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ABSTRACT 
 
Bao, Y., Chen, J. and Liu, X.B., 2020. An accurate method of calculating the gradients of 
seismic wave reflection coefficients to rock properties in transversely isotropic media. 
Journal of Seismic Exploration, 29: 275-297. 
 
 The amplitude versus offset (AVO) inversion technique plays a critical role in 
exploration geophysics. The key issue of AVO inversion is the computational accuracy of 
the gradients of seismic wave reflection coefficients (SWRCs) to rock properties. 
Additionally, the anisotropic medium has the better representation of the earth than the 
isotropic medium. These issues will lead deviations in AVO process and weak the 
reliability of the final results. In this paper, we propose to develop a method of accurately 
calculating the gradients of SWRCs to rock properties (e.g., P- and S-velocities, density 
and anisotropic parameters) in transversely isotropic (TI) media. We calculate SWRCs in 
TI media by adding an anisotropic perturbation term on the exact Zoeppritz equations of 
the isotropic part. We obtain the partial derivatives of SWRCs to rock properties through 
a series of simple linear equations which not only keep a high accuracy but also offer a 
low computational cost. Finally, based on numerical tests, we plot the curves of SWRCs 
and partial derivatives of SWRCs with respect to rock properties and analyze their 
features.  
  
KEY WORDS: exact Zoeppritz equations, accurate gradient solution,  
   transversely isotropy. 
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INTRODUCTION 
  

Detecting or inferring the properties of subsurface structure by seismic 
data is an important procedure in oil/gas exploration (Sun and Zhao, 2006; 
Liu et al., 2012; Russell, 2014). The amplitude versus offset (AVO) 
inversion is a widely used method that can effectively estimate lithology and 
fluid properties through seismic data (Shuey, 1985; Rutherford and Williams, 
1989; Hampson, 1991; Lu et al., 2018). Currently, most AVO inversions 
apply the approximate expressions of the Zoeppritz equations to generate 
seismic wave reflection coefficients (SWRCs) (Bortfeld, 1961; Mallick, 
1995; Simmons and Backus, 1996; Wang, 1999; Li et al., 2005; Shou et al., 
2006; Alemie and Sacchi, 2011; Zong et al., 2012; Lu et al., 2018). 
Compared with the exact Zoeppritz equations, these approximations are 
easier to calculate and can work well under the conditions of small incidence 
angle and weak-contrast reflection interface. While, with the increase of the 
complexity of reservoir structure, these conventional AVO methods are not 
suitable. It is hard to satisfy the requirement of the approximation like a 
weak-contrast interface in such an intricate structure. Therefore, the SWRCs 
calculated by the conventional AVO methods will be not accurate enough. 
Since a small error in the computation will lead to a large misfit by the 
accumulation during the iterative procedure of inversion. As a consequence, 
these inaccurate SWRCs may cause a large error for the final inversion 
results. 

 
Additionally, in many AVO inversions, the medium is assumed to be 

isotropic (Aki and Richards, 1980; Shuey, 1985; Castagna and Backus, 1993; 
Tura and Lumey, 1999; Wang, 1999; Liu et al., 2012; Liu et al., 2019). 
However, as Thomsen (1986) indicates, most sedimentary rocks have weak 
anisotropy that can generate nonnegligible phenomena in exploration 
geophysics. Especially, the vertical transverse isotropy (VTI) is common in 
the earth crust (Backus, 1962; Thomsen, 1986; Carcione et al., 1991; Sidler 
and Holliger, 2010). Mallick and Frazer (1991), which has been proven that 
the P-wave reflection response from a VTI medium is azimuthally 
dependent. Tsvankin (1995) showed the important characteristic of the 
transversely isotropic (TI) directivity factor for the incident seismic wave in 
AVO inversion. Thus, previous isotropic AVO methods may make some big 
errors in the inversion results. 
 

A significant amount of research has focused on calculating reflection 
coefficients in TI media. Banik (1987) presented that Thomsen anisotropic 
parameters can effectively describe AVO characteristics in the TI media. 
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 A case study of AVO in VTI media for the different classes of gas 

sands has been found by Kim et al. (1992). Vavryčuk (1999) derived the 
approximate formulae for the reflection and transmission coefficients of PP 
and PS plane waves at weak-contrast interfaces in weakly anisotropic elastic 
media. However, all these studies are under the assumption of weak contrast, 
and use the approximate expressions of the Zoeppritz equations. 

 
In AVO inversion, we often calculate gradients of SWRC to rock 

properties using finite-difference methods (Lu et al., 2018). However, it may 
lead to higher computational cost and instability. The purpose of this paper 
is to overcome these shortages of conventional AVO methods and develop a 
method of accurately calculating the gradients of SWRCs to rock properties 
(e.g., P- and S-velocities, density and anisotropic parameters) in TI media. 
The partial derivatives of SWRCs to rock properties can be obtained through 
a series of simple linear equations which not only keep a high accuracy but 
also offer a low computational cost. In addition, we apply the exact 
Zoeppritz equations to compute SWRCs in the isotropic part, and add an 
anisotropic perturbation term on the isotropic part to help us calculate 
SWRCs in the TI medium. Due to the huge computational cost of the exact 
Zoeppritz equations for TI media (Daley and Hron, 1977), we employ the 
Rüger’s (2002) reflection coefficient equations for the VTI medium as the TI 
perturbation term. Rüger’s equations include effective anisotropy parameters 
(known as Thomsen parameters) which can simply and precisely describe 
the influence of transversely isotropy on SWRCs (Booth et al., 2016).  
However, we should make it clear that our proposed method does not suffer 
any limitations for weak anisotropy and weak-contrast reflection interfaces. 

  
         Finally, we plot the curves of SWRCs in all three classes of AVO and 
compare them with conventional methods in TI media. The results show a 
significant improvement of our proposed method in computational cost and 
accuracy. 

 
 
THEORY 

  
In order to calculate seismic wave reflection coefficients (SWRCs) in 

anisotropic media, we add an anisotropic perturbation term on the isotropic 
part (Daley and Hron, 1977). It can be written as: 

 

  iso anisR R R= +  ,                                                                                  (1) 
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where Riso and Ranis denote the isotropic and anisotropic parts, respectively. 
 
Therefore, the gradients of SWRCs with respect to rock properties are 
expressed as: 
 

            
iso anisR RR

m m m
∂ ∂∂

= +
∂ ∂ ∂

 ,                                                                        (2) 

 
where the elements of parameter matrix m represent the values of P- and S-
wave velocities, the density, and Thomsen parameters. 
  
 
Isotropic media 
 
 Unlike using the approximate Zoeppritz equations in the isotropic part 
(Lu et al., 2018), we use the exact Zoeppritz equations to calculate SWRCs: 
 

 
1

isoR A B−=      ,                                                                               (3) 
where 

              2
1 21 2 21 3

2
2 3
1 1 21 21 3

2

cos sin cos ' sin '
sin cos sin ' cos '
cos2 sin cos2 ' sin2 '

sin2 cos2 sin 2 ' cos2 '

A

α β α β

α β α β

β η β ρ η β ρ η β

η
η α η β ρ α ρ η β

η

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− − −=
⎜ ⎟
⎜ ⎟−⎜ ⎟
⎝ ⎠

,             (4) 

 
( )Tiso PP PS PP PSR R R T T=     ,                                                           (5) 

      

              ( )2
1cos sin cos2 sin 2

T
B α α β η α= − −       .                              (6) 

 
   In the above equations, α indicates the incidence angle of P-wave, β is 
the reflection angle of S-wave, α’ and β’ denote refraction angles of P- and S-
waves respectively. η1=Vs1/Vp1, η2=Vp2/Vp1, η3=Vs2/Vp1 and ρ21=ρ2/ρ1. VP  and 
VS  are the P-and S-wave velocities, ρ is the density of the medium. We use 
subscripts “1” and “2” to distinguish the upper and lower layers (Fig. 1).  
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   We partially differentiate the equations of SWRCs with the parameter 
matrix miso, which includes the η1, η2, η3 and ρ21. The derivative equations can 
be written as: 
 

          iso

iso
iso

iso iso

R A BA R
m m m
∂ ∂ ∂

= − +
∂ ∂ ∂         .                                             (7) 

  
 

 

 
Fig. 1. Reflection and transmission of only P-wave incidence at an interface between two 
elastic media (Revised from Liu et al., 2019). n  is the normal direction. 
  
 
   Based on eq. (4), we can calculate the partial derivatives of the 
reflection coefficients by obtaining the partial derivative equations of 
matrices A and B. Further, by utilizing the chain rule of derivatives, we can 
easily compute the accurate partial derivative equations of SWRCs with 
respect to P- and S-velocities and density (Appendix A). 
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Transversely Isotropic (TI) media 
  
    Here, we apply the Rüger’s reflection coefficient equations (Rüger, 

2002) to calculate the PP and PS reflection coefficients in the vertical 
transverse isotropic (VTI) medium, which can be written as: 
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where ε and δ are known as Thomsen anisotropic parameters. The VP and VS 
is the vertical (symmetry-axis) velocities of the P- and S-waves, respectively: 

 
 

                    

( )

( )

1 2

1 2

1
2
1
2

P P P

S S S

V V V

V V V

⎧ = +⎪⎪
⎨
⎪ = +
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 .                                                                  (9) 

 
 
   The partial derivatives of the reflection coefficients with vertical 
velocities and Thomsen anisotropic parameters can be found in Appendix B. 
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NUMERICAL EXAMPLES 

  
    We first compare our new SWRCs with those generated by 
approximations of Aki and Richards (1980) and Shuey (1985) in the 
isotropic part to examine the effectiveness of our method. Based on the 
isotropic part, we add the anisotropic perturbation to figure out the 
difference between isotropic and anisotropic terms. Finally, we plot gradient 
curves of SWRCs with respect to rock properties to better understand the 
features of the partial derivatives of SWRCs. 
 

 Isotropic part 
  
    Here, we choose a class II model (isotropic part in Table 1), where the 
reflection interface represents an interface between mudstone and saturated-
gas sandstone. Fig. 2 shows the comparison of reflection coefficients RPP 
(the incident and reflected waves are both P-waves, incident angle range is 
0 40−o o) calculated by the exact, the Shuey’s approximate (Shuey, 1985) and 
Aki and Richards’ approximate (Aki and Richards, 1980) Zoeppritz 
equations in the class II AVO model, respectively. There is a clear split 
between the three curves. When incidence angle is small, the values of those 
reflection coefficients RPP are almost same. With the incidence angle 
increasing, the difference between them becomes larger. This phenomenon 
verifies that the conventional approximate methods are suitable for small 
incident angle and our new method can improve the accuracy with the large 
incidence angle. 

 

 

Fig. 2. The comparison of reflection coefficients RPP by applying the exact, Shuey’s 
approximate and Aki-Richards’ approximate Zoeppritz equations in an isotropic medium 
(class II), respectively. 
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Table 1. Rock properties for the two-layer anisotropic model (class II). (Liu et al., 2012). 

 VP(m/s) VS(m/s) ρ(g/cm3) δ ε 

Mudstone 1910 800 2.25 0.1 0.2 

Saturated-

gas 

sandstone 

2202 1369 2.3 0.08 0.15 

 
 
 
Table 2. Rock properties for the two-layer isotropic model (class I). (Castagna et al. 
1998). 
 

 VP(m/s) VS(m/s) ρ(g/cm3) 

Tight unit 3250 1780 2.44 

Shale 2900 1330 2.99 

 
 
Table 3. Rock properties for the two-layer isotropic model (class III). (Castagna et al. 
1998). 
 

 VP(m/s) VS(m/s) ρ(g/cm3) 

Shale 2590 1060 2.21 

Gas sandstone 1650 1090 2.07 

 
 
    To further illustrate the significance of the exact Zoeppritz equations, 
we also plot the SWRCs curves for class I (Table 2) and class III (Table 3) 
of AVO models which are shown in Figs. 3 and 4, respectively. Figs. 3 and 
4 show the same observations as Fig. 2 does. Those studies indicate that we 
can improve the accuracy of AVO inversion using the exact Zoeppritz 
equations. 
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Fig. 3. The comparison of reflection coefficients RPP by applying the exact, Shuey’s 
approximate and Aki-Richards’ approximate Zoeppritz equations in class I model 
(Castagna et al. 1998), respectively. 

 

 

Fig. 4. The comparison of reflection coefficients RPP by applying the exact, Shuey’s 
approximate and Aki-Richards’ approximate Zoeppritz equations in class III model 
(Castagna et al. 1998), respectively.  
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Anisotropic perturbation 
   
         We first take class II model (Table 1) as an example for the study in 
anisotropic media. As Fig. 5 indicates, the anisotropic perturbation term can 
generate a remarkable variation for reflection coefficients. The difference of 
reflection coefficients increases with the incident angle increasing. It proves 
the importance of the anisotropy for the SWRC’s computation. 

   

  

Fig. 5. The comparison of reflection coefficients RPP with and without anisotropic 
perturbation term, respectively. 

 
 
    In order to further understand the influences of P- and S-velocities, 
densities and Thomsen anisotropic parameters to the SWRCs, we calculate 
the partial derivatives of the SWRCs with respect to the VP, VS, ρ, δ and ε, 
respectively. We will use the same incidence angle range (0 90−o o) in the 
following studies. The results are shown in Figs. 6 to 13, where the incident 
wave is P-wave. 

 
    We first plot the partial derivatives of reflection coefficients RPP with 
respect to VP1 and VP2 (Fig. 6). The real part of the partial derivatives of the 
RPP with respect to VP1 and VP2 are shown in Fig. 6a. For real part of VP1, 
there is a singular point at the critical angle. The partial derivative is 
increasing slowly with small incident angle increasing. As the incident angle 
close to the critical angle,  the amplitude of  reflection coefficients  performs  
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exponential growth and back to zero when the incident angle is far away 
from the critical angle. Fig. 6b shows the imaginary part of the partial 
derivatives. The partial derivative of VP1 is zero before the critical angle and 
there is a large jump when the incident angle reach to the critical angle. 
After this jump, the partial derivative rapidly returns to zero. This 
discontinuity lets the partial derivatives become complex numbers, which 
means the phase shift generates. The real and imaginary parts of partial 
derivatives of VP2 are converse to the VP1. As shown in Fig. 6, the 
computational instability will be caused around the critical angle due to the 
pike occurring at the critical angle (~ 65o). We should avoid using the 
seismic reflection data near the critical angle when carrying out seismic 
AVO inversion. 

 

 

 
Fig. 6. The real (a) and imaginary (b) parts of partial derivatives of reflection coefficient 
RPP with respect to VP1 and VP2 in the incidence angle range 0 90−o o, respectively.  

 
 
    The real and imaginary parts of the partial derivative curves of RPP 
with respect to VS1 and VS2 are shown in Figs. 7a and 7b, respectively. There 
is also a singular point at the critical angle. The real part of partial derivative 
with respect to VS1 increases with the incident angle increases (Fig. 7a). 
Upon the incident angle larger than the critical angle, the derivative starts to 
decrease when the incident angle increases. For imaginary part (Fig. 7b), the 
derivative is zero before the critical angle and decreases to zero after the 
pike. The curve regarding the VS2 is opposite of VS1 which has a larger 
amplitude. Comparing with Fig. 6, the curves of Fig. 7 are gentler, especially 
near the critical angle. 
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    The partial derivatives of RPP with respect to the densities are shown in 
Fig. 8. The trend of the curve regarding ρ1 is similar as the derivative of VP1 
that has a large jump near the critical angle and a singular point can be found 
on it. The polarities will change beyond the critical angle. And the derivative 
of RPP with respect to ρ2 shows the antipode of ρ1. However, we notice that 
the real part of derivative curve of RPP has a zero point within the range of 
critical angle. 

 

 

Fig. 7. The real (a) and imaginary (b) parts of partial derivatives of reflection coefficient 
RPP with respect to VS1 and VS2, respectively. 

 
 

 

Fig. 8. The real (a) and imaginary (b) parts of partial derivatives of reflection coefficient 
RPP with respect to ρ1 and ρ2, respectively. 

 



 

 
 

287 
 

 

 

 
Fig. 9. The partial derivatives of reflection coefficient RPP with respect to Thomsen 
parameters. (a):  δ1 and δ2; (b):  ε1 and ε2; (c): Zoom-in view of (b). 

 
 
    In Fig. 9, we plot the partial derivatives of RPP with respect to 
Thomsen parameters. The partial derivative value of RPP with respect to δ1 
increases with the increase of incidence angle (Fig. 9a). However, the partial 
derivative value of RPP with respect to ε1 is not sensitive in the range of 
small incidence angle (Fig. 9b). As the incidence angle is large enough, the 
derivative value of RPP with respect to ε1 becomes exponential growth with 
the increase of incidence angle increase. The partial derivative curve of RPP 
with respect to δ2 and ε2 is reverse to δ1 and ε1, respectively. 
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    We also show the partial derivative curves of RPS (the incident wave is 
P-wave and reflected wave is S-wave) with respect to P-wave velocities, S-
wave velocities, densities and Thomsen parameters in Figs. 10,11,12 and 13.  

 

 

 
 
Fig. 10. The real (a) and imaginary (b) parts of partial derivatives of reflection coefficient 
RPS with respect to VP1 and VP2, respectively. 

 
 

 

 

Fig. 11. The real (a) and imaginary (b) parts of partial derivatives of reflection coefficient 
RPS with respect to VS1  and VS2, respectively. 
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Fig. 12. The real (a) and imaginary (b) parts of partial derivatives of reflection coefficient 
RPS with respect to ρ1 and ρ2, respectively. 
 

 

 
Fig. 13. The partial derivatives of reflection coefficient RPS with respect to Thomsen 
parameters. (a): δ1 and δ2; (b): ε1 and ε2. 
 

   Readers can analyze the features of partial derivatives of  RPS  as we do 
in the case of RPP. Our studies here can not only help us better understand 
features of reflection coefficients, but also help us avoid the singular point 
when implementing AVO inversion. 
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Fig. 14. The comparison of reflection coefficients RPP with weak (~10%) and strong 
(~30%) anisotropy. 

 
 
Table 4. Rock properties for the weak and strong anisotropic media in the bottom layer, 
respectively. (Thomsen, 1986). 
 

 VP(m/s) VS(m/s) ρ(g/cm3) δ ε 

Mudstone (Top) 1910 800 2.25 0.1 0.2 

Shale  

(Bottom,Weak~10%) 
3794 2074 2.56 0.08 0.11 

Shale 

(Bottom,Strong~30%) 
3794 2074 2. 56 0.43 0.32 

 
 
    To further study anisotropic influence, we choose two more models 
(Table 4), which consist of two layers, respectively. The top layers are 
represented  by  the  same mudstone  in  two  models.  The  bottom  layers are  
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represented by the shale with 10% and 30% anisotropy, respectively. The 
reflection coefficients RPP are shown in Fig. 14. We can observe that the 
stronger the anisotropy the larger the difference of reflection coefficients 
calculated between the isotropic and anisotropic media. It also indicates that 
our method can work well in both weak and strong anisotropic media. 

 
 
CONCLUSIONS 
 

    In this paper, we successfully calculated seismic wave reflection 
coefficients (SWRCs) in the transversely isotropic (TI) medium and 
improved the computational accuracy of the reflection coefficients. The 
numerical test demonstrated that the errors between the accurate solution 
and approximations cannot be ignored. We also established the partial 
derivative equations of the reflection coefficients to rock properties and 
reveal their characteristics. In addition, based on our accurate computational 
method, the gradients of SWRCs in an anisotropic medium can be obtained 
easily and speedily, which, consequently, can lead to a fast and precise AVO 
inversion. 
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APPENDIX A 

 The partial derivatives of matrix A with respect to η1 are expressed as: 

              2 2
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The partial derivatives of matrix A with respect to η2 are given by: 
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For η3, the equations are expressed as: 
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.       (A-3)  

 For a homogenous elastic medium, the P- and S-wave velocities are 
correlated with the density. Thus, the partial derivatives of η1, η2 and η3 
respect to the density ratio ρ21 can be obtained: 
 

            31 2
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.                               (A-4) 

 Based on the chain rule of derivation, we can combine the eq. (A-4) 
with eqs. (A-1)-(A-3) to derive the partial derivatives of matrix A with 
respect to ρ21 as: 
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For matrix B, it can easily calculate the partial derivatives as: 
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 The derivatives of the SWRCs with respect to seismic wave velocities 
and medium density can be obtained by the chain rule for the ratios of the 
seismic wave velocities and the ratios of density. 
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APPENDIX B 

      The partial derivatives of the reflection coefficients with VP1, VP2 and VS2:                
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 As we mentioned above, the cos β can be expressed as a function of VS1. 
Therefore, we can get the partial derivative with VS1 as:  
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 Then, we use the chain rule to generate the partial derivatives with 
respect to densities: 
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 Finally, we can easily compute the partial derivatives of the reflection 
coefficients with respect to Thomsen parameters ε and δ, respectively: 
                   

( ) ( )

( )

( ) ( )

2 2 2

2

2 2 2 2

2
3 3

2 2 2 2

1 1
sin , sin tan

2 2

cos1 sin
2( )cos 2( )

cos             + 1 sin 1 sin
( ) ( ) cos

         

i ianis anis
PP PP

i i

anis
iPs P SP

i P S P S

i iP S P

P S P S

R R

R V VV
V V V V

V V V
V V V V

α α α
δ ε

α
α

δ β

α
α α

β

− −∂ ∂
= =

∂ ∂

⎡ ⎤⎛ ⎞∂
= − −⎢ ⎥⎜ ⎟

∂ − −⎝ ⎠⎣ ⎦

⎤⎡ ⎡ ⎤
− − −⎥⎢ ⎢ ⎥− −⎣ ⎣ ⎦⎦

( ) ( )

( ) ( )

( )

2 2
3 5

2 2 2 2

2
1 13 3

2 2 2 2

2
1 5

2 2

    + 1 sin  + 1 sin
2( )cos ( )cos

cos1 sin 1 sin
( ) ( ) cos

             + 1 sin
( )cos

i iS S

P S P S

anis
i iPs P S P

i P S P S

i S

P S

V V
V V V V

R V V V
V V V V

V
V V

α α
β β

α
α α

ε β

α
β

+ +

+

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎡ ⎤ ⎡ ⎤

− −⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

⎤⎡ ⎡ ⎤∂
= − − −⎥⎢ ⎢ ⎥∂ − −⎣ ⎣ ⎦⎦

⎡ ⎤
− ⎢ ⎥−⎣ ⎦

⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

  .   (B-5)  

 


