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ABSTRACT 
 
Zhou, Y.J., Huang, X.Y., He, X.J. and Zheng, Y.C., 2020. An effective method to 
suppress numerical dispersion in 3D elastic modeling using a high-order Padé 
approximation. Journal of Seismic Exploration, 29: 425-454. 
 
 We proposed a numerical method for solving seismic wave equations called the 
fourth-order Padé approximation method (PAM). This work was an extension of the 2D 
PAM to the 3D case. We used the PAM for time discretization to obtain an implicit 
scheme, in which the time difference operator has a rational function form. To avoid 
solving large linear systems with a block tridiagonal coefficient matrix, we proposed an 
algorithm to transform the implicit scheme into an explicit method. For the spatial 
discretization, we adapted the nearly analytic discrete (NAD) operator, which uses a 
linear combination of wavefield displacements and their gradients to discretize 
higher-order spatial derivatives. In addition, for the fourth- and fifth-order mixed partial 
differential terms, we used operator splitting to reduce the order of the differential 
operators in the scheme and decrease the calculation time. The proposed scheme had 
higher precision with eighth-order accuracy in space, lower dispersion, and higher 
computational efficiency than the other Padé approximation-based approaches, which 
were fourth-order compact finite difference schemes that required solving a large 
tridiagonal system at each time step. The stability condition, relative error, and 
dispersion relation of the 3D PAM were analyzed. Comparisons of the theoretical and 
numerical results of the proposed method, the 3D Lax-Wendroff correction (LWC) 
method, and the staggered grid (SG) finite difference method demonstrated the 
superiority of the PAM for solving 3D seismic wave equations and its advantages of 
lower dispersion and higher computational efficiency. The results indicated that the 3D 
high-order PAM was an efficient and accurate forward modeling tool for solving 
large-scale wave propagation problems related to reverse time migration or 
full-waveform inversion. 
  
KEY WORDS: Padé approximation, forward method, wavefield modeling, 
      numerical dispersion.  
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INTRODUCTION 
 
 Numerically solving wave equations has become a powerful tool in 
seismological research. An accurate and efficient method to generate 
synthetic seismograms is a core requirement to determine the Earth’s 
structure. Many numerical methods were proposed and have been widely 
used, such as the finite-difference method (e.g., Virieux, 1984, 1986; 
Alterman and Karal, 1968; Dablain, 1986; Blanch and Robertsson, 2010; 
Carcione and Helle, 1999; Moczo et al., 2002), the finite-element method 
(e.g., Eriksson and Johnson, 1991; Yang, 2002), the pseudo-spectral method 
(e.g., Kosloff, 1984; Huang, 1992; Carcione, 2014), the spectral element 
method (e.g., Seriani, 1992; Komatitsch and Vilotte, 1998), the reflective 
method (Booth and Crampin, 1983a, 1983b; Chen, 1993), the boundary 
integral equation-discrete wavenumber method (e.g., Bouchon, 1996; Zhou 
and Chen, 2008), and the discontinuous Galerkin (DG) method (e.g., Käser 
and Dumbser, 2006; He et al., 2014, 2015; Yang et al., 2016). Each method 
has its advantages and drawbacks. Numerous studies have investigated the 
theoretical properties of these methods (e.g., Yang et al., 2002, 2003). 
Finite-difference methods are most widely used due to their simplicity in 
implementation and high efficiency. However, conventional finite- 
difference methods suffer from strong numerical dispersion when the 
number of grid points per wavelength is insufficient, or the media have 
complex structures (Fei and Larner, 1995; Yang et al., 2010). In order to 
avoid numerical dispersion, a simple approach is to increase the number of 
spatial sampling grid points per wavelength or increase the accuracy of the 
numerical scheme. However, this method results in a rapid increase in 
computational and storage costs (Takeuchi and Geller, 2000; Liu and Sen, 
2010). Hence, further improvements in the numerical methods are essential. 
 

The Padé approximation has attracted much attention in recent years 
(Kosloff et al., 2010; Das et al., 2014; Zhang et al., 2015; Tong et al., 2013; 
Abdulkadir, 2015). Kosloff et al., (2010) compared the Padé method with 
the use of recursive spatial derivative operators. Das et al. (2014) combined 
the alternating direction implicit (ADI) technique with the Padé 
approximation and non-compact stages and developed the interlinked Padé 
approximation-based ADI scheme (IPD-ADI). Those hybrid schemes are 
only fourth-order compact finite difference schemes and require solving a 
large tridiagonal system at each time step (the scheme in the decoupled form 
uses intermediate values). Abdulkadir (2015) compared the dispersion 
properties of three higher-order finite difference schemes and showed that 
the non-compact Padé-based method had a relatively lower dispersion error 
than the compact Padé and higher-order compact methods. Salcedo et al. 
(2017) applied the complex Padé Fourier finite difference method to seismic 
migration. 

 
The nearly analytic discrete (NAD) method has attracted the attention of 

researchers working on seismic wave propagation since it was first 
introduced by Yang et al. (2002, 2003). Subsequently, the method was 
widely used in forward modeling methods for solving wave equations 
(Yang et al., 2014; Ma et al., 2014, 2015; Huang et al., 2016). NAD is an 
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effective numerical method that suppresses numerical dispersion and 
provides high spatial accuracy. Zhou et al. (2015) developed the Padé 
approximation method (PAM) and used it for solving large-scale problems 
in 2D forward modeling due to its low numerical dispersion and high 
computational efficiency. Compared with the Lax-Wendroff correction 
(LWC) method (Dablain, 1986) and the	 staggered grid (SG) 
finite-difference method (Virieux, 1984, 1986; Graves, 1996), the 2D PAM 
method provides better suppression of numerical dispersion with a relatively 
coarse grid, thereby saving computational time and memory. However, the 
PAM method has not been applied to the 3D case to date since the extension 
to 3D is more than straightforward. The primary objective of this study is to 
develop a 3D high-order finite difference method based on the PAM to 
suppress the numerical dispersion for modeling wave propagation in both 
isotropic and anisotropic media using large grid steps. We first transform 
the wave equations into a system of semi-discrete ordinary differential 
equations according to the Padé approximation scheme. Subsequently, the 
eight-order stereo-modeling method (SMM) operators and operator-splitting 
method are used for spatial discretization. The eighth-order LWC and SG 
methods are used for comparison in a 3D framework. We analyze the 
numerical dispersion and stability of the 3D PAM and compare the 
waveforms computed by the 3D PAM with the analytical solutions. Finally, 
we use the 3D PAM to perform wave simulations of 3D multi-layer acoustic 
layers in isotropic and transversely isotropic elastic media. 

 
  

THE PADḖ APPROXIMATION METHOD 
 
 We first describe the discrete scheme in this section to demonstrate the 
application of PAM in a 3D framework. The strong form of the 3D seismic 
wave equation of motion has the following form: 

( )
2

2 ( ) ( , , ): s s sf t x x yu z z
t

yu
ρ δ
∂

= ∇⋅ ∇ +
∂

− − −c ,             (1) 

where the displacement vector is 1 2 3( , ) ( , , )u t u u u=x , with 1 2,u u and 3u  
respectively denoting the x-, y-, and z-components; c is the elastic tensor; 

, ,
T

x y z
⎛ ⎞∂ ∂ ∂

∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠
; ρ is the density and “:” is the contraction symbol. 

( )tf is the force source, ( , , )s s sx x y y z zδ − − −  is the Dirac function, 
( , , )s s sx y z  is the location of the seismic source. The 3D acoustic equation 
is expressed as: 
    

    
2 2 2 2

2
02 2 2 2 ( ) ( , ,( )) s s s

u u u u f t x x y yc
t x y z

z zδ
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

− − − .    (2)                                           

      
     Eq. (2) can be rewritten as  
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2

2

u D u f
t
∂

= ⋅ +
∂

,                                        (3) 

where 
2 2 2

2
0 2 2 2( )D c

x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

, in which 0c is the wave velocity.  

Let ( , ,  ,  )
y

Tu u uU u
x z
∂ ∂ ∂

=
∂ ∂ ∂

, according to eq. (3), we obtain： 

    
2

2 + U LU F
t

∂
=

∂
,                                          (4) 

while L  and F  are respectively defined as： 

 

0 0 0
0 0 0

=
0 0 0
0 0 0

D
D

D
D

L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,  ( )= ,0 0,0 TfF ，    .                      (5) 

 
 In the time-marching scheme of eq. (3), similar to the discretization of 
the 2D acoustic wave equations, we use the fourth-order Padé 
approximation to obtain the following scheme: 

22
, , 4

, ,2 2
2

1 = (( ) )1( ) 1
12

n
i j knt

i j k

t

U
U O t

t t
δ

δ

∂
+ Δ

Δ ∂+
                      (6) 

where , , = ( , ,z , )n
i j k i j k nU U x y t , 2 1 1

, , , , , , , ,2n n n n
t i j k i j k i j k i j kU U U Uδ + −= − + , and tΔ  is the 

time increment. Thus, the time-marching equation that ignores the 

fourth-order error term is expressed as: 

2 2 2 2
1 1 2 2

, , , , , ,
( ) 5( ) ( ) ( )( - ) ( 2 ) ( ) +(( ) )
12 6 12 12

n n n
i j k i j k i j k t

t t t tI L U L I U L I U t Fδ+ −Δ Δ Δ Δ
= + + − Δ + ,         

                     (7) 

where I is an identity operator. 

It is evident that algorithm (7) is explicit. We convert the explicit 

algorithm into an implicit algorithm to avoid solving a system of linear 

equations at each time step. We assume that the operator L  satisfies 
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2( ) 1,
12
t LΔ

≤  and we use the truncated Taylor expansion. The 3D PAM is 

expressed as follows (Wang and Zhou, 2014, 2015), and we obtain an 

explicit scheme of the time-marching equation of the 3D acoustic wave 

equation :  

2 2 2
1 1 1 1

, , , , , , , , , , , , , ,
( ) ( ) ( )( )+( )( ) ( )[( )( )] (8)
12 12 12

n n n n n n n
i j k i j k i j k i j k i j k i j k i j k

t t tU V W L V W L L V W F+ − − −Δ Δ Δ
= + + + + +

where 

2 2
1 1

, , , , , , , ,
5( ) ( )( 2 ) , ( )
6 12

n n n n
i j k i j k i j k i j k

t tV L I U W L I U− −Δ Δ
= + = − , 

21 1=( ( ( ) ( ( ) 2 ( ) ( )),0,0)
12

TF t f t f t t f t f t t
ρ
Δ + +Δ − + −Δ . 

 
In the following part, we introduce the scheme for the elastic case. In a 

3D heterogeneous elastic medium, the seismic wave equation is defined as：  
2

2 + u Lu F
t

ρ
∂

=
∂

   ,                                      (9) 

where 1 2 3 1 2 3( , , ), ( , , )u u u u F f f f= = .  L is defined by: 

2 2 2 2 2

2 2 2

2 2 2 2 2

2 2 2

2 2 2 2 2

2 2 2

( 2 ) ( ) ( )

( ) ( 2 ) ( )

( ) ( ) ( 2 )

x y z x y x z

L
x y y x z y z

x z y z z x y

λ µ µ µ λ µ λ µ

λ µ λ µ µ µ λ µ

λ µ λ µ λ µ µ µ

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂ ∂ ∂
= + + + + +⎜ ⎟

∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂ ∂
⎜ ⎟+ + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

                                                          (10) 

let U! = (u ,
∂u
∂x

,  ∂u
∂y

,  ∂u
∂z
)T , then: 

      

∂2U!

∂t 2
= L!U!+ F!

 
,                                    (11) 

where 
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L
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⎜
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⎠
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⎟
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0
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⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

   .

 

When the operator !L  satisfies 

 (Δt )2

12
!L ≤1,

  

we can obtain the explicit PAM algorithm for the 3D elastic wave equation： 

!U i , j ,k
n+1 = (Vi , j ,k

n +Wi , j ,k
n−1 )+((Δt )

2

12
!L)(Vi , j ,k

n +Wi , j ,k
n−1 )+ ((Δt )

2

12
!L)[((Δt )

2

12
!L)(Vi , j ,k

n +Wi , j ,k
n−1 )]+ !F (12) 

where
 

Vi , j ,k
n = (5(Δt )

2

6
!L + 2I ) !U i , j ,k

n , Wi , j ,k
n−1 = ((Δt )

2

12
!L − I ) !U i , j ,k

n−1
          

!F =( 1
ρ
Δt 2 ( f (t )+ 1

12
( f (t +Δt )− 2 f (t )+ f (t −Δt )),0,0)T

    .  (13) 

 
It seems that the PAM discretization schemes for the 3D elastic and 

acoustic wave equations are similar with the 2D case. However, the spatial 
operator for the elastic wave equations is much more complex. Therefore, as 
for the approximation of the high-order spatial derivatives, split-step 
algorithm has much more obvious computational advantages by using the 
SMM discrete operators twice. There are three steps to compute !U i , j ,k

n+1 : 
 

1. Compute , ,
n
i j kV  and 1

, ,
n
i j kW −  according to eq. (10) using the SMM 

discrete operators in (A-1) – (A-5); 
2. Compute !L(Vi , j ,k

n +Wi , j ,k
n−1 )=Ri , j ,k

n  using the same spatial discrete 

operators in the first step; 
3. Using the results of the second step and applying the same 

computational formulae to compute !LRi , j ,k
n . Then finish the 

computation  !U i , j ,k
n+1 = (Vi , j ,k

n +Wi , j ,k
n−1 )+ (Δt )

2

12
Ri , j ,k
n + ((Δt )

2

12
)2 !LRi , j ,k

n
 

using eq. (12). 
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Note that the fourth-term !F  on the right-hand side of eq. (13) can be easily 
computed because of the known analytic source function ( )tf .  

 
ERROR ANALYSIS 
 
Theoretical analysis 
 
 Using the Taylor series expansion, we can obtain the errors of the 
high-order spatial derivations ,( / )k l m k l m n

i jU x y z+ +∂ ∂ ∂ ∂ (2 3)k m l≤ + + ≤  
using the SMM operator (Yang and Wang, 2010) 8 8 8( )O x y zΔ +Δ +Δ . In 
contrast, the temporal error caused by the discretization of the temporal 
partial derivative is 4( )O tΔ . Therefore, the error introduced by the PAM is 

4 8 8 8( )O t x y zΔ +Δ +Δ +Δ . In other words, the proposed 3D PAM has 
eighth-order accuracy in space and fourth-order accuracy in time. 
 
 
Numerical error analysis 
 
 To illustrate the accuracy of PAM, we compare the numerical errors of 
the 3D PAM with other traditional methods (the eighth-order LWC and the 
SG methods) in the framework of solving the 3D acoustic wave equations. 
Consider the following 3D initial value problem： 
 

    

2 2 2 2
2

2 2 2 2

0
0 0 0

0
0 0 0 0

(0, , , ) cos
2 ( )

2(0, , , ) 2 sin[ ( )],

u u u uc
t x y z

u x y z
f l x m y n z
c

fu x y z f l x m y n z
t c

π

ππ

⎧ ⎛ ⎞∂ ∂ ∂ ∂
= + +⎪ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎪

⎪ ⎡ ⎤
⎨ = ⎢ ⎥
⎪ ⎣ ⎦
⎪
⎪
⎩

− ⋅ + ⋅ + ⋅

∂ = − − ⋅ + ⋅ + ⋅
∂

,  (14) 

 
where 0f  denotes the frequency, c is the wave velocity, and the vector 
0 0 0( , , )l m n is the direction of the incident acoustic wave at time 0 st = . Here 

the vector is 0 0 0( , , ) (1/ 3,1/ 3,1/ 3)l m n =  in the experiment. 
  

The analytical solution of the initial value problem (14) is:  

0 0 0 0( , , , ) cos[2 ( / / / )].u t x y z f t l x c m y c n z cπ= − ⋅ − ⋅ − ⋅             (15) 
In the numerical experiment, the relative error (Er) of the 3D case is 

defined as follows (Konddoh et al., 1994): 
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1
2

2
, ,

1 1 1

2

1 1 1

[ ( , , , )]
(%) 100

[ ( , , , )]

N N N
n
i j k n i j k

i j k
r N N N

n i j k
i j k

u u t x y z
E

u t x y z

= = =

= = =

⎧ ⎫
−⎪ ⎪⎪ ⎪

= ×⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑∑∑

∑∑∑
    ,        (16) 

 
where , ,

n
i j ku  is the numerical solution and ( , , , )n i j ku t x y z  is the analytical 

solution on the discrete grid points of the initial value problem.  
 

The number of grid points is 251x y zN N N= = = , the peak frequency 
0 25f = Hz, the acoustic velocity c = 4000 m/s, the grid interval 

30Δ = Δ = Δ =x y z m, and the time step 0.0005tΔ = s. Fig. 1 shows the rE  
changing over time for different spatial and temporal increments on a 
semi-log scale; the three lines of Er correspond to the PAM, the eighth-order 
LWC method, and the eighth-order SG method. Fig. 1 demonstrates that the 
PAM has the smallest numerical error. 

 

 

Fig. 1. The relative errors (Er) (%) of the PAM, the eighth-order LWC method, and the 
eighth-order SG method [eq. (18)] at the semi-logarithm scale for the 3D initial problem 
[eq. (15)]. 

 
 

STABILITY CONDITIONS  
 
 It is well known that, when numerically solving wave equations, the 
temporal increment, the spatial increment, and the wave velocity must 
satisfy a particular relationship to ensure the stability of the numerical 
calculation. We use Fourier analyses (Richtmyer and Morton, 1994; Guan 
and Lu, 2006) and follow the analysis methods used in previous studies (e.g., 
Vichnevetsky, 1979; Dablain, 1986; Yang et al., 2010) to obtain the stability 
criterion of the PAM for the 3D case. The details of deriving the stability 
condition of the 3D PAM are discussed in Appendix B; here, we describe 
the stability condition as follows: 
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0 max
max

0 0 0

0.5130.513    or      =c t hh ht
h c c c

αα
α α

Δ
= ≤ ≤ Δ ≤ ≤        (17) 

where maxα  denotes the maximum value of the Courant number, which is 
defined as /c t hα = Δ  (Sei and Symes, 1995; Dablain, 1986) where tΔ
and h are the temporal and the spatial step size, respectively. When the 3D 
PAM is used to solve the 3D anisotropic elastic wave equation, we roughly 
estimate the temporal increment, which should also satisfy the second 
inequality [eq. (17)] (Yang et al., 2003, 2012). 
 

The dispersion rate R is defined as the ratio of the numerical phase 

velocity to the real phase velocity, 
0

num numc tR
c

ω γ
αθ αθ
Δ

= = = , while 

num tγ ω= Δ , 
θ = k
!"
h = 2πS p

. The PAM dispersion curves for different 

conditions are shown in Figs. 2-5. These curves are computed using PAM 

for the acoustic wave equation at different propagation angles to the x-axis 

( 1δ ) and z-axis ( 2δ ), changing with the spatial sampling ratio p
hS
λ

=  

(Moczo et al., 2000). 1R =  means the method introduces no numerical 

dispersion; whereas it suffers from different amount of numerical 

dispersions when R is different from one.  

 
Figs. 2-5 present the dispersion relationship of the PAM with different 

Courant numbers ( 0.1, 0.3, 05α = ) and different 2δ  but the same 1 0δ °= . The 
results show that the numerical dispersion increases with the Courant 
number and the spatial step. The maximal dispersion error of the PAM for 
all cases is less than 3.1%, whereas that of the LWC and SG methods is 
23% and 24%, respectively. Furthermore, the anisotropic characteristics is 
also revealed. Regardless, there is a difference of less than 1% in the R 
between different propagation directions and Courant numbers for the PAM. 
This result demonstrates that the numerical dispersion is not sensitive to the 
Courant number and propagation direction and that the PAM has less 
numerical dispersion and less numerical dispersion anisotropy than the other 
methods. The maximum numerical dispersion error and numerical 
dispersion anisotropic error of the different methods are listed in Table 1. 
The results highlight the advantages of the PAM for suppressing the 
numerical dispersion over the traditional LWC and SG methods. 
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Fig. 2. The ratio R of the numerical velocity (cnum) to the exact phase velocity (c0) versus 
the spatial sampling ratio Sp generated by the PAM for the Courant number α=0.2 and 
different wave propagation angles; the angle with the x-axis ( 1δ ) 1δ =0° is fixed, and the 
angles with the z-axis ( 2δ ) 2δ are 0°, 30°, 60°, and 90°, respectively. 
 

 

Fig. 3. The ratio R of the numerical velocity (cnum) to the exact phase velocity (c0) versus 
the spatial sampling ratio Sp generated by the PAM for the Courant number α=0.3 and 
different wave propagation angles; the angle with the x-axis ( 1δ ) 1δ =30° is fixed, and 
the angles with the z-axis ( 2δ ) 2δ are 0°, 30°, 60°, and 90°, respectively. 
 
 

 

Fig. 4. The ratio R of the numerical velocity (cnum) to the exact phase velocity (c0) versus 
the spatial sampling ratio Sp generated by the PAM for the Courant number α=0.4 and 
different wave propagation angles; the angle with the x-axis ( 1δ ) 1δ =60° is fixed, and 
the angles with the z-axis ( 2δ ) 2δ are 0°, 30°, 60°, and 90°, respectively. 
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Fig. 5. The ratio R of the numerical velocity (cnum) to the exact phase velocity (c0) versus 
the spatial sampling ratio Sp generated by the PAM for the Courant number α=0.45 and 
different wave propagation angles; the angle with the x-axis ( 1δ ) 1δ =80° is fixed, and 
the angles with the z-axis ( 2δ ) 2δ are 0°, 30°, 60°, and 90°, respectively. 

  
Table 1. The maximum numerical dispersion error and numerical dispersion anisotropic 
error for different methods. 
 

Method   
The maximum numerical 

dispersion error（%） 

Numerical dispersion       

anisotropic error（%） 

LWC 15.6 10.1 

SG 13.8 9.2 

PAM 3.1 1.1 

 
 
COMPUTATIONAL EFFICIENCY 
 
 In this section, we investigate the computational efficiency of the PAM 
for wavefield modeling, using the 3D acoustic model and homogeneous 
isotropic media as examples. We compare the PAM with the eighth-order 
LWC method (Dablain, 1986) and the eighth-order SG method (Virieux, 
1986) to demonstrate the higher computational efficiency of PAM. All 
numerical experiments were performed on a workstation with an Intel(R) 
Xeon(R) CPU with 2.60 GHz and 64 GB memory. 
                                            

In the following experiment, the force source ( )f t  located at the center 
of the model is a Ricker wavelet with the following expression： 

 
 ( ) ( )2 22

0 0 0( ) 5.76 [1 16 0.6 1 ]exp[ 8 0.6 1 ]f t f f ft t= − − − − − ,          (18) 
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where f0 is approximately twice the peak value of the amplitude spectrum. It 
approximates the maximum frequency of the signal f (t) and thus provides 
the minimum wavelength in the wavefield. In our program, the source 
function is added to the displacement 1u , and in the elastic case, it will 
excite both the P- and S-waves. 
 
 We use 0 25Hz=f ，the computational domain is 0 , , 5.5 km< ≤x y z , and 

the constant acoustic velocity c = 4000 m/s. The time and spatial increments 

are 0.0025tΔ = s and 55h x y z= Δ = Δ = Δ = m, respectively, resulting in a 

number of sampling points per wavelength of 4000 2.90
25 55

G = ≈
×

, which is less 

than 3. 
 

Fig. 6 shows the wavefield snapshots in the x-y plane at T 0.66= s for 
the same computational parameters for (a) the PAM, (b) the eighth-order 
LWC method, and (c) the eighth-order SG method. The wavefronts of the 
seismic waves generated by the three methods are identical. However, the 
snapshots in Figs. 6(b) and 6(c) for the eighth-order LWC and SG methods 
show strong numerical dispersion and numerical dispersion anisotropy, 
whereas the PAM [Fig. 6(a)] exhibits no visible numerical dispersion. 

 

 

Fig. 6. Wavefield snapshots in the x-y plane at T 0.6= s with the computational 
parameters 00.0025 s 55 m 25Hz=Δ = = Δ = Δ = Δ =， ，ft h x y z computed by (a) the 
PAM, (b) the eighth-order LWC, and (c) the eighth-order SG method. 

 
  

We increase the number of spatial sampling grid points per wavelength 
for the same Courant number for the LWC and SG method to eliminate the 
numerical dispersion; the time step is also reduced proportionally. We 
repeat the wavefield simulation until there is no more visible numerical 
dispersion. In this case, the numerical simulation results show that the 
fine-grid step increment of the LWC is 25x y zΔ = Δ = Δ = m, and that of the 
eighth-order SG is 28x y zΔ = Δ = Δ = m. The results indicate that the PAM 
provides the same result for a coarse grid ( 55x y zΔ = Δ = Δ = m) as that of the 
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LWC and SG methods for finer grids 25x y zΔ = Δ = Δ = m and 
28x y zΔ = Δ = Δ = m. For the same computational region and the same 

Courant number, it took the PAM 27.5 s, the eighth-order LWC 124.5 s, and 
the SG 87.4 s to obtain the same numerical result with no dispersion. This 
result implies that the computational speed of the PAM is 4.53 times that of 
the eighth-order LWC and 3.18 times that of the eighth-order SG to achieve 
the same accuracy. Regarding the storage costs, the numbers of grid points 
of the eighth-order LWC and SG methods are 221 221 221× × and 
197 197 197× × , respectively, whereas that of the PAM is only 101×101×101 
for the coarse grid (h = 55 m) for the same computational domain. This 
result indicates that the memory requirement of the PAM is approximately 
23.8% that of the eighth-order LWC method and approximately 33.67% that 
of the eighth-order SG scheme. Table 2 lists the details of the computational 
costs of the three eighth-order methods to generate an output without visible 
numerical dispersion in the same computational region and for the same 
Courant number. The results demonstrate that the PAM has significantly 
lower computer memory requirements and higher computational efficiency 
than the traditional eighth-order LWC and SG methods. 

 
 

Table 2. Comparison of the CPU time costs and the memory requirements of the 
eighth-order LWC, SG, and PAM to produce a result without numerical dispersion. 
    

Methods h (km) mesh points CPU time 
 

Memory 
Requirement(%) 

  (s)       (%) 
eighth-order 
LWC 

25 221 221 221× ×  87.4    318 419 

eighth-order 
SG 

28 197 197 197× ×  124.5    453      297 

PAM 55 101 101 101× ×  27.5     100 100 

 

We conduct a comparison of the waveforms computed from the 
different methods to understand the numerical dispersion property of PAM. 
We double the computational domain of the space and time range while 
keeping the other parameters the same. The receiver located at 
(7.7 km,5.5 km,5.5 km)R is selected to record the waveforms generated by the 

three methods. Fig. 7 shows the waveforms recorded at the receiver in a 
coarse grid ( 55x y zΔ = Δ = Δ = m), where the dashed lines denote the exact 
solution calculated using the Cagniard-de Hoop method (de Hoop, 1960), 
and the solid lines denote the numerical solutions calculated with the three 
eighth-order methods (PAM, LWC, and SG). Fig. 7 (a) shows that the 
waveform computed by the PAM is consistent with the analytic solution, 
but the eighth-order LWC and SG methods exhibit strong numerical 
dispersions with the amplitudes oscillates from the analytical solution for 
the same grid size. This result demonstrates that the PAM method is capable 
of providing sufficiently accurate results as the analytic solution and does 
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not suffer from numerical dispersion caused by discretizing the wave 
equation for the coarse mesh. In other words, the results suggest that the 
PAM has higher computational efficiency and requires less memory than 
the other two methods if a coarse mesh is used for large-scale wavefield 
simulations. 

 
 

 

 
 
Fig. 7. Comparisons of the waveform records at the receiver 1(7.7 km,5.5 km,5.5 km)R  
for the analytic solution (dashed line) and the numerical solution (solid line) computed 
by the (a) PAM, (b) LWC, and (c) SG using relatively coarse grids with the 
computational parameters 0.0025sΔ = ，t 55m= Δ = Δ = Δ = ，h x y z  and 0 25Hz=f . 
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3D NUMERICAL SIMULATIONS WAVE-FIELD MODELING 
 
 In this section, we describe the numerical experiments to demonstrate 
the effectiveness of the PAM for suppressing the numerical dispersion using 
different acoustic and elastic models. The results are compared with those of 
the eighth-order LWC method, and the eighth-order SG method. 
 
 
Two-layer acoustic model 
 
 In the first experiment, we test the acoustic wave propagation in a 
two-layer medium with strong velocity changes. A model domain of 
7km 7km 7km× ×  is chosen, with a grid number of 201 201 201× × , and the 
spatial increment and temporal step are 35h x y z= Δ = Δ = Δ =  m and 

0.75tΔ = s, respectively. The two-layer acoustic model consists of a 2.0 
km/s layer above a 4.0 km/s layer. The horizontal interface is at a depth of 
3.5 km. The source wavelet is a symmetric Ricker wavelet with 0 20=f  Hz 
peak frequency, which is the same expression as eq. (18). The force source 
is located 350 m below the regional center. These parameters result in a 
sampling number of grid points per minimum wavelength of G = 2.86, 
which is less than 3. 
 
  Fig. 8 shows the wavefield snapshots in the x-z and x-y plane at T = 
1.05 s for the two-layer medium model, in which (a) and (d), (b) and (e), 
and (c) and (f ) are computed by the PAM, LWC, and SG, respectively. The 
  

 

 
Fig. 8. The wavefield snapshots in the x-z and x-y plane at T=1.05 s for the two-layer 
acoustic model; (a) and (d), (b) and (e), and (c) and (f ) are computed by the PAM, LWC, 
and SG, respectively. 
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snapshots in the y-z plane are the same as in Fig. 8 due to the symmetry. In 
the wavefield snapshot in Figs. 8(a) and 8(d), we can observe the direct 
wave, the refraction wave, and the reflection of the acoustic wave from the 
inner interface. The wavefield snapshot calculated by PAM has almost no 
numerical dispersion, even if there is a two-fold difference in the model 
velocity between the adjacent layers. However, the snapshots of the LWC 
and SG methods show strong numerical dispersions. 

 
  For the same model, much higher resolution space and time grids of 

=10Δ = Δ = Δx y z m and 0.2Δ =t ms are needed for the eighth-order 
LWC method to produce approximately equivalent results (Ma et al., 2011). 
Fig. 9(a) shows the comparisons of the waveforms recorded at the receiver 
(3.5 km,3.5 km,2.73km)R  computed by the PAM for the coarse grids 

( 35Δ = Δ = Δ =x y z m) and the eighth-order LWC for the fine grids 
( 10Δ = Δ = Δ =x y z  m); the two waveforms in Fig. 9(b) are computed by the 
SG method for the coarse grids ( 35Δ = Δ = Δ =x y z m) and the eighth-order 
LWC method for the fine grids ( 10Δ = Δ = Δ =x y z m). A comparison of the 
results indicates that the PAM method can provide an equivalent solution 
for much coarser grids for the two-layer model with a strong interface while 
requiring much less computation time and computer memory than the other 
methods. 

 

 

Fig. 9. The comparison of the waveforms records at receiver 
(3.5 km,3.5 km,2.73 km)R  for the eighth-order LWC using fine grids (dashed lines) 

and the numerical solution using coarse grids (solid lines) generated by the PAM and SG 
methods for the two-layer acoustic model. 
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Isotropic elastic model  
 
  We use the 3D isotropic elastic model to determine the validity of 

the PAM in complex cases. According to eq. (9), we rewrite the wave 
equation for elastic case as follows: 
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(19) 
 
where 1 2 3( , , )u u u u= . Here, we choose the elastic constants 4.75 GPaλ = , 

 GPa3.75µ = , and the density 32.1 g/cm .ρ =  The spatial and time increments 
are respectively 20 mx y zΔ = Δ = Δ =  and 30.5 10  st −Δ = × , and the number 
of grid points is 181 181 181× × . The force source located at ( , , )s s sx y z = (1.8 
km, 1.8 km, 1.8 km) is the same as the one used in the acoustic experiments, 
and the peak frequency is 0 15=f Hz. The parameters corresponding to the 
P- and SV-wave velocity are S 1.336 km/sV =  and PV =2.415 km/s , 
respectively. 
 

 

 
Fig. 10. The wavefield snapshots in the x-z, x-y, and y-z planes of the displacement 
component 2u  at T= 0.7 s for the elastic model; (a)–(c) and (d)–(f) are generated by the 
PAM and LWC, respectively. 
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  Figs. 10 shows the wavefield snapshots in the  x-z, x-y, and y-z 
planes of the displacement component 2u  at  T = 0.7 s  for the elastic 
model; Figs. 10(a)–(c) and 10(d)–(f) are the results of the PAM and LWC 
methods, respectively. According to the properties of the homogeneous 
isotropic medium model, the wavefield snapshots of the other two 
components can be obtained due to the symmetry. The snapshots in the x-y 
and the y-z planes [Fig. 10(b) and 10(c)] show clear wavefronts of the P- 
and SV-waves. The snapshot in the x-z plane [Fig. 10 (a)] shows a clear 
wavefront of the SH-wave but a very weak wavefront of the P-wave. The 
wavefield snapshots generated by the PAM exhibit almost no numerical 
dispersion, even when the number of grid points per minimum wavelength 
is about 3.3. However, the snapshot generated by the LWC [Fig. 10 (d)-(e)] 
shows wave scattering and numerical anisotropy. Fig. 11 shows the 
comparison of the waveforms recorded at receiver R (0.3 km, 0.3 km, 0.3 
km) from 0 to 0.7 s generated by the PAM method (solid line) and the 
analytic solution (dashed line) (Aki and Richards, 1980; Carcione, 2014). It 
is evident that the waveforms of the three components are all in agreement 
with the analytic solution. This result demonstrates the effectiveness of 
PAM for simulating the wavefield in a homogeneous isotropic medium. 

 
 

Vertical transversely isotropic (VTI) model  
 
 In practical applications, anisotropy of the Earth’s interior is commonly 
observed in vertically aligned media or fractures (Song et al., 2012). The 
investigation of  the anisotropy of underground media is a 
challenging  task  in seismic exploration and oil and gas 
production. Therefore, numerical simulations of the seismic waves in an 
anisotropic medium have practical applications. 
  

 In this section, we describe the performance of the PAM method for the 
elastic case in anisotropic media. We consider the strong form of the seismic 
wave equation in a 3D vertical transversely isotropic (VTI) medium, with 
the symmetry axis in the z-direction. The VTI elastic wave equations are 
defined as follows: 
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Fig. 11. The comparison of the waveforms recorded at receiver R (0.3 km, 0.3 km, 0.3 
km) from 0 to 0.7 s for the elastic model generated by the PAM (solid line) and the 
analytic solution (dashed line); (a), (b), and (c) are the waveforms for the components 
1u , 2u , and 3u , respectively. 

 
 
  For this numerical experiment, the computational domain is 

0 , , 6 km,x y z< ≤ and the source function with 0 20=f  Hz is located at the 
center of the domain, which is the same as in the experiment of the isotropic 
elastic model. The computational parameters are 30x y zΔ = Δ = Δ = m and 

30.8 10  st −Δ = × . The parameters of the medium are listed in Table 3. The 
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wavefield snapshots of the three components of displacement ( 1u , 2u , and 
3u ) at time T = 0.88 s in the x-y, x-z, and y-z planes are shown in Fig. 12. 

The wavefront of the quasi-P (qP) waves and quasi-S waves in the x-y plane 
are perfect circles, indicating isotropy in the x-y plane for the wave 
propagation. Whereas the other snapshots in Fig. 12 show that the 
wavefronts of the qP waves, quasi-SV (qSV) waves, and quasi-SH (qSH) 
waves are elliptical, indicating that the propagation velocities of these waves 
are directional dependent. The qSV wavefronts have cusps and triplications, 
depending on the value of 13c  (Faria and Stoffa, 1994). Triplications can be 
observed in the horizontal component qSV wavefronts in the x-z plane for 
the 1u  component [Fig. 12(d)], the y-z plane for the 2u  component 
[Fig.12(h)], and the vertical component qSV wavefronts [Fig. 12(f ) and 
12(i)]. S-wave splitting (Bansal and Sen, 2008; Yang and Wang, 2010) is 
evident in the wavefield snapshots of the x- and y-components on the x-z 
and y-z planes, respectively. 

Fi 

 
 
Fig. 12. Snapshots of the three components of the displacement in the vertical 
transversely isotropic medium at T=0.88 s generated by the PAM; (a)–(c), (d)–(f ), and 
(g)–(i) are the snapshots for the 1u , 2u , and 3u  components, in the x-y, x-z, and y-z 
planes, respectively.   



	

	

445 

Table 3. Medium parameters used in the VTI model. 
 

11

(GPa)
c

 12

(GPa)
c

 13

(GPa)
c

 33

(GPa)
c

 44

(GPa)
c

 66

(GPa)
c

  

20 6 4.5 17.5 4 7 1.8 

 

 
DISCUSSIONS and CONCLUSIONS 
 
  In this study, the PAM scheme was developed for 3D seismic 
modeling and used the SMM operators (Tong et al., 2013) for spatial 
discretization and the Padé approximation for time-marching. This proposed 
method had fourth-order accuracy in time and eighth-order accuracy in 
space. The theoretical analysis of PAM, including the stability conditions 
and numerical dispersion relations in the 3D, were presented. The results 
showed that the high-order PAM has stricter stability criterion but higher 
accuracy in the numerical simulations and the smallest numerical dispersion 
error compared to the traditional finite difference methods, such as the LWC 
and SG. We applied the PAM to simulate the acoustic and elastic wave 
propagation in different 3D medium models, including a two-layer acoustic 
model, an isotropic elastic model, and a VTI model. We also compared the 
computational efficiencies and the numerical modeling results of the PAM 
with those of the eighth-order LWC method and the SG method. The 
acoustic wave propagation in the two-layer model (Figs. 8-9) and the elastic 
wavefield snapshots (Figs. 10-11) showed that the PAM provided accurate 
results for the layered models without any special treatment at the interfaces. 
The elastic wave simulation of the VTI model (Fig. 12) showed that the 
PAM could precisely model the cusps, triplications, and the S-wave splitting 
in the wavefield. All experiments were performed on relatively coarse grids, 
and the results demonstrated that the PAM exhibited low numerical 
dispersion and high computational efficiency. 
 

The theoretical analysis and the numerical simulations indicated the 
following numerical advantages of the PAM: 

 
1. For the spatial discretization, the wavefield gradient information was 

added to discretize the higher-order spatial derivatives. As a result, the wave 
propagation simulation contained more wavefield information, which 
increased the precision and imaging quality of the seismic inversion or 
seismic migration. 

  
2. For the same Courant number, the PAM had the smallest numerical 

dispersion when compared with the traditional finite difference schemes, 
such as the eight-order LWC and SG methods. The PAM also exhibited 
good performance regarding numerical dispersion anisotropy. 

s
3

  
( / cm )g
ρ



	

	

446 

  
3. The PAM had high numerical accuracy. The waveforms computed 

by the PAM were consistent with the analytic solution for the coarse grid, 
indicating that the PAM method provided sufficiently accurate results for 
the coarse mesh.  

 
4. The PAM proved suitable for wavefield simulation for coarse spatial 

grids or models with strong velocity difference between adjacent layers. The 
method had high computational efficiency and low storage space 
requirements. 

 
5. The PAM also exhibited low numerical dispersion for simulating the 

elastic wave equations in a complex medium.  
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APPENDIX A  
 
 
APPROXIMATIONS OF HIGH-ORDER DERIVATIVES 
 
 We previously described the 2D equations to calculate the high-order 
spatial derivatives of the PAM algorithm when solving the acoustic and 
elastic wave equations (Zhou et al., 2015). These equations were based on 
the local interpolation methods in which the NAD operators were used 
(Konddoh et al., 1994; Yang et al., 2003; Yang et al., 2007; Yang and Wang, 
2010). In this study, we extend these equations to the 3D case. When using 
the PAM to compute the values of U at time tn+1 in synthetic seismograms, 
high-order spatial derivatives should be computed. These equations were 
based on local interpolation methods that used the SMM operators. For the 
fourth- and fifth-order mixed partial differential operators, we used the 
operator-splitting method (Yang et al., 2003). The equations used in this 
study are as follows: 
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APPENDIX B 
 
DERIVATION OF THE STABILITY CRITERIA 
 

In order to derive the stability condition of 3D PAM，we consider the 
harmonic solution of eq. (8).  
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         (B-1) 

where the indices i , j , and k are the spatial coordinates, n is the n-th time 

step of the numerical solution, h is the spatial grid length, and tΔ  is the 

temporal increment. k
!"
= (k1,k2 ,k3)

 is the wavenumber vector, and its 2L

norm is defined as 
k
!"
= k1

2 + k2
2 + k3

2( )
1/2 . 1δ  and 2δ are the plane-wave 

propagation angles with respect to the x-axis and z-axis. Thus 

  k1 = k
!"

sinδ2 cosδ1,  k2 = k
!"

sinδ2 sinδ1,  k3 = k
!"
cosδ2

  

  ( 10 2 ,  πδ≤ < 20 δ π≤ < ). 

By substituting eq. (B-1) into eq. (8) and rewriting the PAM numerical 
algorithm for the acoustic wave equation, we obtain: 
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    ,                          (B-2)                                            

 

where G is the amplification matrix, which is defined as: 

4 4 4 4
8 8

4 4 0
g m

G
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⎝ ⎠

, 

 
where 4 4I ×  is the fourth-order identity matrix. It is not necessary to show 
the other element for calculating G because of the long expression. 
 

We use the computational software Mathematica and solve 
*( ) 1G Gρ ⋅ ≤  and obtain the following stability condition, in which 

x y z hΔ = Δ = Δ = :  

0 max
max

0 0 0

0.5130.513    or      =c t hh ht
h c c c

αα
α α

Δ
= ≤ ≤ Δ ≤ ≤      (B-3) 

where maxα  denotes the maximum value of the Courant number, which is 
defined as /c t hα = Δ  (Sei and Symes, 1994; Dablain, 1986); tΔ  is the 
temporal step size and h is the spatial step size. 
 

For the heterogeneous case, we can use 0c  as the maximum wave 
velocity of the medium. 
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APPENDIX C 

DISPERSION RELATIONSHIP 

 Substitute the harmonic solutions:  
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into eq. (8) , we obtain the numerical dispersion relation as follows:   

    ( ) 0iDet e I Gγ − = ,                                   (C-2) 

where num tγ ω= Δ , G is the same as in eq. (B-2), and I is an identity matrix. 
From the dispersion relation (C-2), we obtain the ratio of the numerical 
velocity numc to the exact velocity 0c . 
 

The ratio of the numerical velocity to the exact phase velocity is: 

0 2
num

p

cR
c S

γ
πα

= = ,                                 (C-3) 

where γ satisfies eq. (C-2), which is a nonlinear function of α, and 
/pS h λ= , was defined by Moczo et al. (2000). Note that R is a nonlinear 

function of the Courant number, the sampling ratio, and the propagation 
angles. 
 
 


