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ABSTRACT 
 
Guo, Z.W. and Cao, S.Y., 2020. A novel high-precision spectral decomposition method 
based on second-order synchrosqueezing transform and its application. Journal of Seismic 
Exploration: 29, 159-172. 
 
 Spectral decomposition plays a central role in characterizing multicomponent signals, 
as for instance seismic signal, because it can reveals lots of valuable information hidden 
in the broadband seismic response. This paper presents a new methodology for seismic 
spectral decomposition via second-order synchrosqueezing transform. Second-order 
synchrosqueezing transform, which relies on a second-order local estimate of the 
instantaneous frequency, can provide a sharpened time-frequency representation while 
allowing for the separation and the reconstruction of the modes. We validate our method 
by means of a synthetic model and compare with the conventional spectral decomposition 
algorithms. Two field examples are employed to illustrate that the seismic attributes 
delineation using the second-order synchrosqueezing transform based method gives a 
better reflection of hydrocarbon-saturated reservoirs and stratigraphic characteristics. 
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INTRODUCTION 
 
 Spectral decomposition is considered as a key tool suited for analyzing 
non-stationary signals whose frequency content changes with time and has 
been very commonly applied in geophysical exploration, for example, 
seismic thin bed analysis (Partyka et al., 1999), reservoir characterization 
(Chen et al., 2014; Radad et al., 2016), ground-roll elimination (Liu and 
Fomel, 2013; Liu et al., 2016), hydrocarbon indentification  (Castagna et al., 
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2003; Farfour et al., 2013; Chen et al., 2014) and channel sands detection 
(Odebeatu et al., 2006; Wu et al., 2014). Over the last decade, numerous 
methods have been proposed for spectral decomposition. One of the most 
powerful approaches developed is probably short time Fourier transform 
(STFT), which achieves a localized time-frequency representation based on 
the windowed Fourier transform (Allen, 1977). Unfortunately, its 
time-frequency resolution is intrinsically influenced by the window size. The 
continuous wavelet transform (CWT) stems from the fact that STFT is 
associated with a fixed time and frequency resolution because the length of 
the analysis window remains unchanged. In fact, CWT leads to good time 
resolution for high-frequency events and good frequency resolution for 
low-frequency events (Rioul et al., 1991; Sinh et al., 2005). However, CWT 
suffers from an intrinsic limitation known as the uncertainty principle, which 
stipulates that one cannot localize a signal with an arbitrary precision both in 
time and frequency. Many attempts have been made to deal with this 
problem, such as Wigner-Ville distribution (WVD) (Jeffrey, 1999) and 
Cohen distribution (Cohen, 1966). The former belongs to quadratic 
time-frequency methods; the latter is a special case of which being squared 
STFT. Although offering a dramatic improvement in terms of 
time-frequency resolution, the existence of cross-term interference limits the 
time-frequency readability of seismic signals. The reassignment method 
(RM) is a general methodology to sharpen time-frequency representations in 
a somehow restricted framework (Kodera, 1976). It, however, faces with the 
disadvantage that the reassigned transform is no longer invertible. In 2011, 
Daubechies and Maes proposed another phase based technique, called 
synchrosqueezing transform (SST), its purpose is also to sharpen the 
time-scale representation given by CWT. Meanwhile, the SST is an adaptive 
and invertible transform that improves the readability of a wavelet-based 
time-frequency map (Li and Liang, 2012). Originally proposed as a 
post-processing method applied to CWT, SST can alternatively be applied to 
STFT with minor changes, to obtain the so-called STFT-based SST (FSST) 
(Thakur and Wu, 2011; Oberlin et al., 2014). However, the applicability of 
FSST is somewhat limited by the requirement of weak frequency modulation 
hypothesis for the modes constituting the signal. To deal with this issue, an 
extension of FSST to the context of strongly modulated modes, called 
second-order synchrosqueezing transform (FSST2), was proposed by 
Oberlin (Oberlin et al., 2015), which relies on a second-order local estimate 
of the instantaneous frequency to improve modes localization and 
reconstruction. 
 
 In this paper, we extend our study for seismic spectral decomposition 
based on FSST2, which enables not only to obtain a highly concentrated 
time-frequency representation, but also to allow for the mode retrieval with a 
reasonable precision. The outline of the paper is as follow: in Section 2, we 
introduce the fundamental concept and theory of FSST2. We then employ a 
synthetic example to put the emphasis on the outstanding performance in 
sharpening time-frequency map compared with FSST. Section 4 is devoted 
to the presentation of two field datasets, which further demonstrate the 
potential of FSST2 in detecting hydrocarbon-saturated reservoirs and 
depicting stratigraphic characteristics. 
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SECOND-ORDER SYNCHROSQUEEZING TRANSFORM 
 

 The second-order STFT-based synchrosqueezing transform (FSST2), an 
adaptation of STFT-based SST (FSST), is capable of sharpening the 
time-frequency representation of a signal while allowing for the separation 
and retrieval of the modes. 

 
An AM-FM signal is expressed as follows: 
 

  ( ) ( ) ( )2if A e πφ ττ τ=  ,                                    (1) 

 
where ( )A τ  and ( )φ τ  are respectively the instantaneous amplitude 

and phase functions. 
  

 The short-time Fourier transform (STFT) of signal f , with respect to the 
window g, can be represented via the following formula: 

 

  ( ) ( ) ( ) ( )2, i tg
fV t f g t e dπη τη τ τ τ− −∗= −∫    ,                   (2) 

 
where g* is the complex conjugate of g. 
 

The conventional FSST is defined by: 
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where γ  stands for some threshold and δ denotes the Dirac distribution. 

( ),f tω η  represents the estimated instantaneous frequency at time t and 
frequency η : 
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where { }R •  means the real part of complex number, and t∂  is the partial 
derivative with respect to t. 
 
   The FSST2 is a new extension of FSST, which aims to improve modes 
localization and reconstruction and suit for a wide variety of signals by 
means of a second-order local estimate for the instantaneous frequency.  
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Given a signal f , the complex reassignment operator ( ),f tω η  and 
( ),f tτ η  are respectively defined as 
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Then, the second-order local complex instantaneous frequency is 

represented as: 
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Therefore, FSST2 can be obtained by simply replacing ( ),f tω η  by [ ] ( )2

, ,t f tω η  
in eq. (3). 
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 Ultimately, the original signal f can be approximately reconstructed by 

integrating ( ),
2, ,g
fT tγ ω in the vicinity of the corresponding ridge ( )( )',t tφ : 
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where is the compensation factor and ( )tϕ is an estimate for ( )' tφ . 
 
 
SYNTHETIC DATA 
 

A synthetic signal is employed to test the proposed method, which is a 
non-stationary multicomponent signal consisting of two modes and is shown 
as 
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  ( ) ( ) ( )1 2s t s t s t= +    ,                               (11) 
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The original signal is displayed in Fig. 1, it is worth noting that s1(t) 

possesses a constant frequency, and the component s2(t) is the combination 
of a linear chirp signal and a quadratic chirp one. We use FSST and FSST2 
to analyze the synthetic signal, respectively and the corresponding results are 
presented in Fig. 2. It can be observed that FSST generates some inaccuracy 
in the estimated instantaneous frequency, which results in energy diffusion 
in the time-frequency plane [Fig. 2(a)]. While in the case of FSST2, the 
energy gets obviously concentrated due to the estimation for instantaneous 
frequency with a high precision [Fig. 2(b)]. Meanwhile, the enlarged local 
time-frequency results from the rectangles in Fig. 2 further show the high 
resolutions in both time and frequency for FSST2 (Fig. 3), which is very 
beneficial to characteristics extraction for the non-stationary signal. 

 

 

Fig. 1. Synthetic signal with two components. 
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 (a)                                  (b) 

Fig. 2. Time-frequency map obtained by FSST (a) and FSST2 (b), respectively. FSST2 
shows a relatively sharp time-frequency map. 
 

  

     (a)                                 (b) 

Fig. 3. Enlarged local time-frequency representation corresponding to Fig. 2. The energy 
is much more concentrated using FSST2 (b) than FSST (a). 
 
 
FIELD EXAMPLES 
 
DataⅠ  

 
It is well known that the low-frequency anomalies associated with 

gas-charged reservoir have been utilized as a substantiating hydrocarbon 
indicator (Castagna et al., 2003). In this section, FSST2 is applied to analyze 
the gas-filled sand reservoir [Fig. 4(a)] to verify the effectiveness for 
detection of hydrocarbon. This dataset is comprised of 60 traces, the time 
range is from 3.5 s to 4.5 s and sampling period is 2 ms. The gas-filled area 
is indicated by the arrow and the trace 20, which passes through the reservoir, 
is shown in Fig. 4(b). Obviously, the strong amplitude locates in around 4s. 
The time-frequency representations obtained by FSST and FSST2 are 
demonstrated in Fig. 5. The FSST method has generated a blurred 
time-frequency map [Fig. 5(a)], which possibly dues to inaccuracy 
instantaneous frequency estimate. As for FSST2, it is capable of presenting 
the clearer time-frequency features of seismic signal and the higher 
time-frequency resolution. 
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 Figs. 6(a) and 6(b) are the common frequency slices of 20 Hz and 40 Hz, 
respectively, obtained by using FSST-based method. The results with the 
same frequencies from the FSST2-based method are showed in Figs. 6(c) 
and 6(d), respectively. As we seen from Fig. 6, both methods exhibit the 
similar characteristics, in other words, the low-frequency anomaly is obvious 
near the gas-bearing reservoir at 20 Hz, and then the energy is attenuated at 
40 Hz. However, FSST2 provides the higher time-frequency resolution than 
FSST-based method, which is helpful in depicting the location and extent of 
the gas-charged sand reservoir more precisely. In addition, the energy from 
20 Hz to 40 Hz is attenuated more dramatically and the variations in 
amplitude are clearer for FSST2, that is to say, the FSST2-based method is 
more sensitive to gas-filled reservoir and is more suited for low frequency 
anomaly detection associated with hydrocarbon. 

 

 
(a) 

 

(b) 
 
Fig. 4. The real post-stack data (a) and the corresponding trace 20. The arrow indicates a 
gas-charged reservoir and the trace 20 is characterized by strong amplitude around 4s. 

Reservoir 
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(a) 
 
 

 
(b) 

 
 
 
Fig. 5. The time-frequency map of trace 20 obtained by FSST (a) and FSST2 (b). 
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(a)                                        (b) 

  
(c)                                        (d) 

 
 
Fig. 6. (a) and (b) are the frequency slices of 20 Hz and 40 Hz, using FSST-based method. 
(c) and (d) are the same frequency slices, using FSST2-based method. FSST2 displays the 
higher frequency resolution compared with FSST; the variations in energy from 20 Hz to 
40 Hz are clearer, and which is reduced rapidly. 
 
 
 
DataⅡ  

 
 Further validation of the potential for FSST2 to delineate stratigraphic 

characteristics, we perform FSST2 on another seismic data [Fig. 7(a)] and 
extract the spectral slices (Fig. 9). For comparison, the FSST is also 
implemented to the same data. Fig. 7(b) is trace 170, which stems from the 
original post-stack section [Fig. 7(a)]. Time-frequency representations of 
trace 170 obtained by FSST and FSST2 are shown in Figs. 8(a) and 8(b), 
respectively. It can be obviously observed that FSST2 can effectively 
improve the energy concentration of time-frequency map compared with 
FSST and the time-frequency curves is more clear, so that more precise 
spectral anomalies can be captured by analyzing time-frequency 
representation. 
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(a) 

 

 
(b) 

 
 
Fig. 7. A field data (a) and trace 170 (b). 
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(a) 

 

 
 

(b)     

 
Fig. 8.  The time-frequency representation of trace 170 generated by FSST (a) and 
FSST2 (b). 
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(a)                                 (b) 

  
(c)                                 (d) 

 
Fig. 9. Constant frequency slices. 40Hz obtained by using (a) FSST-based and (c) 
FSST2-based. 55Hz extracted by using (b) FSST-based and (d) FSST2-based. 

 
 
 Figs. 9(a) and 9(b) show the constant frequency slices of 40Hz and 55Hz 

for FSST. The results from FSST2-based method are displayed in Figs. 9(c) 
and 9(d), corresponding to 40 Hz and 55 Hz, respectively. We can find that 
both methods effectively extract stratigraphic characteristics, however, The 
FSST gives the blurred spectral slices [Figs. 9(a) and 9(b)], which makes the 
seismic interpretation more difficult (marked by the arrows). While the 
FSST2-based method exhibits more clearly spectral attributes and the 
variations in energy from 40 Hz to 55 Hz are very obvious, which helps to 
track the trend and extent of subsurface geologic structure. Besides, for 
further comparison, the zoom-in versions in the rectangles from Fig. 9 are 
plotted in Fig. 10. Notice the significant improvement in time-frequency map 
readability and spectrum resolution for FSST2 when compared with FSST, 
which facilitates the subsequent seismic processing and interpretation. 
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      (a)                                  (b) 

  
      (c)                                  (d) 

 
Fig. 10. The zoom-in version from the rectangles in Fig. 9. (a) 40 Hz FSST-based method, 
(b) 55 Hz FSST-based method, (c) 40 Hz FSST2-based method, (d) 55 Hz FSST2-based 
method. 
 

 
CONCLUSIONS 

 
 In this study, a novel spectral decomposition based on second-order 

synchrosqueezing transform (FSST2) is proposed to analyze the 
non-stationary signal. FSST2 overcomes the diffusion of time-frequency 
map by introducing a second-order local estimate of the instantaneous 
frequency and provides time-frequency representation with more desirable 
energy concentration. The FSST2 is validated by a synthetic data and two 
field examples. On the one hand, FSST2 is more sensitive to hydrocarbon, 
which suits for the low frequency anomaly detection associated with 
gas-charged reservoir. On the other hand, the spectral frequency slices with 
higher resolution also demonstrate FSST2’s potential in delineation of the 
subsurface geology structure and stratigraphic features, which renders that 
the FSST2 is promising for seismic data analysis. 
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