⎠
⎟
U
W

⎛

⎝
⎜

⎞

⎠
⎟
j ,k

+ !N(U,W) j ,k . 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (8) 

 
 The first part of the right side of eq. (8) is a linear combination of ,u w  with its gradients at the grid point (xj , zk), and the second part is a linear 
combination of ,u w  with its gradients at its neighboring grid points. I  is a 
3 3×  identity matrix and Ω  is a 3 3×  matrix that depends on the spatial 
discrete operator. Using the notations 

   ( ), ,
, T

j k j k
=Y U W ,  and  !L =

0 I
Ω 0

⎛

⎝
⎜

⎞

⎠
⎟  
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and regarding !N Y j ,k( )  as a nonlinear function of ,j kY , eq. (8) can be 

rewritten as 

      
dY j ,k

dt
= !LY j ,k +

!N Y j ,k( )    ,                              (9) 

Eq. (9) is rewritten as 
 

	 	 	 	 	 	 	

d ( )
dt

= +
Y LY N Y     ,                                   (10) 

 
where ( ),j k=Y Y . Using the exponential time difference scheme (5) to solve 
eq. (10), Zhang et al. (2014) obtained a numerical scheme 
 

( ) ( )( ) ( )1 1exp expn n nt t+ −= Δ + Δ −Y L Y L L I N Y   ,              (11) 
 
where tΔ  is the temporal step size. To improve the stability of the NETD 

method, by replacing nY  with ( )11
2

n n+ +Y Y , scheme (11) is reformed into 

an implicit scheme 

( )( )

( ) ( )( )

1 1

1

1 exp
2

1exp exp
2

n

n

t

t t

− +

−

⎛ ⎞− Δ − =⎜ ⎟
⎝ ⎠

⎛ ⎞Δ + Δ −⎜ ⎟
⎝ ⎠

I L L I N Y

L L L I N Y
.         (12) 

To explicitly solve the system of linear equations in scheme (12), it is 
rewritten as 

 
( ) ( ) ( )( )1 2 11exp exp

2
n nt t+ −⎛ ⎞= + + Δ + Δ −⎜ ⎟

⎝ ⎠
Y I B B L L L I N Y   ,   (13) 

by using the truncated power series expansion 
     

     ( ) 1 2−
− ≈ + +I B I B B   ,                                   (14) 
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where ( )( )11 exp
2

t−= Δ −B L L I N
  

. 

 
 
IMPROVED NEARLY-ANALYTIC EXPONENTIAL TIME 
DIFFERENCE (INETD) METHOD 
 

Now take a closer look at the approximation (4) used in the original 
NETD method. The exponential time difference scheme (5) obtained by 
using the approximation (4) is explicit and has only second order accuracy, 
because of the use of low-order approximation (4). Therefore, the numerical 
scheme (11) also becomes explicit, which results in instability, and has 
second order accuracy in time.  

 
     In view of the above-mentioned points, we try to increase the stability 
and the time accuracy of the original NETD, using the following 
approximation instead of (4), 
 

( )( ) ( ) ( ) ( )( )1
1, , , ,n n n

n n n n n
su t s t s u t u t u t
τ

+
++ + ≈ + −N N N N

  
,  (15) 

 
to obtain the exponential time difference scheme 

	

1 1 2 1

1 2

1exp( ) ( ) (exp( ) )

1 ( ) ( exp( ) exp( ) ) ,

n n n

n

u uτ τ τ
τ

τ τ τ
τ

+ − +

−

= + − − +

− +

L L L L I N

L L L L I N
	 	 	 	 	 	 	 	 	 	 (16) 

 
where ( ),n n

nu t=N N , and ( ) ( )1 1 1
1, , .n n n

n nu t u tτ+ + +
+= + =N N N

	 Using 
the exponential time difference scheme (16) to solve eq. (10), gives the 
numerical scheme 

	

1 1 2 1

1 2

1exp( ) ( ) (exp( ) )

1 ( ) ( exp( ) exp( ) ) .

n n n

n

t t t
t

t t t
t

+ − +

−

= Δ + Δ − Δ − +
Δ

Δ Δ − Δ +
Δ

Y L Y L L L I NY

L L L L I NY
	 	  	 	 	  (17) 
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Eq. (17) can be rewritten as follows: 

1 2 1

1 2

1 ( ) (exp( ) )

1exp( ) ( ) ( exp( ) exp( ) ) .

n

n

t t
t

t t t t
t

− +

−

⎛ ⎞− Δ − Δ − =⎜ ⎟Δ⎝ ⎠

⎛ ⎞Δ + Δ Δ − Δ +⎜ ⎟Δ⎝ ⎠

I L L L I N Y

L L L L L I N Y
	 	 	  (18) 

 
 Now, following the original NETD method, we can solve the system of 
linear equations in scheme (18) explicitly. Let 
 

 
1 21: ( ) (exp( ) )t t

t
−= Δ − Δ −

Δ
C L L L I N  

 
and use the truncated power series expansion  
 

1 2( )−− ≈ + +I C I C C 	 	 .                                 (19) 
 
Then, we can rewrite scheme (18) explicitly as 
 

( )1 2

1 21exp( ) ( ) exp( ) exp( ) ) .

n

nt t t t Y
t

+

−

= + +

⎛ ⎞Δ + Δ Δ − Δ +⎜ ⎟Δ⎝ ⎠

Y I C C

L L (L L L I N
  

(20) 

       
 Comparing, we find that the INETD method (20) needs the same storage 
space and computational costs as the NETD method (13). For example, the 
total  number of arrays required for computation in both is 12 for 1D and 
18 for 2D in the acoustic content. There are differences in computational 
costs between the coefficient matrices of the NETD and the INETD schemes, 
but compared with the total computational costs this difference can be 
neglected, because there is no need to compute the coefficient matrix at each 
iteration, so it is sufficient to estimate it once before the iterations.  
Therefore, computational costs of two methods are the same. Also, the 
INETD method is an improvement over the original NETD method in both 
the stability and the computational accuracy in time, as verified in our 
theoretical analyses and numerical experiments below. The numerical 
dispersion error of the INETD method is less than that of the NETD method. 
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  The exponential time difference scheme (16) used in the INETD 
method can be also obtained from the Lie group method. The Lie group 
method is the geometric integration method and preserves qualitative 
properties of differential equations. 
 
 
STABILITY CRITERIA AND NUMERICAL DISPERSION ANALYSIS 
 
Stability condition 
 

To keep numerical calculation stable, the temporal increment tΔ  
must satisfy the stability condition of the INETD method. Following the 
analysis process presented by Yang et al. (2006) and Lioyd (1996), we 
obtain the stability condition of the INETD method for solving the acoustic 
wave equations in 1D and 2D. Through a series of mathematical operations, 
we obtain the following stability condition for the 1D homogeneous case, 

max
0 0

0.5178h ht
c c

αΔ ≤ ≈ ,                                 (21) 

where h  denotes the space increment. For the 2D homogeneous case, the 
stability condition of the INETD method (20) under the condition 
x z hΔ = Δ =  is given by 

max
0 0

0.3136h ht
c c

αΔ ≤ ≈ .                                 (22) 

Table 1. The approximate maximum Courant numbers of the original and improved 
methods. 
 

Method NETD INETD 
 

maxα (1-D) 0.4132 0.5178 
maxα (2-D) 0.2583 0.3136 

 
 
For comparison, Table 1 contains the approximate maximum Courant 

numbers of the NETD and INETD methods for 1D and 2D. From Table 1, 
we can see the stability condition of the INETD method is more relaxed than 
that of the NETD method. 
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Numerical dispersion analysis 
 

In wavefield simulations, numerical dispersion (or grid dispersion) is 
the most significant numerical problem limiting the usefulness of point-wise 
discretization of wave equations. Following the analysis of previous work 
(Dablain, 1986; Lioyd, 1996; Yang et al., 2006), we obtain the dispersion 
relationship of the INETD method for 1D and 2D acoustic wave equations. 

 

 
 
Fig. 1. The ratio R  of the numerical velocity to the exact phase velocity versus the 
sampling rate SP for the INETD and NETD methods for the 1D homogeneous case. The 
Courant numbers are a 0.1, b 0.2, c 0.3, and d 0.4, respectively . 
 
Table 2. The average dispersive errors of the INETD and the original NETD methods for 
different Courant numbers for the 1D Case. 
 

Method 
Courant number (α ) 

0.1 0.2 0.3 0.4 
INETD 1.924 2.051 2.402 3.028 
NETD 1.949 2.321 3.207 4.665 
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 We define the spatial sampling ratio first proposed by Moszo et al. 
(2000) as /pS h λ= , in which λ , denotes the wavelength. The dispersion 
ratio R  is defined as 0/numR c c= , in which numc  and 0c  denote the 
numerical and true velocities, respectively. 1R =  implies the method has no 
numerical dispersion. The dispersion relation as a function of the sampling 
rate (grid spacing per wavelength) is shown for the 1D case in Fig. 1. Table 
2 shows the average numerical dispersive errors of the INETD and the 
original NETD methods for different Courant numbers (Fig. 1). The average 
numerical dispersive error is given by 

( )
0.5

0
1

Error 100 %
0.5

pR dS−
= ×
∫

. 

 
From Fig. 1 and Table 2, we can see the average dispersion error and 

the maximal dispersion error of the INETD method for the 1D case are less 
than that of the NETD method. Fig. 2 shows the average numerical 
dispersive errors of the INETD and the original NETD methods for different 
Courant numbers and various values of propagation angles in the 2D case. In 
Fig. 2 we observe that the average dispersion error of the INETD method is 
less than that of the NETD. 

 
Fig. 2. The average numerical dispersive errors of the INETD (solid line) and the original 
NETD (dashed line) methods for different Courant numbers and propagation angles for 
the 2D Case. 
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ERROR ANALYSIS 
 

To investigate the accuracy of the INETD method, we estimate the 
theoretical and relative numerical errors of the INETD method, and compare 
with the NETD method. 

 
 
Theoretical analysis 
 

Using the Taylor series expansion, we conclude that the INETD 
method is accurate third-order in time and fourth-order in space. Thus, the 
temporal accuracy of the INETD method is increased from second order in 
the original NETD method to third order, and the spatial accuracy remains 
the same as that of the original. 
 
Numerical errors 
 

To further illustrate the accuracy of the INETD method, in the 
following we compare the numerical errors caused by the INETD method 
and the original NETD method for the 2D acoustic wave equation. 

 
We consider the following 2D initial value problem: 
 

2 2 2

2 2 2 2
0

* *
0 0

0 0

* *
* 0 0

0 0

1

2 2(0, , ) cos( cos sin )

2 2(0, , ) 2 sin( cos sin )

u u u
x z c t

f fu x z x z
c c

f fu x z f x z
t c c

π π
θ θ

π π
π θ θ

⎧∂ ∂ ∂
+ =⎪∂ ∂ ∂⎪

⎪⎪
= − ⋅ ⋅ − ⋅ ⋅⎨

⎪
⎪∂

= − − ⋅ ⋅ − ⋅ ⋅⎪
∂⎪⎩

,   (23) 

 
where 0c  is the velocity of the plane wave, *f  is the frequency, and 0θ  is 
an incident angle at time 0t = . Obviously, the analytical solution for the 
initial value problem (23) is 

	 	
* 0 0

0 0

( , , ) cos 2 cos sinx zu t x z f t
c c

π θ θ
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. 	 	 	 	 	 	 	 	 	 	 	 	  (24) 
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For comparison, we use the INETD and the original NETD methods 

to solve the initial value problem (23). In our numerical experiments, the 
parameters are chosen as follows: the computational domain 0 6x≤ ≤ km, 
0 6z≤ ≤ km, the frequency f* = 30 Hz, the acoustic velocity c0 = 4 km/s, and 
the incident angle of the plane wave 0 / 4θ π= . The relative error for the 2D 
case is defined by 

 

( )

( )

1
22

.
1 1

2

1 1

, ,
(%) 100

, ,

N N
n
i j n i j

i j
r N N

n i j
i j

u u t x z
E

u t x z

= =

= =

⎧ ⎫⎡ ⎤−⎪ ⎪⎣ ⎦⎪ ⎪
= ×⎨ ⎬
⎪ ⎪⎡ ⎤

⎣ ⎦⎪ ⎪⎩ ⎭

∑∑

∑∑
,                (25) 

 

where ,
n
i ju  is the numerical solution and ( ), ,n i ju t x z  is the analytical 

solution. To avoid the effects of artificial reflections from the edges of the 
computational domain, in this numerical experiment we use the exact 
solution (24) of the initial value problem (23) at the artificial boundaries in 
each of the two methods. 
 

Fig. 3 shows the computational results of the relative error Er at 
different times for different spatial and temporal increments, where the two 
lines of Er for the INETD and the original NETD methods are shown in a 
semi-log scale. From Fig. 3, we conclude that the numerical errors 
introduced by the INETD method measured by Er are consistently less than 
those of the original NETD method.  
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Fig. 3. The relative errors of the INETD and the original NETD methods measured by Er 
[formula (25)] are shown in a semi-log scale for the 2D initial value problem (23). The 
spatial and temporal increments are (a) 40 mx zΔ = Δ =  and 0.002stΔ = , 
(b) 40 mx zΔ = Δ =  and 0.0015mstΔ = , (c) 30 mx zΔ = Δ =  and 0.001stΔ = , 
(d) 30 mx zΔ = Δ =  and 0.00075stΔ = , respectively. 
 

 
 
NUMERICAL DISPERSION AND EFFICIENCY 
 

As shown above, the INETD method is superior in the numerical 
errors to NETD. The computational costs of the two methods are the same: 
for example, both took about 130 s to generate Fig. 3a, 173 s to generate 
Fig.3b, 465 s to generate Fig. 3c, and 620 s to generate Fig. 3b. All the 
experiments in this work are done on a Core(TM)2 Duo CPU(2.40 GHz, 
2.39 GHz) with 1.89 GB RAM. To investigate the ability of the INETD 
method to reduce numerical dispersion which is another important aspect 
characterizing numerical schemes,  we compare the  numerical  solutions  
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generated by the INETD and the NETD methods, and by the fourth-order 
LWC method (Dablain, 1986) with the results from the analytic method (Aki 
and Richards, 1980) for the acoustic wave equation in a homogeneous 
medium model. 
 

In this example, we choose a homogeneous medium with an acoustic 
velocity of c0 = 4 km/s. The model size is 0 7.2x≤ ≤ km and 0 7.2z≤ ≤ km, 
and the source has a dominant frequency of f0 = 20 Hz located at the center 
of the model, and the receiver is located at ( 4.2x = km, 3.6z = km). The 
source time-function is a Ricker wavelet 

 

 ( ) ( )( ) ( )( )2 22
0 0 05.76 1 16 0.6 1 exp 8 0.6 1f t f f t f t= − − − − −                 .                                           (26) 

 
Fig. 4. Numerical errors of the INETD, the NETD and the LWC methods at the receiver.	
Note that these figures are plotted on different scales. 
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 We choose the spatial increments h x z= Δ = Δ = 60 m, 50 m and 40 m, 
resulting in 3.3, 4 and 5 grid points per minimal wavelength, respectively. 

 
Fig. 4 shows	 a comparison among the INETD, the NETD and the 

LWC methods made of their numerical error on the different spatial and 
temporal increments at the receiver. 

 
From Fig. 4, we see that the INETD and the NETD methods have 

lower numerical dispersion than that of the fourth-order LWC method. And 
we observe that the errors and the numerical dispersion of the INETD are the 
smallest of the three methods.	 Meanwhile, the errors and the numerical 
dispersion of the INETD are gradually smaller as the spatial and temporal 
grid sizes decrease, indicating both the convergence and the validity of the 
INETD. 

 
 
NUMERICAL EXAMPLES 
 

In this section we present four numerical examples to investigate the 
validity of the INETD method. In all the experiments, the model parameters 
are the same as those used in Zhang et al. (2014), and the explosive source 
[eq. (26)] is used. 

 
 
Example 1: Three-layer model 

 
First we choose a computational domain of 60 x≤ ≤  km and 0 6z≤ ≤

km and a three-layer model with the two horizontal interfaces at 2 km and 
3.33 km depth, respectively. The velocity is 3.0 km/s in the top layer, 2.0 
km/s in the middle layer, and 4.0 km/s in the bottom layer. The explosive 
source [eq. (26)] with a dominant frequency of f0 = 25 Hz is located at the 
center of the domain and spatial and temporal increments are chosen as 

20x zΔ = Δ = m and 45 10t −Δ = × s, resulting in 4 grid points per minimum 
wavelength. 

 
Fig. 5 shows the wavefield snapshots generated by INETD at four 

times; these show the wave propagation phenomena including reflection and 
transmission at the interfaces without visible numerical dispersion. This 
experiment demonstrates that INETD can deal well with models that contain 
strong velocity contrasts between the adjacent layers on coarse spatial grids.  
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Fig. 5. Snapshots of acoustic wavefields at time a 0.3 s, b 0.5 s, c 0.8 s, and d 1.0 s for 
the three-layer model generated by the INETD method. 
 
 
Example 2: Marmousi model 
 

In the second experiment, we choose the Marmousi model (Versteeg 
and Grau, 1991) to demonstrate the performance of the INETD method in 
realistically complicated media. Fig. 6 shows the velocity structure ( ),c x z , 
where the velocity varies from 1.5–5.5 km/s. We choose the spatial 
increments 24x zΔ = Δ = m and the temporal increment 0.000436tΔ = s. The 
number of grid points is 384 122×  so that the computational domain is  
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0 9.192x≤ ≤  km and 0 2.904z≤ ≤ km. The source, which has a dominant 
frequency of f0 = 15 Hz, is located in the middle on the surface, resulting in 
4.17 grid points per minimal wavelength. 

 

 
Fig. 6. The Marmousi model. 

 
 
Fig. 7 shows the wavefield snapshots generated by the INETD at 

times 0.6T = s, 0.9T = s, 1.2T = s, and 1.5T = s, respectively; these snapshots 
are clean and have no visible numerical dispersion for the complicated 
geological model even though the spatial increment is large. In this 
experiment, we use the perfectly matched layer absorbing boundary 
condition (Komatitsch and Tromp, 2003; Ma et al., 2015) to treat the grid 
edges. 
 
 
 
Example 3: a homogeneous elastic model 
 

We consider the following elastic wave equations in a 2D 
homogeneous TI medium: 

 

 

2 2 2 2

11 13 44 44 12 2 2

2 2 2 2

44 13 44 33 22 2 2

( )

( )

u u w uc c c c f
t x x z z
w w u wc c c c f
t x x z z

ρ

ρ

⎧ ∂ ∂ ∂ ∂
= + + + +⎪⎪ ∂ ∂ ∂ ∂ ∂

⎨
∂ ∂ ∂ ∂⎪ = + + + +

⎪ ∂ ∂ ∂ ∂ ∂⎩

,         (27) 
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Fig. 7. Snapshots of acoustic wave fields at time a 0.6 s, b 0.9 s, c 1.2 s, and d 1.5 s for 
the Marmousi model generated, by the INETD method. 
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where u  and w  are the displacement components in the x- and 
z-directions, respectively. c11 , c13 , c33 and c44 are the elastic constants; ρ  is 
the medium density; 1f  and 2f  are the source force components in the 
x − and z −directions. The computational parameters are c11 = 45, c13 = 9.6, 
c33 = 37.5, and c44 = 12 GPa, and 1.0ρ =  

3g/cm . The mesh size is 401 401×
points, the spatial grid increment is 30x zΔ = Δ =  m, and the time increment 
is 0.00067tΔ =  s. 
 

The source located at the center of the computational domain is a 
Ricker wavelet with a dominant frequency of  f0 = 30 Hz. Fig. 8 shows the 
x- and z-component snapshots at 0.6T = s generated by the INETD method. 
The snapshots show clear wavefield information of the displacement without 
visible numerical dispersion. The cusps and the anisotropy of the velocity of 
the wave propagation can be clearly seen. In short, the numerical results 
demonstrate that the INETD method can simulate the elastic wave 
propagation effectively. 

 
 

 
 
 
 
Fig. 8. Snapshots of elastic wave fields in the 2D homogeneous TI medium at time 0.6 s, 
generated by the INETD method for (left) the x-direction displacement component and 
(right) the z-direction displacement component. 
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Example 4: a two-layer elastic model 
 

For this example, we choose a two-layer elastic model with large 
velocity contrasts across the interface. The size of the computational domain 
is 0 4x≤ ≤  km and 0 4z≤ ≤  km, and the horizontal interface of the two 
layers is at 2.4 km depth. The Lamé constants and densities of the two-layer 
model are 1 1.5ρ = g/cm3, 1 1.5λ = GPa,	 1 2.5µ = GPa in the top layer, and 

2 2.0ρ = g/cm3, 2 11.0λ =  GPa, 2 15.0µ = GPa in the bottom layer. These 
correspond to the P −and SV −wave velocities of 1.63 and 1.29 km/s in the 
top layer, and 3.61 and 2.74 km/s in the bottom layer. The chosen spatial 
increment is 15x zΔ = Δ = m, and the chosen temporal increment is =0.0005tΔ s. 
The source, which has a frequency of f0 = 20 Hz, is a symmetric Ricker 
wavelet located at ( 2x = km, 1.85z = km).  
 

Fig. 9 shows the x-direction and z-direction displacement snapshots at 
0.6T = s, generated by the INETD. The numerical results clearly show the 

elastic wave propagation phenomena in the two-layer model, which 
indicates that the INETD can also be used in a multilayer medium with 
strong interfaces for elastic wave propagation. 

 
Fig. 9. Snapshots of elastic wavefields in the two-layer medium at time 0.6 s, generated 
by the INETD method for (left) the x-direction and (right) the z-direction displacement 
components. 
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ANOTHER CONSIDERATION OF THE INETD SCHEME 
 

Now take a closer look at the INETD scheme (20). We can replace 
approximation (19) by the approximation 

 
     1 2 3( )−− ≈ + + +I C I C C C 	 	 	 ,                            (28) 

 
resulting in another INETD scheme as 

( )1 2 3

1 21exp( ) ( ) exp( ) exp( ) ) .

n

nt t t t Y
t

+

−

= + + +

⎛ ⎞Δ + Δ Δ − Δ +⎜ ⎟Δ⎝ ⎠

Y I C C C

L L (L L L I N
 (29) 

 
Table 3. The approximate maximum Courant numbers of the original and improved 
methods. 
 

Method NETD INETD1 INETD2 

maxα (1-D) 0.4132 0.5178 
 

0.8263 
 

maxα (2-D) 0.2583 0.3136 0.7811 
 
 
Table 3 shows the approximate maximum Courant numbers of the 

NETD scheme (13), the INETD scheme (20) (INETD1) and the INETD 
scheme (29) (INETD2) for the 1D and 2D cases. From Table 3, we see that 
the INETD scheme (29) exhibits higher stability limits than the INETD 
scheme (20) and the NETD scheme (13). The INETD scheme (29) gives 
more accurate numerical results than the INETD scheme (20) and the NETD 
scheme (13) when the same grids are used. However, the INETD scheme 
(29) increases the computational cost by about 30% compared with the 
INETD scheme (20). 
 
 
CONCLUSIONS 
 

We have improved the original NETD for solving acoustic and elastic 
wave equations, and investigated in detail the properties of the INETD 
method,  including its stability,  numerical dispersion,  and accuracy. The  
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INETD method, compared with the NETD method, has more relaxed 
stability. In 1D, the approximate maximum Courant number of the INETD 
method is increased from 0.4132 in the original NETD method to 0.5178 
(for the INETD scheme (29) 0.8263), and in 2D, from 0.2583 to 0.3136 (for 
the INETD scheme (29) 0.7811). The INETD method increases the accuracy 
in time from the second order of the original NETD method to the third 
order, while keeping the spatial accuracy the same as the original NETD 
method. This conclusion is also verified by our numerical experiments of 
computing the relative error Er , via formula (25) for the 2D case. In addition, 
the dispersion error of the INETD method for the 1D and 2D cases is less 
than that of the NETD method. 

 
When using the same temporal and spatial increments, the 

computational costs and storage space of the INETD (20) and the NETD 
methods are the same, while the INETD scheme (29) increases the 
computational cost by about 30% compared with the NETD scheme. 
However, because the INETD scheme (29) has a much higher stability limit, 
higher order of temporal accuracy and lower dispersion than the NETD, it 
can lead to high computational efficiency. 

 
Meanwhile, wavefield modelling illustrates that the improved method 

can effectively reduce numerical dispersion when too-coarse computation 
grids are used. The INETD method is related to the Lie group method. 
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