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ABSTRACT

Liu, X.Y., Chen, X.H., Chen, L. and Li, J.Y., 2020. Nonlinear prestack inversion using
the reflectivity method and quantum particle swarm optimization. Journal of Seismic
Exploration, 29: 305-326.

The vectorized reflectivity method is an economical and reliable method for solving
the elastic wave equation under a one-dimensional assumption. It can obtain the
information of full wave field and accurately describe diverse propagation effects of the
seismic wave. The inversion method based on the reflectivity method finds suitable
inverted parameters by minimizing the error between the synthetic seismograms and
observed seismic data. The non-linear inversion problem can be solved by a
gradient-based method or a global optimization method. The former relies heavily on the
staring model and is prone to fall into a local minima. The global optimization algorithms
demand for an accurate and rapid calculation of the forward modeling. The vectorized
reflectivity method satisfies these requirements. We introduce and improve the quantum
particle swarm optimization algorithm (QPSO), which has significant advantages in
global search, into seismic inversion based on the reflectivity method, developing a novel
nonlinear prestack inversion method in angle gather domain. The vectorized reflectivity
method is able to synthesize seismic records quickly and accurately. Using the QPSO
relieves reliance on the initial model. The Cauchy distribution is introduced to combat the
possible premature convergence. The benefits of the vectorized reflectivity method and
QPSO are combined. We apply the technique to model data and field data, which
demonstrates the feasibility and reliability of the new method.

KEY WORDS: prestack inversion, reflectivity method, wave propagation effects,
quantum particle swarm optimization, elastic wave equation.
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INTRODUCTION

It is well known that prestack inversion can provide more abundant
reservoir information. Elastic attributes are inverted by minimizing the error
between the observed and synthetic seismogram. It is achieved by an
appropriate forward modeling method and a dependable strategy to solve the
objective function. At present, the commonly used forward modeling
methods of prestack inversion are based on the Zoeppritz equation and its
approximate formulas (e.g., Ecker et al., 1998; Buland and Mine, 2003;
Zhou et al., 2017). There are some limitations of these methods. They are
only simulate the primary reflection of seismic wave. However, primary
reflections are often contaminated by many wave propagation effects, i.e., it
is indispensable to fully correct the amplitude of seismic data, including
absorption and attenuation compensation, transmission loss compensation
and multiple wave removal before applying the Zoeppritz-based method
(Liu et al., 2016; Chen, 2017; Liu et al., 2018). However, the manipulations
to achieve this goal are sophisticated, and it is difficult to completely correct
the amplitude changes caused by various wave propagation effects.
Therefore, imperfect amplitude processing influences inversion accuracy
and is prone to generate cognitive deviations about underground media using
the Zoeppritz-based methods. Theoretically, the elastic wave equation can
simulate full wave field and the reflectivity method is a fantastic approach to
solve the elastic wave equation. Not only the kinematic information of the
wave, but also the dynamic information are contained in the simulated wave
filed. It is easy to realize with strong stabilization and high simulation
accuracy (Ma et al., 2004). In addition, it can also avianize the requirement
for seismic data amplitude processing. The reflectivity method is proposed
by Fuchs and Muller (1971) and has been improved by Kennett (1979, 1983),
Fryer (1980), Muller (1985), Mallick and Frazer (1987, 1990), Zhao et al.
(1994), Li and Mallick (2003, 2004), Ciucivara and Sen (2009) and so on in
succession. A wide range of publications has proven its powerful ability and
excellent behavior to simulate seismic wave filed.

Many geophysicists also study the inversion method based on the
reflectivity method. Gouveia and Scales (1998) obtained the solution of
wave equation using the reflectivity method, and performed prestack
inversion in the frame of Bayesian theory to reduce the uncertainty of
inverted results. Sen and Roy (2003) solved the inversion objective function
using Kennett recursive algorithm with the help of Gauss-Newton method.
But these inversion strategies are all based on the Kennett recursive
reflectivity method. It is computationally complicated and expensive.
Phinney et al. (1987) provided a vectorized reflectivity method that
facilitated calculation efficiency. Liu et al. (2016) improved the vectorized
reflectivity method in the angle domain to implement prestack inversion.
They used Bayesian inversion scheme to solve the inverse problem with
Gaussian distribution restraining. They also documented that the vectorized
reflectivity method-based inversion was superior to the Zoeppritz-based
inversion. However, the extremes of parameters were ignored and the
accuracy needed to be further improved. On this basis, Chen et al. (2017)
introduced the differential Laplace distribution into the vectorized
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reflectivity method and solved the objective function exploiting the
Gauss-Newton method to improve the inversion accuracy. However, the
method also relied heavily on the initial model. An inappropriate starting
model often produces false appearance in the inverted results.

Most geophysical inversion problems are nonlinear. The above
inversion methods solve the nonlinear problems by employing the
gradient-based method. It is inevitable to compute Jacobian matrix or even
Hessian matrix. Besides, it relies heavily on the initial model. If the initial
model is inappropriate. often falls into local minima or even does not
converge (Sen and Stoffa, 1991; Luo, 2007). The global optimization
algorithm can overcome the above disadvantages. Sen and Stoffa (1991)
efficiently combined simulated annealing and the Kennett recursive
reflectivity method to invert the elastic attributes. Li and Mallick (2013,
2014), Padhi and Mallick (2013, 2014), Mallick and Adhikari. (2015)
employed genetic algorithm to accelerate convergence based on the Kennett
recursive algorithm and gained satisfied results on single trace. But as a
completely nonlinear method, global optimization demands for a forward
modeling that is accurate and can be quickly computed because the forward
procedure will be executed a large number of times (Jia, 2005). The
vectorized reflectivity method can meet the requirements. Therefore, it
makes sense using the vectorized reflectivity method to synthesize prestack
seismic records and using global optimization method to solve the inversion
objective function. Liu et al. (2018) integrated the vectorized reflectivity
method and genetic algorithm.

Among many global optimization methods (such as Yin and Hodges,
2007; Akga and Basokur, 2010; Liu, 2018; Garabito, 2018), particle swarm
optimization (PSO) is widely used in seismic inversion because of simple
operation and idea (Shaw, 2007; Huang, 2012; Cui, 2016; Barboza, 2018).
The motion state of particles is described by speed and position together.
The advantages of PSO is well known. It involves fewer control parameters
and converges fast. However, it cannot cover the whole feasible search space
thus is not able to assure global convergence because of limitation by the
form of convergence and speed of particles, leading to an insufficient
accuracy (Van den Bergh, 2002). To overcome this deficiency, Sun et al.
(2004) proposed a quantum particle swarm optimization (QPSO) algorithm
based on the wave function of quantum mechanics. In QPSO, particles can
appear at any position in the search space with a certain probability rather
than restricting by particle moving orbits and speed. It can prevent the
situation that algorithm is terminated before the individual optimal solution
has not been found due to the limited particle speed in few searches. In
dealing with intractable problems, the behavior is greatly promoted (Sun et
al., 2004, 2007).

Therefore, we introduce QPSO to solve the prestack inversion problem.
QPSO has the advantages of fewer parameters, simple calculation, searching
in full space and good convergence. Using QPSO to solve the objective
function can overcome the shortcomings of gradient-based method.
Benefiting from the advantages that it is computationally fast and accurate,
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the vectorized reflectivity method in angle domain can meet the
requirements of QPSO. To maintain the population diversity and prevent
possible premature convergence (De Jong, 1975; Davis1991; Rudolph, 2001;
Pandey et al., 2014), we also introduce Cauchy distribution that has a long
tail and improve the QPSO. The proposed method fully integrates the
advantages of the vectorized reflectivity method and QPSO. We briefly
outline this method. Tests on model and field data demonstrate the
robustness and reliability.

FORWARD MODELING BASED ON THE VECTORIZED
REFLECTIVITY METHOD

Restricting to 1D, forward computation can be efficiently performed
utilizing the reflectivity method that is an analytical method to solve the
elastic wave equation. It can produce a synthetic seismic record that is close
to the real situation because propagation effects of seismic wave are
considered, including reflections, transmissions, multiples, etc. To use
QPSO efficiently, a forward modeling method with fast and accurate
calculation is needed. Attributing to the computational efficiency and
complexity of the widely used reflectivity method based on Kennett
recursive matrix algorithm (such as Fryer, 1980; Mallick and Frazer, 1987),
a vectorized reflectivity method (Phinney, 1987; Liu, 2016; Chen, 2017) is
employed. This algorithm simplifies the calculation and intensively reduces
the computation time. The solution process is carried out in the
frequency-slowness domain. Then, the reflection coefficients are
transformed into the space-time domain or the intercept time-ray parameter
domain by numerical integration method. Since the observed seismic data
are in the angle gather domain. We execute the vectorized reflectivity
method in angle-time domain according to the contributions of Liu et al.
(2016).

Assuming a source point and multiple detectors are placed on the top of
the first layer of a horizontal layered medium, the total reflection coefficient
R(w,p) in the frequency w -slowness p-domain can be gained by a
six-element vector w (Chen, 2017):

R,, (va)=vv‘;z((?)) "
R, (w.p)- w,(5)

where w, represents the total reflection response received on the ground,
and w, represents the total reflection response below the interface of the
n-th layer:

n

w =[A -R,A -RyA R, A Ry, A |R|A]T' 2
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R denotes the reflection coefficients, the two subscripts denote the type of
incident wave and the type of reflected wave, respectively. P represents
P-wave and S represents S-wave. A is a scaling factor. Assuming that the
(N+1)-th medium is a half-space elastic medium under the N-th reflecting
interface and there is no reflection wave, the response below the N-th
medium is as follows:

w,=[l 0000 0] . 3)

A wave propagator matrix Q, is employed to recursively compute the
overall reflection response under the top interface starting from the bottom
interface. Once W, is obtained, the reflection coefficients in the
frequency-slowness domain can be calculated according to eq. (1). The
recursive process can be expressed as follows:

W, = QOWI’ W, = Qlwz’ L, W, = ann+1= L, Wy = QN—IWN

4
Qn = TV:—E}’!T}'I_ ( )

where matrix E, refers to a phase shift when seismic wave travels through
layer n, and matrix T, and T, describe the influence of the medium
above and below the » interface on the amplitude. They can be expressed
as (Chen, 2017):

E =diag e-iwAh(qp+qs) 1 e—iwAh(qp—qS) eiwAh(qp-qé) 1 e’“'Ah(‘Ip""Is) (5)

-tn Ly I —ls b I ]
by 0 —ly 0 =1y,
T = LGy by Ly —ly Ly I
" i Ly L Ly lis Iy ©)
t5, 0 1 L5 0 ls)
lg lo lg —lg ls I
Lo ls [ b Iy I
—t,s 0 tys, -1 0 ts
Tn_ _ —lg —lsy —lhy byl , (7)
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where vy and vy denote P- and S-wave velocity respectively. A4 is the
thickness of the n-th medium. ¢, =,/1/v*-p* and ¢ =,/1/v’-p*> denote
P- and S-wave slowness in vertical direction. Assuming g¢=sing/v,
represents the horizontal slowness, I'=2p*>-1/v>, u=pv, then we can get
the sixteen independent components of T and T;:

f, =—(q +4,9. )/M, t, =-2qq,/ u.t; =—(q -4,9, )/M> tis =-2qq,/ u,
=iq,/ 5,
ty, = —iq(l"+2qpqx),t32 = -4iq’q .1, = —zq(F 29,9 Y), t,s ==2ilq,,
1, ==2i0q,,.t,; = -4ig’q,,
ty=~iq,! 5,
ty = —y(f‘2 +44°q .4, ),t62 =-4ulqq .ty = —M(I‘2 —4qqu,ql‘v),t65 =-4ulqq, )

Subsequently, the reflection coefficient is integrated by frequency.
The synthetic seismograms in 7-p domain can be output by convoluting

the reflection coefficient in 7-p domain with seismic wavelet S(w):

| = v
d(z, p) = Y f_ S(w)R(w, p)e”dw - )

Since the obtained seismic records in prestack inversion are angle
gathers, the reflection coefficient in frequency-slowness domain R(w, p)
are resampled according to Snell's law to obtain the reflection coefficient in
frequency-angle domain R(6,w) (Liu et al., 2016). The synthetic angle
gathers are generated by fulfilling inverse Fourier transform after
multiplying R(8,w) with seismic wavelet:

4.0)- [ S@REO.0)"dw (10)

In order to analyse the advantages of the reflectivity method, a test
model that consists of five layers is constructed based on the Goodway
model, as shown in Fig. 1 (mudstone appears in black and gas sandstone
appears in grey). A Ricker wavelet with the main frequency of 30 Hz is
employed to implement forward modeling. We briefly describe the
differences of seismogram computed by the reflectivity method and the
exact Zoeppritz equation. Fig. 2 displays the synthetic angle gathers and
their difference. There are four main events corresponding to four interfaces
of the model. At the same time, it can also be found that there are some
events with weak energy in Fig. 2a because the reflectivity method can
simulate multiple waves. However, there are no events of multiple waves in
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Fig. 2b synthesized by exact Zoeppritz equation. For many actual data, the
multiple reflection energy is often superimposed on primary reflection in
thin interbedded reservoirs, which seriously decreases the resolution of
seismic records. If this influence is neglected, deviation will be brought into
inversion results. At different interfaces, amplitude of the events varies in
Fig. 2a whose reflectivity method is used while that of the events in Fig. 3b
that is outputted by the exact Zoeppritz equation keeps identical. The reason
is that seismic wave will attenuate under the impact of various wave
propagation effects. The reflectivity method takes this change into account
whereas the Zoeppritz equation does not. Reflection amplitudes of these
interfaces are extracted from the synthetic angle gathers for analysis.
Amplitude of reflection events is exactly equal when the attributes of upper
and lower layers are identical generated by using the Zoeppritz equation (Fig.
3b). In contrast, amplitude calculated by the reflectivity method is discrepant
at different interfaces (Fig. 3a). Since the reflectivity method can simulate
multiple waves and take into account various wave propagation effects,
performance of the reflectivity method is preferable to the Zoeppritz
equation.

v, o=2898m/s
mudstone v =1290m/ s

) 2.-1.1_:‘_!_{ cm s

v, = =285Tm/ s
gas sandstone v =1666m/ s
p=2275¢ emt’

= 2RO8m /5

mudstone v, =1290m/ s

p=2425¢g [em

v, —""ﬁmr-

gas sandstone v, =1660m /.
,ﬂ =2 .'l?"i;; fem’

v =2898m/ s

mudstone v, =1290m /s
..I':' = :-I-_“' [ CF

Fig. 1. The test model 1.
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Fig. 2. Forward angle gathers synthesized by the reflectivity method (a) and Zoeppritz
equation (b), respectively; (c) differences between the two forward angle gathers.

QUANTUM PARTICLE SWARM OPTIMIZATION ALGORITHM

The ultimate goal of this study is to invert P-wave velocity, S-wave
velocity and density with a low dependency on initial model and a high
accuracy. The inverse problem can be realized by minimizing the error
between synthetic seismic records with actual data:

0=|d,,6.m-d, @) . an

where dsy” (6,m) is the synthetic seismogram, m denotes the parameters
to be inverted and d_, (6) represents observed data.

obs

As mentioned above, the gradient-based method to solving the
objective function may converge to a local minimum rather than the global
minimum if the starting model is inappropriate. In order to overcome the
drawbacks of the gradient-based method, global optimization algorithm is
employed. PSO algorithm is favored in a wide variety of scientific fields
among various global optimization algorithms. PSO, theoretically, is
relatively simple, involves few parameters and is easy to implement (Sun et
al., 2007). But Van den Bergh (2002) has documented that PSO cannot
guarantee global convergence. QPSO is a robust alternative, which attempts
to endow quantum behavior to particles and remove the restriction of speed
information on particles. The benefits of QPSO has been proved by Sun et al.
(2004). QPSO is able to overcome the shortcomings of PSO. It also has few
control parameters and is easy to operate. Moreover, the particle could
appear in any position of the whole search space with a certain probability
owing to introduce probability density function without the constraint of the
fixed orbit. Only a brief summary of the QPSO is given here, more detailed
can be found in Sun et al. (2004).
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Fig. 3. Amplitude variation with angle of different reflective interfaces using different
forward modeling method. (a) Reflectivity method; (b) Zoeppritz equation.

In QPSO, the state of particles is described by wave function. The
probability density function of particles appearing at a certain point in the
space is gained by solving Schrodinger equation. Then the position equation
of particles is obtained by Monte Carlo stochastic simulation (Sun et al.,
2004; Xu et al., 2005). For a D-dimensional space, the spatial position of the
i-th particle among X={X.L X.L.X,} at the rth iteration is

X, ()= (X, (). X, (t).L .X,(¢)), i=12L ,M, then the spatial position of this

L

particle at the r+1” iteration is:
X, (r+1)= Zj (t)i’l|cj (t)_Xij (l)|ln(l/uii (’)) > (12)

where A is a contraction factor that is the only parameter in QPSO, and
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u,(¢) is a random number obeying uniform distribution. Assuming the
individual optimal position is Z (r)=(Z,(),Z,(t).L .Z,(t)). The average

M
optimal position of particle swarm C(z)='Z, (t)/M is introduced, which
i=1

enables particles to wait for each other in the process of evolution and
improves the ability of collaboration and global search. Suppose the global
optimal position of the particle swarm isG(r)={G,(¢).G, (t).L .G, (1)}, @, (¢)
is a random number obeying uniform distribution and z,(¢) denotes a local
attractor that can be expressed as:

7, (=9, ()2, ()+[1-9,()]G, () . (13)

Consequently, the formulas (12) and (13) together constitute the
updating formulas of particle position. However, when disposing with
complex high-dimensional optimization problems, the diversity of particles
decreases gradually and premature convergence usually occurs with the
increase of iterations. Cauchy distribution with a long tail in its probability
densify function is introduced. In the original method, random numbers
u,(¢) and g (r)obey uniform distribution, whereas we use the Cauchy

distribution to generate random numbers, i.e.,u, (1)~ C(L0), @, (¢)~C(10).

Because Cauchy distribution has the characteristic of "long tail" and has a
wider distribution area, it helps to make the particle position appear far away
from the local attractor, thus increasing the diversity of particles, reducing
the occurrence of precocity phenomenon, and further improving the
accuracy of global optimization.

To sum up, the flowchart of the new inversion method is inducted as
Fig. 4.

INVERSION TEST ON MODEL DATA

Firstly, the prestack inversion method based on the reflectivity method
integrating QPSO is carried out on a simple model. Information of the test
model 1 is displayed in Fig. 1. The input seismic data (Fig. 5b) is computed
using the vectorized reflectivity method (Fig. 2a), then random noise (Fig. 5a)
with signal-to-noise ratio (SNR) of 1.5 is added. The inverted results
exhibited in Fig. 6 — closely follow the parameters of the model, showing a
good noise immunity. Fig. 7 shows the predicted seismic data and residual
between it and the observed data (Fig. 5b). The residual is almost equal to
the random noise, indicating its stability.
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Fig. 4. Flowchart of the present method.
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Next, the section of gas reservoir and oil reservoir in Marmousi2 model
is extracted for further illustrating the validity of the present method. The
real elastic attributes of the test model are shown in Fig. 8. The arrows
indicate the location of oil and gas reservoirs respectively. The elastic
parameters of oil and gas reservoirs are different from those of surrounding
rocks, especially the distinction of P-wave velocity and density is dramatic.
The “observed” seismic data is generated by convolving of the reflection
coefficient calculated by the vectorized reflectivity method with a 30 Hz
Ricker wavelet and adding random noise with SNR of 2.

<@— gas sandstone

oil sandstone

- gas sandstone

oil sandstone

— gas sandstone

oil sandstone

CDpP

Fig. 8. Test Model 2 (from Marmousi2 model).
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From the stack seismogram displayed in Fig. 9, apparently, the
gas-bearing sandstone at the top of the model has SIgnlfcant seismic
response characteristics. However, the seismic response characteristics of
oil-bearing sandstone in the deep layer are weak, which make its
identification problematic. Although QPSO is independent of the starting
model and the initial population can be randomly produced, we borrow the
prior information, such as log and geological data etc., for generating the
initial population (Dariu et al., 2003; Liu et al., 2018). The purpose is to
accelerate convergence, prevent precocity and restrict the search space with
a low-frequency tend. The inverted results by using the proposed method are
shown in Fig. 10. Fig. 10a is the inverted profile of P-wave velocity, in
which morphology of the target oil and gas reservoir are similar with the
original model. The oil and gas reservoirs are weakly reflected in the
inverted S-wave velocity profile (Fig. 10b), while the main stratigraphic and
lithologic interfaces can be well distinguished, which is consistent with the
knowledge that S-wave velocity can indicate lithology. The oil and gas
reservoirs are distinctly indicted in density inversion results (Fig. 10c)
because density is directly related to fluid information.

- ————— .+

221 : — :
1 40 BD 120

CDP

Fig. 9. The stack profile of the test model 2.
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Fig. 10. The inversion result of the test model 2 using the present method.

FIELD DATA APPLICATION

The method is applied to a single well at first. Real logging curves of
the well are exhibited in Figs. 1la-c with black lines. Angle gathers
including 21 traces with angles ranging from 0 to 40 are shown in Fig. 12. A
Ricker wavelet of 30 Hz is used to calculate it. A random noise with SNR of
2 is added. Then, the synthetic seismogram computed by present method is
employed to match the angle gathers. With the help of the advantages of
QPSO, the inversion results (shown with the red lines in Figs. 11a-c are in
good agreement with the true values of logging curves. Another reason
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cannot be ignored is that the reflectivity method considers the diverse wave
propagation effects, which helps to enhance the accuracy. Figs. 11d-f are the
error between inverted parameters and logging data. It can be noted that the
errors are relatively small. The predicted angle gathers and residual between
the predicted and observed data are shown in Fig. 13. Although the residual
shown in Fig. 11c is not completely consistent with the added random noise,
the residual almost equals the noise at most locations, suggesting the validity
and robustness of the present method.
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Ultimately, we apply the method to a seismic section from a Chinese
onshore exploration area. The target reservoir is structural-lithologic
composite reservoirs formed in the lacustrine environment during the Late
Cretaceous-Early Tertiary period. The sand-shale interbedded is developed
at the top of the target reservoir. As a result, the seismic wave is severely
affected by multiple waves and transmission loss, which seriously influence
the accuracy of reservoir prediction and pose challenges for the exploration
and development of the target reservoirs. In this study, 60 prestack CDPs
between 2100 and 2300 milliseconds are used. For each CDP, angle gathers
ranging from 3 to 34 degrees are available. The seismic data have been
processed according to a routine workflow without suppressing multiples
and compensating transmission loss. Fig. 14 displays the poststack
seismogram of the study area. The layered structural characteristics are
noticeable. In actual exploration, there is an economical oil and gas well at
the 13th CDP location.
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Fig. 14. The seismogram of the filed data.
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Seismic wavelets for different angles are extracted from the angle
traces of actual seismic data (shown in Fig. 15). They are employed for
inversion with the angle gathers of 3 to 8, 9 to 18, 19 to 28 and 29 to 34
degrees, respectively. The final inverted P-wave velocity, S-wave velocity
and density are output and shown in Fig. 16. From the inversion results, it is
worth mentioning that the inversion results effectively identify different
formations, which are consistent with the shape reflected in stack gather.
The inversion results are consistent with the trend revealed in well logging
curves (black lines in the Fig. 16), which demonstrates the method can keep
a good performance in practice and effectively proves the practicability of
the method.
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Fig. 15. Seismic wavelet extract from angle gathers.

CONCLUSION

We describe a new nonlinear prestack inversion method based on the
vectorized reflectivity method. Under one-dimensional assumption, the
reflectivity method can simulate the wave propagation effects, consider the
influence of transmission loss and multiple wave on seismic response, and
weaken the processing requirement of amplitude. The main advantage of the
vectorized reflectivity method is the fast and accurate calculation, which
satisfies the demand of global optimization. The objective function is solved
nonlinearly by using the improved QPSO. Introducing the Cauchy
distribution with a long tail helps to enhance the diversity of solutions and
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prevent precocity occurrence in the process of solving. Both the application
examples on model data and field data produce promising results, which
offer proof for the stability and practicability of the proposed approach. The
method can be easily generalized to multicomponent joint prestack inversion

if the corresponding seismic data can be acquired and processed
appropriately.
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Fig. 16. Inversion results of the filed data by the present method: (a) P-wave velocity; (b)
S-wave velocity; (c) density.
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However, the vectorized reflectivity method we achieved is a
single-channel inversion method without considering lateral correlation in
the isotropic media. Relevant methods considering lateral correlation and
methods for anisotropic media will be studied in the next work. With the
addition of anisotropic parameters, the dimension of inversion problem is
further increased. How to improve the computational efficiency at no cost of
inversion accuracy will become a major problem. Besides, various advanced
techniques that can avoid the precocity need to be further systematically
studied.
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