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ABSTRACT

Zhao, Y., Li, Y., Shao, D. and Yang, B.J., 2020. Desert seismic exploration low-frequency
noise attenuation based on improved co-sparse analysis model. Journal of Seismic
Exploration, 29: 505-525.

Desert low-frequency noise is a kind of noise in desert seismic exploration records,
with significant low-frequency characteristics. Severe frequency aliasing occurs because
the noise is in the same frequency band as the seismic signal. In addition, the interference
noise has strong energy over whole time period of seismic records, which makes the
signal easily submerged in the noise. These characteristics of desert low-frequency noise
challenge traditional denoising methods. Aiming at the noise attenuation of low
signal-to-noise ratio (SNR) seismic exploration records in desert areas, first
half-quadratic optimization approach is proposed to solve the energy minimization
problem instead of common optimization methods in the co-sparse analysis model. And
then, shrinkage function is introduced into the model by the additive form of
half-quadratic optimization, which makes the model remove the restriction of sparsity
promoting function. Finally, according to the characteristics of seismic exploration
records, the training data are normalized and then trained. Both the synthetic and real
data experiments prove that the improved model can better overcome the frequency
aliasing and more thoroughly remove the low-frequency noise compared with the
traditional co-sparse analysis model.

KEYWORDS: co-sparse analysis model, half-quadratic optimization,
shrinkage function, desert low-frequency noise, noise attenuation.
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INTRODUCTION

Seismic exploration records collected in the field are usually interfered
by various noise sources. The characteristics of low SNR and difficult to
distinguish effective signals have brought adverse effects on subsequent
processing. Desert low-frequency noise is a kind of noise commonly found
in desert seismic exploration records, which is mainly composed of natural
noise and human noise. In human noise, near-field human noise dominates.
The energy distribution of desert low-frequency noise is mainly
concentrated in the low-frequency band. Therefore, the noise has significant
low-frequency characteristics (Li et al., 2017), causing it to be in the same
frequency band as the seismic signal and resulting in severe frequency
aliasing. Moreover, desert low-frequency noise also has low stationarity and
weak Gaussianity (Zhong et al., 2015). Traditional denoising methods are
difficult to attenuate such noise thoroughly, or it is difficult to remove noise
without damaging the signal. The energy of the low-frequency noise is also
strong, causing the seismic signal to have a large deviation or even
completely submerged in the noise. It puts higher requirements on the
performance of denoising methods.

In recent years, many experts and scholars have developed various
seismic random noise attenuation methods, typically f-x prediction filtering
(Harris and White, 2010), wavelet transform (Pati et al., 2002), curvelet
transform (Emmanuel and Donoho, 2000), sparse dictionary learning
(Candès and Donoho, 2010; Ma et al., 2010; Rodriguez et al., 2012),
complex diffusion filtering (Gilboa et al., 2004), time-frequency peak
filtering (TFPF) (Thode, 1987) and so on. Although these methods have
achieved good results in removing seismic random noise, they also have
certain limitations. For example, traditional noise attenuation methods such
as curvelet transform and wavelet transform are more suitable for removing
Gaussian noise. While the time-frequency peak filtering and the complex
diffusion filtering have certain advantages in attenuating desert
low-frequency noise, they are all subject to certain assumptions or
conditions.

Sparse representation is to find a suitable over-complete dictionary for
ordinary densely expressed signals, and to represent the signal with as few
atoms as possible in the dictionary, thus reducing the complexity of the
model. Due to the sparsity of effective seismic signals and the non-sparsity
of random noise, sparse dictionary learning has been widely used in random
noise attenuation for seismic exploration records in the past decade. In
general, the methods based on sparse representation belong to sparse
synthesis model. However, there is another model for sparse representation,
known as the co-sparse analysis model (Yaghoobi et al., 2012, 2015; Elad,
2007). In the co-sparse analysis model, an over-complete analysis
operator n lA R  is given, which can map the signal x from high-dimensional
space m nR  to low-dimensional space m lR  . Let z Ax ,

m lz R  be a sparse
signal and have more zero elements. The number p of zero elements is
called the co-sparsity of the signal x, which is important for signal recovery
in the linear inverse problem. Compared with the sparse synthesis model,



507

there are few studies on the co-sparse analysis model. However, in recent
years, the rapid development of deep learning has provided conditions for
learning the model. Some scholars have applied it to image denoising and
achieved good results (Hawe et al., 2013).

In this paper, based on the extension of half-quadratic optimization,
shrinkage function is introduced into the co-sparse analysis model. By
re-modeling the shrinkage function with the Gaussian kernel function RBF,
the restriction of the sparsity promoting function on the model is removed.
In the case of being able to effectively learn all the model parameters, the
flexibility of the model is improved, and the internal features of the seismic
signal can be captured more finely, so that the distribution of the seismic
signal is specifically fitted to remove the low-frequency noise. The synthetic
and real data experiments also prove that the proposed method has better
noise attenuation effect and higher amplitude preservation than the
traditional co-sparse analysis model.

WORKING THEORY

Co-sparse Analysis Model

Compared with the well-known sparse synthesis model, the co-sparse
analysis model has received less attention. However, in recent years, more
and more scholars have been working on it. Previous studies on the
co-sparse analysis model were mostly based on image patches, and few
literature discussed the entire image. Still, patch-based model can only be
used to process image patches but not the whole natural image directly,
which ignores the similarity between patches and the global characteristics
of the entire image (Elad and Aharon, 2006). Therefore, Chen et al. (2014)
proposed a co-sparse analysis model based on global image, which fully
utilized the global prior information. Moreover, the equivalence between
this model and FOE model (Roth and Black, 2009) is proved.

In the co-sparse analysis model, the prior information of the signal is
learned with the sparsity promoting function and the linear operator A which
can be decomposed into a series of filters. Therefore, given the observation
signal y, the probability density function (PDF) of the pure signal m nx R 
can be written as:

1( |y)= exp( ( | ))
( )

p x E x y
Z




, （1）

with

1

( | ) ( x)
pN

P
p

E x y A P


   , （2）

where ( )Z  is the normalized parameter,  is the sparsity promoting
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function, and n mA R  is the over-complete analysis operator, or linear
operator, that needs to be learned in the co-sparse analysis model.

Pm N
PP R  ( PN n m  ) is a three-dimensional sampling matrix, and its
function is to extract a signal patch centered on point p in the signal x.

Analysis operator n mA R  can be decomposed into n row
vectors 1 2{ }nA A A， , where iA is the i-th row vector of A. Treating the row
vector iA as a filter with dimension m m , then ·iA x is equivalent to the
convolution of the row vector iA with the signal x, i.e., ·i iA x A x  . To this
end, the Gibbs energy eq. (2) can be rewritten as follows:

1 1 1 1

( | ) ( ) ( )
pP NN n n

i P i p
p i p i

E x y A P x A x 
   

      , （3）

where p Px P x  .

In the framework of Bayesian theory, the denoising problem is
equivalent to the MAP estimate. Because of the posterior
distribution ( | ) exp( ( | ))p x y E x y  , it allows to predict the signal x by
finding the energy minimum:

×n n
ˆ argmax ( | ) argmin ( | )

m mx R x R
x p x y E x y

 
 

2
2

1 1
( | ) ( ) ||y x||

2

pN n

i p
p i

E x y A x K
 

   . （4）

A large number of experiments have proved that the choice of the
sparsity promoting function  in eq. (4) plays a decisive role in the
co-sparse analysis model. Chen et al. (2014) proposed the view of using
potential function to construct sparsity promoting function, and verified the
relationship between them: logi i   , where i is the potential function.
Since the desert seismic signal will show a heavy-tailed distribution
[Fig.1(a)] after being filtered, the potential function i usually also denotes a
function that exhibits a heavy-tailed distribution, such as the ST distribution
and the GLP distribution. The functional form is:

ST distribution： 2( ; ) (1 ) ip
i i iz p z  

GLP distribution： | |( ; )
piz

i i iz p e 

The resulting sparsity promoting function is:

2log(1 )i ip z  

| | ip
i z  .
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Half-Quadratic Optimization

To find the optimal solution of eq. (4), various optimization algorithms,
such as gradient descent method, Newton method, quasi-Newton method
and so on, are often involved. The optimization algorithm used in this paper
is the half-quadratic optimization algorithm first proposed by Geman and
Reynolds (2002), and by Geman and Yang (1994) in the field of machine
vision. The main content is to minimize the energy function by introducing
an independent auxiliary variable ipz related to the filter response. The
problem is rewritten as the following mathematical form:

,
argmin ( | ) argmin ( , | )

x x z
E x y E x z y

Then use the block coordinate descent method to optimize x and z
respectively. The optimization of the function ( , | )E x z y can be divided
into two parts: one is to optimize the quadratic function ( | , )E x z y to obtain
x under the condition of z and y; the other part is to update the value of
independent variable z through optimizing ( | , )E z x y under the condition
that x and y are known. The essence of half-quadratic optimization is a
special quadratic relaxation method.

Half-quadratic approach is categorized into additive (Geman and Yang,
1994) and multiplicative forms (Geman and Reynolds, 2002) according to
two different extension of ( | , )E x z y . The two forms are expressed as
follows:

Additive form: 1argmin ( | , ) ( , ) ( )
x

E x z y z y y 

Multiplicative form: 1argmin ( | , ) ( ) ( , )
x

E x z y y z y 

where  is a highly sparse matrix and  is a vector. These two extended
forms simplify the optimization problem into a mathematical problem for
solving linear equations. In the additive form, the variable z can only affect
the sparse matrix  , which ensures that the right side ( )y of the
equation remains unchanged in the iterative, thus reducing the
computational difficulty. Therefore, the additive form of the half-quadratic
optimization has more practical significance.

Since the additive form has more advantages than the multiplicative
form, we consider using it to solve the energy minimization problem.
However, due to the relationship between sparsity promoting function and
potential function, the additive form of half-quadratic optimization cannot
be directly applied to the optimal solution of the co-sparse analysis model.
In response to this problem, Wang et al. (2016) proposed to introduce
parameter    into the half-quadratic optimization. Thus, the
equivalent form of eq. (4) is obtained:
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,
ˆ argmin ( | ) argmin ( , | )

x x z
x E x y E x z y 

2 2
2

1 1
( , | ) ( ( ) ( )) ||y x||

2 2

pN n

i p ip ip
p i

E x z y A x z z K
 

 

     , （5）

when    , the independent auxiliary variable ip i pz A x , eq. (5) is
equivalent to eq. (4). Krishnan and Fergus (2009) applied this method to the
deconvolution of non-blind images; Schmidt and Roth (2014) used this
method in the CSFs.

Because ( , | )E x z y can be transformed into two separate parts of
( | , )E z x y and ( | , )E x z y , the alternate optimization of x and z can be

achieved by minimizing the above two functions. The processes are
summarized as the following mathematical problems:

*
,argmin ( | , ) ( )i i p

z
z E z x y f A x  

* argmin ( | , ) ( )
x

x E x z y g z  

with

2
, ( ) argmin( ( ) ( ) )

2i
z

f v z v z
   , （6）
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F A
F

A A
. （7）

In the case of noise attenuation, the value of K is generally equal to 1.
Since each row of A corresponds to a two-dimensional filter of size m m ,

1z=[Az Az ] z
p

T
N A ， ，A is used to represent the convolution of filters

A and z. The condition of the convolution is the circular (periodic) boundary
condition.  denotes division or multiplication. ( )A


A F denotes the

DFT of A and *

A denotes the conjugate of


A .

Because (6) is a function only related to v, we can store all possible
values of v in a table to facilitate the next calculation, which reducing the
occupation of computing resources. Moreover, as shown in Fig. 1(b), the
half-quadratic optimization of the sparsity promoting function fits the signal
distribution more than the function itself. Eq. (7) uses DFT to map
convolution calculation to multiplication operation in the frequency domain,
provides a closed formula, and completes the solution of the linear
equations in the transform domain. These greatly simplify the calculation
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and improve the precision of the operation in the same time. It can be seen
that the additive form of half-quadratic optimization has great appeal in
solving the optimization problem.

Shrinkage Function

Shrinkage function (Hel-Or and Shaked, 2008) is to make the filter
coefficients gradually approach zero in the iterative, because the coefficients
of filter are generally considered to be caused by noise. , ( )if v in eq. (6) is
the shrinkage function. At present, it has been proved that the shrinkage
function is related to the signal prior, and the relationship between
half-quadratic optimization and shrinkage function is given in the literature
(Wang et al., 2016).

As can be seen from eq. (6), shrinkage function , ( )if v is only related
to the sparsity promoting function, as shown in Fig. 1(c). In practice,

, ( )if v is often restricted by the sparsity promoting function. This leads to
the fact that the same mode is presented for signals with different
characteristics, which seriously affects the flexibility of the model. Based on
this, we can get rid of this limitation by directly modeling the shrinkage
function (Schmidt and Roth, 2014). We choose to remodel , ( )if v with a
series of linear Gaussian kernels:

2

1

( ) exp( ( ) )
2i

M

ij j
j

f v v
 



   . （8）

Set M to 53. ij denotes the weight of different Gaussian kernel, which

is learned from training.  denotes the shared precision. j denotes a

fixed distance between the cores.

Direct modeling of shrinkage function has two main advantages: First,
( )

i
f v is free from the restriction of sparsity promoting function, which
makes the model more flexible and accurate in capturing the fine features of
the seismic signals. Second, the original optimization problem is
decomposed into two optimization processes. After re-modeling, the two
optimization processes are reduced to one optimization process, which
improves the computational efficiency.
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The function  g x changes accordingly after re-modeling , ( )if v :

1 1 1

* *

1

( ( )
( ) [ ]

i

N
T T

i i
i
N

i i
i

K y f x
g x

K K










  




  






  

 

F A A
F

A A
. （9）

Note, parameter  are summarized into the parameters iπ and  . The
above equation is a closed form, which allows for efficient training. Because
of * ( )x g x , ( )g x is called the prediction of signal x. In practice,
multiple predictions are often chained together to form a cascade model.

（a） （b） （c）

（d） （e）

Fig. 1. (a) The PDF of the filtered signal. (b) Negative log PDF of the filtered signal

(black, dashed line) and sparsity promoting function 2/3( ) | |v v  (green, dotted line)

and its quadratic relaxation 2( ) ( )
2

z v z


   when 3.5, 0.01z   (red, double

line). (c) Associated shrinkage function ( ) arg min ( )2( ) ( )
2

v zf z v z


   for

2( ) ( )
2

z v z


   when 3.5, 0.01z   . (d,e) Learned shrinkage functions

2( ) exp( ( ) )
1 2

M
f v vij ji j


    


as linear combination of Gaussian RBF kernels.
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Learning

The purpose of training is to find the most sparse linear operator A, so
that Ax is sparse. However, in the actual training process, the
situation 0A  often occurs. A common solution to this problem is to add
some additional constraints to A. For example, Yaghoobi et al. (2012) used
the l1 norm as the sparsity promoting function and added the constraint of
the Uniform Normalized Tight Frame (UNTF). Hawe et al. (2013) took the
mixed (p,q)-pseudo-norm as the sparsity promoting function and the full
rank matrices with normalized rows as the constraint. However, this training
method is difficult to accurately learn the parameters, so Chen et al. (2014)
proposed a bilevel optimization framework without constraints. Although
the bilevel optimization framework has further improved the training
accuracy, every sample of this framework needs to be bilevel optimized in
each iteration, which results in too few training data allowed.

In this paper, the training method is loss-minimization. The main
purpose of training is to learn the two parameters iπ ,  and the linear
operator A. It is known that each row of linear operator A is equivalent to a
two-dimensional filter that can be further decomposed into a series of base
filters 1 2{ , , }

BN
B B B， with zero mean (Fig. 2):

1

BN

i ij j
j

A B



.

Therefore, A can be obtained by learning the parameters ij .

Fig. 2. 7 × 7 basic filters learned in the training.

In practice, if T predictions are chained together, this cascade model
has T stages. In the t (1 t T  ) stage, let t ti{ , , }t tij   π as a parameter set,
then the purpose of training is to learn the optimal parameter t by
minimizing the loss function in the t stage. For a given training
data (1) (2) ( )[ , , ]sX x x x  , where ( )ix is the i-th noisy signal, the cost function for
the t stage is:

( ) ( )
t

1

ˆ( ) ( ; )
S

i i
t t

i

J x x


  , （10）

where ( ) ( )ˆ ( )i ix g x , ˆ( ; )x x is the loss function. Since the loss function
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must be a continuously differentiable function, we choose the peak
signal-to-noise ratio (PSNR) as ˆ( ; )x x :

10ˆ( ; ) 20log ( )
ˆ|| ||
R Dx x
x x

 


 , （11）

where R is the maximum intensity level (we set R = 10) and D is the amount
of data that x has.

In each stage, we have to minimize the loss function, and the
optimization method used is gradient-based L-BFGS method (Liu and
Nocedal, 1989). Therefore, the minimization process in the t stage needs to
first calculate the gradient of the loss function with respect to the
parameters t :

1

t t t t

ˆ ˆ( ; ) ( ; ) ˆ ˆ[ ]
ˆ

Tt t t t t t t t
t t

t

x x x x
c x

x
     

   
    
 

, （12）

with

1 ˆ( ; )ˆ [ ]
ˆ

Tt t
t t

t

x xc
x

 
 




. （13）

Similar to the calculation method of t̂x , t̂c is also obtained by solving
linear equations in the transform domain. For the sake of brevity, gradient
formulas for specific parameters are no longer given. For details, refer to the
supplementary material in Schmidt and Roth (2014), which also has a
detailed discussion on how to remove edge artifacts from periodic
convolution.

The training based on loss function can be applied not only to each
stage, but also to the joint T stages. The joint cost function of T stages is:

( ) ( )
1, ,

1

ˆ( ) ( ; )
S

i i
T T

i
J x x



   . （14）

This shows that there is a correlation between the loss functions of each
stage, so the gradient of the joint cost function can be expressed as

1, , 1, ,

1

( ) ( )
[ , , ]T T

T

J J   
 

  .

In joint training, the gradient in each stage is not only related to the

gradient
t

ˆ( ; )tx x



of this stage, but also related to the gradient
t-s

ˆ( ; )tx x



of
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other stages. The gradient of other stages can be summarized by recursive

method:

t-s t-s t-s

ˆ( ; ) ˆ ˆ[ ]Tt t s t s
t s t s

x x c x  
 

  
 

  


（15）

with

t 1

1 '
t 1, t 1, t 1, 1

1

ˆ ˆ ˆ( )
s

N
T T
t s t s s i s i t s s i t s

i

c f x c  


          



  A A A . （16）

In this way, the parameters of all the stages in the model can be precisely
trained.

The above principle process can be summarized as a flow chart (Fig. 3).

Fig. 3. Principle flow chart.
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EXAMPLES

Training model

In the experiment, in order to more specifically remove desert
low-frequency noise and recover seismic signals, 85 seismic synthetic
records with the size of 800×90 are selected, and 12 times of desert
low-frequency noise is added to train. However, due to the unstable
intensity level of the noisy seismic exploration records with low SNR, the
training process is complicated and difficult to converge. Therefore, we
normalize the training data and then train it. For the comprehensive
consideration of training time and effect, the number of model stages is 10.
In Figs. 1(d) and 1(e), the shrinkage functions learned in the first and tenth
stages are given. According to the filter size used in the training, it is mainly
divided into the following four models:

model 3×3 Trained model with 8 filters of size 3×3.
model 5×5 Trained model with 24 filters of size 5×5.
model 7×7 Trained model with 48 filters of size 7×7.
model 9×9 Trained model with 80 filters of size 9×9.

the number of filters l is limited by the filter size m m : 2 1l m  .

Table 1 shows the results of the four models after processing noisy
seismic exploration records with different SNR. It can be seen from the data
in the table that the model 7×7 has the best noise attenuation effect and the
improvement of SNR is also the highest - when processing the seismic
exploration record with a high SNR of 4.0443 dB, the SNR before and after
processing is about 5.43 dB; When processing the seismic exploration
record with a low SNR of -10.0016 dB, the SNR increases by about
14.67dB. Among the other three models, the model 3×3 has the worst effect,
and the SNR of processed signal is about 1 to 1.5 dB lower than that of
model 7×7. The effect of model 5×5 is better than that of model 3×3, but it
is worse than that of model 9×9. The comparative analysis of these data
shows that not the larger the size and the more the number of filters, the
stronger the learning ability of the model. The effect of model 9×9 is also
good, but still is 0.2~0.4 dB lower than that of model 7×7, and the training
time of model 9×9 is almost twice as long as that of model 7×7.
Consequently, the SNR can not be improved by increasing the number and
size of the filter without limitation. In Fig. 4, a broken line chart is given to
compare the effects of the four models. Compared with the table, it is more
intuitive.
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Table 1. Denoising results of different models and different methods.

(a) (b)

Fig. 4.（a）Comparisons of four co-sparse analysis models.（b）Comparing the results of
the proposed method with four traditional methods.

Synthetic data experiments

In order to verify the effectiveness of the proposed model for
low-frequency noise attenuation, we designed a synthetic record for
denoising testing. The pure seismic data consisting of multiple Ricker
wavelets is given in Fig. 5(a). There are 120 tracks, 800 sampling points per
track, and the sampling interval is 2 ms. The main frequency of the signal is
25 Hz, 30 Hz and 35 Hz. The events in this record are complex and have
different characteristics such as crossover, linearity and non-linearity. At the
top of the record are curved events with different curvatures and below are
the intersecting events of one large oblique event and the other broken event.
The broken events in this record include a slanted broken one and a straight
broken one.

Fig. 5(b) is the synthetic desert low-frequency noise, and the frequency
distribution is mainly below 25 Hz. Fig. 5(c) is the low SNR seismic data
synthesized by (a) and (b). The SNR is -6.2357 dB. It can be seen from the
synthetic record that the desert low-frequency noise has strong randomness
and weak Gaussianity. The seismic signal produces a large deviation after
adding the noise, and the straight event at the lower left is even almost
submerged in noise. Fig. 5(d), 5(e) is the denoising result and the denoising
residual by proposed method. The co-sparse analysis model adopted is
model 7×7 trained with 12 times of synthetic desert low-frequency noise.
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（a）

（b） （c）

（d） （e）

Fig. 5. (a) Synthetic seismic data.（b）Synthetic desert seismic exploration low-frequency
noise. (c) Noisy synthetic seismic data (SNR = -6.2357 dB) with low-frequency noise.
(d) Denoising result in the proposed method (SNR = 6.2062 dB).（e）Denoising residual.
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Fig. 6 shows the frequency-wavenumber (FK) spectrum of Fig. 5. The
frequency aliasing of seismic signals and low-frequency noise can be clearly
seen in Fig. 6(c).

(a)

(b) (c)

(d) (e)

Fig. 6. (a) FK spectrum of synthetic seismic data.（b）FK spectrum of synthetic desert
seismic exploration low-frequency noise.（c）FK spectrum of noisy synthetic seismic data.
(d) FK spectrum of denoising result in the proposed method.（ e） FK spectrum of
denoising residual.
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It can be seen from Fig. 5(d) and Fig. 6(d) that the proposed method is
effective for removing low-frequency noise. And for seismic events with
different characteristics, the method restores them completely. In the
residual diagram of Fig. 5(e), the residual signal is almost invisible. This
shows that the method has a good amplitude-preserving ability, while the
signal amplitude can be kept above 80%.

In order to further prove the advantages of the proposed method in
removing low-frequency noise, we choose the traditional co-sparse analysis
model, TFPF filtering, wavelet transform and f-x filtering to do the
comparative experiments of the method, as shown in Figs. 7 and 8.

（a） （b）

（c） （d）

Fig. 7. (a) Denoising result after using traditional co-sparse analysis model.
(b) Denoising result after using TFPF filtering.（c）Denoising result after using wavelet
transform.（d）Denoising result after using f-x filtering.
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The denoising results of the traditional co-sparse analysis model are
given in Fig. 7(a) and Fig. 8(a). Although the traditional co-sparse analysis
model has a certain attenuation effect on the desert low-frequency noise, it
also attenuates the signal largely. And for the low-frequency noise which
overlaps with the signal frequency, it does not remove completely. The
attenuation effect of TFPF on low-frequency noise seen from Fig. 7(b) and
Fig. 8(b) is extremely limited - the noise and signal are not well separated.
Wavelet denoising (Fig. 7(c) and Fig. 8(c)) is more suitable for removing
noise in the middle and high frequency bands, and there is still more
low-frequency noise in the processed synthetic record. It can be seen from
Fig. 7(d) and Fig. 8(d) that f-x filtering is the best one for attenuating
low-frequency noise compared to the other three methods, but it also has the
disadvantage of removing the noise and signal in the low-frequency band
together without extracting signal. Moreover, for the middle and high
frequency band noise, it is not completely removed.

（a） （b）

（c） （d）

Fig. 8. (a) FK spectrum of denoising result after using traditional co-sparse analysis
model.（b）FK spectrum of denoising result after using TFPF filtering.（c）FK spectrum
of denoising result after using wavelet transform.（d）FK spectrum of denoising result
after using f-x filtering.
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In addition, more experimental data are given in detail in Table 1. From
the comparison of these experimental data, it can also be concluded that the
proposed co-sparse analysis model can improve the higher SNR and has
greater competitiveness. This histogram in Fig. 4(b) shows this intuitively.

Real data experiments

We also selected a real seismic exploration record (Fig. 9(a)) for
processing. The noise in real records is more complex - not only the desert
low-frequency noise, but also some regular noise (surface wave) and high
frequency random noise. It undoubtedly puts forward higher requirements
for the performance of this method. Fig. 9(b) shows the result of the
proposed method. At this point, the model 7×7 we used was trained by
adding 12 times of real desert low-frequency noise. Figs. 9(c), 9(d), 9(e),
and 9(f) are the results of the traditional co-sparse analysis model, TFPF
filtering, wavelet transform and f-x filtering, respectively. As can be seen
from Fig. 9(b), the events processed by proposed method are more clear and
coherent. In the part of the upper right frame, the weaker events are

(a) (b) (c)

(d) (e) (f )

Fig. 9. (a) Real seismic data.（b）Denoising result in the proposed method.（c）Denoising
result after using the traditional co-sparse analysis model. （d）Denoising result after
using TFPF filtering.（e）Denoising result after using wavelet transform.（f）Denoising
result after using f-x filtering.
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completely recovered. And the proposed method also removes the surface
wave relatively clean.

The residual diagram in Fig. 11(a) shows that the method not only
attenuates the real desert noise and surface wave, but also has good
amplitude preservation. There is no obvious signal residual in the residual
diagram. In contrast, in Figs. 11(b), (c), (e), there are obvious signal residues.
The result of the traditional co-sparse analysis model [Fig. 9(c)] still has
obvious pseudo-axis problem. Although there is no signal residue in Fig.
11(d) of wavelet transform, its ability to remove noise is not strong, and it
can not remove surface wave. So, unlike the proposed method, traditional
methods are hard to give attention to two.

In order to highlight the advantages of the proposed method, the five
methods are compared in the areas circled by black rectangles in Figs. 10
and 12. The areas contain a large number of effective signals. It can be seen
from the processing results that although the traditional co-sparse model and
f-x filtering suppress noise well [Figs. 10(c) and 10(f )], they have a great
attenuation of the seismic signal [Figs. 12(b) and 12(e)]. For wavelet
denoising and TFPF filtering, the denoising effect is weak [Figs. 10(d) and
10(e)]. Especially for the former, the noise at the white rectangle [Fig. 12(d)]
can hardly be removed. Only the proposed method suppresses the noise and
improve the continuity of seismic signal.

(a) (b) (c)

(d) (e) (f )

Fig. 10. (a) FK spectrum of real seismic data.（b）FK spectrum of denoising result in the
proposed method. (c) FK spectrum of denoising result after using the traditional
co-sparse analysis model. (d) FK spectrum of denoising result after using TFPF filtering.
(e) FK spectrum of denoising result after using wavelet transform.（f）FK spectrum of
denoising result after using f-x filtering.
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(a) (b) (c)

(d) (e)

Fig. 11. (a) Denoising residual in the proposed method. (b) Denoising residual after using
traditional co-sparse analysis model. (c) Denoising residual after using TFPF filtering. (d)
Denoising residual after using wavelet transform. (e) Denoising residual after using f-x
filtering.

(a) (b) (c)

(d) (e)

Fig. 12. FK spectrum of denoising residual in the proposed method.（b）FK spectrum of
denoising residual after using traditional co-sparse analysis model.（c）FK spectrum of
denoising residual after using TFPF filtering.（d）FK spectrum of denoising residual after
using wavelet transform.（e）FK spectrum of denoising residual after using f-x filtering.
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CONCLUSION and DISCUSSION

We propose an improved co-sparse analysis model, which uses
half-quadratic optimization to solve the problem of energy minimization at
first. Then, according to the additive extension of half-quadratic
optimization, shrinkage function is introduced into the co-sparse analysis
model. By replacing the traditional sparsity promoting function with the
shrinkage function, we improve the flexibility of the model and enable the
model to learn the internal characteristics of the seismic signal more
efficiently. This will accurately reconstruct the signal. Finally, the synthetic
data show that the co-sparse analysis model can not only remove the desert
low-frequency noise effectively when the signal and noise are severely
frequency aliasing, but also has little attenuation to the seismic signal. The
experimental results of real seismic exploration records show that the
proposed model also has some advantages in attenuating high frequency
random noise and regular noise. Obviously, compared with the traditional
co-sparse analysis model, the improved model has better performance and
stronger competitiveness in processing low SNR seismic exploration
records.

Future work: Although the co-sparse analysis model proposed in this
paper has a certain advantage in the attenuation of desert low-frequency
noise, it still has the disadvantage of insufficient learning ability which can
only train 90 training data. Therefore, the future work will focus on how to
improve the learning ability of the model to achieve better effect.
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