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ABSTRACT 
 
Arora, Y. and Tsvankin, I., 2020. Anisotropic traveltime tomography of diffraction 
arrivals based on eikonal equation. Journal of Seismic Exploration, 29: 455-475. 
 
 Seismic diffractions provide wide angular illumination of the subsurface and, 
therefore, can supplement reflections in estimation of the parameters of anisotropic 
media. Migration velocity analysis of reflection data is usually performed by minimizing 
residual moveout in common-image gathers. This approach, however, cannot be directly 
applied to diffractions. Here, we propose to use the linearized eikonal equation to carry 
out traveltime tomography of diffraction arrivals in VTI (transversely isotropic with a 
vertical symmetry axis) media. The eikonal equation makes it possible to compute 
diffraction traveltimes along with their derivatives with respect to the medium parameters. 
To solve the linearized eikonal equation for VTI media, we employ an efficient and 
robust second-order finite-difference (FD) methodology based on the Fast Marching 
method. The accuracy of the developed technique is verified by computing the traveltime 
perturbations caused by Gaussian parameter anomalies embedded in a homogeneous VTI 
background. Another test of the modeling methodology involves perturbing the 
parameters of the structurally complex VTI Marmousi model. Then we perform traveltime 
tomography of transmission data generated for a VTI medium with Gaussian anomalies 
in the P-wave normal-moveout (Vnmo) and horizontal (Vhor) velocities. Finally, the 
tomographic algorithm is applied to diffraction traveltimes from scatterers embedded in 
the VTI Marmousi model. We use structure-oriented smoothing filters to condition the 
inversion gradients, which yields more geologically consistent velocity models. To 
evaluate the stability of the algorithm, this test is repeated using noise-contaminated 
traveltimes. 
 
KEY WORDS: diffracted waves, anisotropy, transverse isotropy, traveltime tomography, 
    velocity analysis, eikonal equation, finite-difference approximation. 
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INTRODUCTION 
 
 Traveltime tomography is a common tool for building isotropic and 
anisotropic velocity models from surface seismic data (e.g., Tromp et al., 
2005). This method has also been applied to data acquired in vertical seismic 
profiling (VSP) and crosshole surveys (Bregman et al., 1989). Here, we 
develop a tomographic algorithm for inverting traveltimes of diffracted 
waves with the goal of refining velocity fields for VTI media. 
 
 Separation of diffractions from more intensive reflected waves 
typically requires knowledge of the velocity model (Klem-Musatov et al., 
1994; Khaidukov et al., 2004; Moser and Howard, 2008; Landa et al., 2008). 
These separation techniques, originally developed for isotropic models, are 
extended to anisotropic media by Arora and Tsvankin (2016, 2018). Here, 
we assume that diffraction separation is performed using the velocity model 
obtained from reflection tomography or other established techniques. Then 
diffraction traveltimes to be used in tomographic inversion can be picked 
from shot gathers obtained by demigrating diffraction-based depth images. 
 
 The key steps of traveltime tomography are accurate modeling of 
traveltimes and computation of the traveltime derivatives with respect to the 
model parameters. In principle, traveltime modeling can be carried out by 
employing well-established ray-tracing methods (Červený, 2005). The 
traveltime derivatives (gradients) with respect to the pertinent parameters of 
anisotropic media can also be obtained from ray theory (Chapman and Pratt, 
1992). However, a major drawback of these methods is a limited ray 
coverage in the presence of strong spatial velocity variations (e.g., near salt 
bodies). Ray tracing also involves the cumbersome task of recomputing 
traveltimes and their gradients (Fréchet derivatives) from the ray coordinates 
to regular (Cartesian) grids. Alternatively, traveltimes can be modeled by 
solving the eikonal equation using finite-difference (FD) approximations 
(Vidale, 1990; Van Trier and Symes, 1991; Qin and Schuster, 1993; Cao and 
Greenhalgh, 1994; Sethian and Popovici, 1999). The Fast Marching (FM) 
method proposed by Sethian (1996) and the Fast Sweeping (FS) method 
presented by Zhao (2005) are among the most robust and efficient FD 
techniques for eikonal-based traveltime computation. Fomel (2004) applies 
the FM method to model P-wave traveltimes for VTI media, whereas 
Waheed et al. (2015a,b) employ the FS method for traveltime modeling in 
2D tilted TI models and 3D tilted orthorhombic media. 
 
 Traveltime tomography can be performed using adjoint-state 
techniques where the gradients of the objective function are obtained 
implicitly using, for example, the FS method (Huang and Bellefleur, 2012; 
Waheed et al., 2016). The gradients also can be found explicitly by solving a 
linearized eikonal equation in which the intermediate step of computing the 
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adjoint-state variables is eliminated. Then traveltime tomography can be 
performed using the Gauss−Newton approximation (Li et al., 2013; Treister 
and Haber, 2016). This approach is particularly appealing in multiparameter 
tomographic inversion for anisotropic media. 
 
 Here, we perform traveltime tomography of diffraction data for VTI 
media by solving the linearized eikonal equation with a second-order finite-
difference approximation. After verifying the accuracy of this numerical 
solution, tomography is tested on data transmitted through a Gaussian 
anomaly embedded in a homogeneous VTI medium. Inversion of diffraction 
traveltimes is parameterized in terms of the P-wave normal-moveout (Vnmo) 
and horizontal (Vhor) velocities, while the vertical velocity VP0 is fixed at its 
actual value. Then the tomographic algorithm is applied to traveltimes from 
scatterers embedded in the VTI Marmousi model. To regularize the inversion, 
the gradients of the objective function are preconditioned with structure-
oriented smoothing. 
 
 
MODELING METHODOLOGY 
 
Eikonal equation in anisotropic media 
 
 The eikonal equation can be used to model the first-arrival traveltimes 
of pure modes in arbitrarily anisotropic media. For 2D transversely isotropic 
models, the eikonal equation can be written as: 
 

                                                                                                           (1) 

where T is the traveltime, (xs , zs) is the source location, and V(θ) is the phase 
velocity of the mode of interest as a function of the phase angle θ with the 
symmetry axis. The linearized form of eq. (1) is obtained by differentiating it 
with respect to the medium parameters (e.g., the velocities Vnmo and Vhor): 
 

                                                             (2) 
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where τ = ∂T/∂λ and ν = ∂V/∂λ are the gradients (derivatives) of the 
traveltime and phase velocity with respect to the parameter λ. 
 
 
Fast Marching Method 
 
 To solve eq. (1) on regular grids, one can use finite-difference 
approximations which produce a smooth traveltime distribution even in the 
presence of strong velocity variations. Here, we follow the Fast Marching 
method in applying an upwind FD scheme starting from the source 
location.  At each grid point (i, j), the traveltimes are computed sequentially 
similarly to Dijkstra’s (1959) shortest-path algorithm with the following 
approximation for the gradient operator in eq. (1) (Rouy and Tourin, 1992; 
Sethian and Popovici, 1999): 

 
             (3) 
 
where the operators Dij

±x and Dij
±z  are obtained using a second-order finite-

difference approximation (Rickett and Fomel, 1999; Franklin and Harris, 
2001): 

                                                          (4) 
 
 Likewise, the gradient operators in eq. (2) are approximated as 
follows: 
 

                 (5) 
 
 Fomel (2004) implements eqs. (3) and (4) for VTI media in 
Madagascar (Fomel et al., 2013) program sfeikonalvti. To solve the 
linearized eikonal equation, we compute the traveltimes (T) for the 
background model using that code. The slownesses Dij

±xT  and Dij
±zT in 

eq.(5) determine the phase direction for the wavefront propagation. Then this 
equation is solved for τ following the same sequence as the one employed to 
calculate the background traveltimes. 
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Computing traveltime perturbations 
  
 Eq. (2) can be used to obtain the traveltime perturbations δT as a 
function of the perturbations δV in the phase velocity. We use the following 
first-order approximation for the phase-velocity perturbation: 
 

                                                                                            (6) 
 
where  λ  is a medium parameter and  δλ  is its perturbation.  If necessary,  
eq. (6) can be replaced with a higher-order approximation in a straightforward 
way. The P-wave phase velocity is calculated from an approximate 
expression given by Alkhalifah (1998): 
 

 
                                                                                                                      (7) 
 
where VP0, Vnmo = VP0√(1+2δ) and Vhor = VP0√(1+2ε) are the P-wave vertical, 
normal-moveout and horizontal velocities, respectively (ε and δ are 
Thomsen’s anisotropy coefficients). These three parameters control the P-
wave kinematics for vertical transverse isotropy. Alternatively, the acoustic 
VTI medium can be parameterized by the velocities VP0 and Vhor and the 
anellipticity parameter η responsible for P-wave time processing (Tsvankin, 
2012), 
 

                                                                                              (8) 
 
 Because the method introduced above is based on a first-order 
linearization, the perturbations in the medium parameters should be small 
enough for the phase direction to remain close to that for the background 
model. 
 
 To verify the accuracy of the proposed technique, we first use a 
background VTI model with the parameters of Greenhorn shale (Fomel, 
2004) and introduce a Gaussian anomaly in VP0, Vhor, or η. The 
corresponding traveltime perturbations (δT ) are computed from eq. (2) using 
the background traveltimes (Tb) obtained from eq. (1) for a source located at 
x = z = 0 km (Fig. 1). For comparison, we also calculate the traveltimes (T ) 
for the perturbed model directly with the FM method and subtract the 
background values to find the exact traveltime differences (T − Tb). We 
conduct three separate experiments by perturbing one VTI parameter at a 
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time, while the other two parameters are kept unchanged. The traveltime 
perturbations produced by the proposed linearized method are almost 
identical to the actual values (Figs. 2 - 4), and the sum Tb + δT practically 
coincides with the traveltimes computed for the perturbed model. These tests 
demonstrate that our algorithm can accurately handle perturbations in all 
pertinent parameters with no numerical instability issues. 

 

Fig. 1. Traveltimes (Tb) computed for a source located at x = z = 0 km in a homogeneous 
background VTI medium with VP0 = 3.1 km/s, Vhor = 3.80 km/s, and η = 0.34 (based on the model 
of Greenhorn shale). 
 
 
 Next, we use the structurally complex VTI Marmousi model as the 
background medium (Figs. 5 and 6). After perturbing one of the parameters, 
the corresponding traveltime perturbations are computed for a surface source 
located at x = 3.68 km using the algorithm described above (Figs. 7 - 9). As 
in the previous test, the traveltime perturbations are close to the actual 
traveltime differences computed with the FM method. Clearly, the proposed 
numerical scheme for solving the linearized eikonal equation is sufficiently 
accurate even in the presence of pronounced parameter perturbations caused 
by substantial heterogeneity. 
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Fig. 2. (a) Perturbation in the vertical velocity VP0 for the model in Fig. 1. (b) The 
traveltime perturbations for the source at x = z = 0 km obtained from the linearized eikonal 
equation. (c) The traveltime differences between the perturbed and background models 
computed for the same source with the FM method.  

 
 
 
 

 
 

 
 
 
 
 
 
 
Fig. 3. (a) Perturbation in the horizontal velocity Vhor for the model in Fig. 1.  
(b) Traveltime perturbations for the source at x = z = 0 obtained from the linearized 
eikonal equation. (c) The traveltime differences between the perturbed and background 
models computed for the same source with the FM method. 
 
 
 
 

 
 

 
 
 
 
 
 
Fig. 4. (a) Perturbation in the parameter η for the model in Fig. 1. (b) Traveltime 
perturbations for the source at x = z = 0 obtained from the linearized eikonal equation. (c) 
The traveltime differences between the perturbed and background models computed for 
the same source with the FM method. 

(c) (b) (a) 

(a) (b) (c) 

(a) (b) (c) 
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Fig. 5. Smoothed parameters of the VTI Marmousi model: (a) VP0, (b) Vhor, and (c) η. 
 
 
 
 
 
 
 
 
Fig. 6. Traveltimes  computed with the  FM  method for   a  surface source  located  at  x = 
3.68 km in the model from Fig. 5. 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
Fig. 7. (a) Perturbation in the velocity VP0 for the background model in Fig. 5. (b) The 
traveltime perturbations obtained from the linearized eikonal equation for a source 
located at (x = 3.68 km, z = 0 km). (c) The traveltime difference between the perturbed 
and background models computed for the same source with the FM method. 

(a
) 

(b) (c) 

(b) (c) 

(a) 
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Fig. 8. (a) Perturbation in the velocity Vhor for the background model in Fig. 5. (b) The 
traveltime perturbations obtained from the linearized eikonal equation for a source 
located at (x = 3.68 km, z = 0 km). (c) The traveltime difference between the perturbed 
and background models computed for the same source with the FM method. 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Fig. 9.  (a) Perturbation in the anellipticity parameter η  for the background model in 
Fig. 5. (b) The traveltime perturbations obtained from the linearized eikonal equation for 
a source located at (x = 3.68 km, z = 0 km). (c) The traveltime difference between the 
perturbed and background models computed for the same source with the FM method. 
 

(a) 

(b) (c) 

(b) 

(a) 

(c) 
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TRAVELTIME TOMOGRAPHY FOR DIFFRACTION ARRIVALS 
 
 The objective function in traveltime tomography is generally chosen 
as the l2−norm of the difference between the observed (T obs) and calculated 
(T cal) traveltimes: 
 

                               (9) 
 
where m is the vector of the medium parameters defined on a rectangular grid 
and P is an operator that projects the simulated traveltimes onto the receiver 
locations. By evaluating the derivatives of the objective function with 
respect to the model parameters, we find the inversion gradients as: 
 

                                               (10) 
 
where PT is the transpose of P. The traveltime gradients with respect to the 
elements of the model vector (∂T cal (m)/∂m), also known as the Fréchet 
derivatives, are used to construct the Jacobian matrix J for each source. We 
use the nonlinear conjugate gradient method to obtain the descent direction 
(∆m) from the preconditioned gradient of the objective function: 
 
           (11) 
 
where the preconditioner  is computed from the diagonal elements of the 
matrix JTJ, which represents the Gauss-Newton approximation of the 
Hessian matrix. The algorithm inverts for the velocities Vnmo and Vhor, while 
the vertical velocity VP0 is fixed at its actual value because it can seldom be 
constrained by reflection or diffraction traveltimes in VTI media (Tsvankin, 
2012). This parameterization is convenient for inversion because operating 
only with velocities makes it possible to have the same units of all model 
parameters and also of the gradients of the objective function. Model 
updating is performed as follows: 
 
                        (12) 
 
where m+ and m− denote the velocity models at the current and previous 
iterations, respectively, and α is an optimal step length obtained by 
employing the Wolfe conditions in the line search (Nocedal and Wright, 
2006). Eqs. (11) and (12) are solved using an optimization toolbox provided 
by Métivier and Brossier (2016). 
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Test for Gaussian anomaly 
 
 For the first test, a Gaussian anomaly in the parameters Vnmo and Vhor 
is embedded in a homogeneous VTI background (Fig. 10). In this 
transmission experiment, the sources are placed at the surface and the 
receivers at the bottom of the model. The inversion for Vnmo and Vhor is 
performed using the methodology described above with the homogeneous 
background as the initial model. The Gaussian anomalies in the middle of 
the model are well-recovered (Fig. 11) but there are some spurious updates 
around them, which is a typical artifact of multiparameter anisotropic 
inversion. The data residuals and the objective function are significantly 
reduced by model updating (Figs. 12 and 13). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Gaussian anomalies in the velocities (a) Vnmo and (b) Vhor embedded in a 
homogeneous  VTI  background  with  VP0  =  3.0 km/s,  Vnmo =  2.86 km/s,  and  Vhor  =  
3.79 km/s. 
 
 
Test for the VTI Marmousi model 
 
 The next test is carried out for the VTI Marmousi model (Alkhalifah, 
1997; Fig. 14) with the sources placed at the scatterer locations obtained 
from diffraction-based depth images (Arora and Tsvankin, 2016, 2018). 
These scatterers are fixed at their actual locations during the inversion; 
however, these locations could be updated at each iteration using diffraction-

(a) 

(b) 
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based seismic images produced by techniques discussed in Arora and 
Tsvankin (2016, 2018). The traveltime tomography of the diffraction arrivals 
recorded  at  the  surface is performed  starting from a 1D  initial model  
(Fig. 15). Although the inversion adequately recovers low-wavenumber 
features of the model (Fig. 16), there are some structural distortions between 
x = 0 and x = 2 km,  likely caused  by poor illumination and/or limited 
acquisition aperture. The tomographic model updating substantially reduces 
the data residuals (Fig. 17) and the objective function (Fig. 18) in about 10 
iterations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Inverted parameters (a) Vnmo and (b) Vhor for the model in Fig. 10. The 
background  VTI medium is used as the initial model. 
 
 
          To mitigate geologically inconsistent model updates, next we smooth 
the inversion gradients using structure-oriented filters (Hale, 2009). The 
structural information is obtained from migrated images computed with the 
velocity model estimated at the latest iteration of the inversion (Wang and 
Tsvankin, 2013; Li et al., 2019). The smoothing substantially improves the 
spatial distribution of the inverted parameters (Fig. 19), whereas the data 
residuals and the objective function are reduced similarly to those in the 
previous experiment (Figs. 20 and 21). Also, the focusing of reflectors in the 
migrated image generated using the inverted model is noticeably improved 
compared to that for the initial model (Fig. 22). 

(a) 

(b) 
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Fig. 12. Data residuals in the source-receiver coordinates (a) before and (b) after the 
inversion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Reduction of the objective function with the iterations for the model in Fig. 10. 

(a) 

(b) 
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Fig. 14. Parameters (a) VP0, (b) Vnmo, and (c) Vhor of the VTI Marmousi model. 
Diffraction traveltimes are computed for the scatterers marked in blue, and recorded by 
the receivers in red. 
 
 
 

 
 
 
 
 
Fig. 15. Initial parameters (a) Vnmo and (b) Vhor for the Marmousi model. The vertical 
velocity VP0 is fixed at its actual value. 
 
 
 
 

 
 
 
 
 
Fig. 16. Inverted parameters (a) Vnmo and (b) Vhor. 
 

(b) (c) 

(a) 

(a) (b) 

(b) (a) 
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Fig. 17. Data residuals in the source-receiver coordinates (a) before and (b) after the 
inversion for the model in Fig. 14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18. Reduction of the objective function for the model in Fig. 14. 

(a) 

(b) 
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Fig. 19. Inverted parameters (a) Vnmo and (b) Vhor obtained after application of structure-
oriented smoothing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 20. Data residuals in the source-receiver coordinates (a) before and (b) after the 
inversion with structure-oriented smoothing for the model in Fig. 14. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 21. Reduction of the objective function with iterations for the model in Fig. 14 after 
application of structure-oriented smoothing. 

(b) (a) 

(a) 

(b) 
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Fig. 22. Images obtained by Kirchhoff prestack depth migration using (a) the initial model 
in Fig. 15; (b) the inverted model in Fig. 19, and (c) the actual model in Fig. 14. 
 
 
 This test is repeated by adding to the observed traveltimes Gaussian 
noise with the signal-to-noise ratio of approximately 20 dB (the maximum 
errors of ±40 ms in traveltimes with 11 ms standard deviation). In practice, 
such noise could be caused by errors in separating diffractions and in 
picking diffraction traveltimes, as well as by inaccurate locations of the 
scatterers due to insufficiently focused depth images. The low-wavenumber 
components of the Vnmo-field are mostly recovered but there are some noise-
related inconsistent updates in the velocity Vhor in the shallow part of the 
section between x = 3 and 4 km  (Fig. 23). As expected, the traveltime 
residuals for the noisy data are not reduced as much as in the previous 
experiment  (Fig. 24), and the convergence of the objective function becomes 
slower due to errors in the inversion gradients (Fig. 25). Still, this test 
confirms the applicability of the proposed methodology to field data of 
sufficiently high quality. 

(a) 

(b) 

(c) 
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Fig. 23. Inverted parameters (a) Vnmo and (b) Vhor obtained from noisy traveltimes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 24. Data residuals in the source-receiver coordinates (a) before and (b) after the 
inversion of noisy traveltimes for the model in Fig. 14. 
 

(a) (b) 

(a) 

(b) 
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Fig. 25. Reduction of the objective function with iterations in the presence of noise for the 
model in Fig. 14. 
 
 
CONCLUSIONS  
 
 We developed traveltime tomography of diffraction arrivals for VTI 
media based on the linearized eikonal equation. This equation is solved with 
second-order finite-differences in a way similar to the Fast Marching (FM) 
method. The accuracy of the obtained solution is verified by modeling the 
traveltime perturbations caused by Gaussian anomalies in the parameters 
VP0, Vhor, and η responsible for P-wave kinematics in VTI media. The 
traveltimes for both the background and perturbed models were also 
obtained by solving the exact eikonal equation with the FM method. The 
results of both computations are almost identical, which confirms the 
robustness of the proposed modeling algorithm for typical values of the 
anisotropy coefficients. This test was successfully repeated for the 
structurally complex VTI Marmousi model. 
 
 The feasibility of using the linearized eikonal equation for traveltime 
tomography was evaluated by reconstructing the Gaussian anomalies in the 
NMO (Vnmo) and horizontal (Vhor) velocities from transmission traveltimes. 
Then the velocities Vnmo and Vhor were estimated from the traveltimes of 
diffraction arrivals produced by scatterers embedded in the VTI Marmousi 
model. The velocity VP0 was fixed at its actual value but it could be 
estimated as well if borehole information is available. Conditioning of the 
model updates by structure-oriented smoothing of the gradients of the 
objective function produced geologically consistent velocity models. These 
inversion results, as well as those for noise-contaminated input traveltimes, 
confirm that diffractions can help to refine anisotropic velocity models, if 
diffraction traveltimes can be reliably estimated from surface seismic data. 
The scatterers’ locations, which were assumed to be known, could be 
potentially updated along with the velocity model. 
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