
JOURNAL OF SEISMIC EXPLORATION 29, 575-586 (2020)          575 

 

 

 

 

DESERT LOW FREQUENCY NOISE SUPPRESSION 
BASED ON MULTI-LEVEL WAVELET CONVOLUTION 
NEURAL NETWORK 

 
 
 
 
 
 

HANQING JU1, YUE LI*1, HONGZHOU WANG1 and BAOJUN YANG2 
 
1 Signal and Information Processing, College of Communication Engineering, Jilin 
University, Changchun 130012, P.R. China. *liyue@jlu.edu.cn 
2 Geodetection and Information Technology, College of Geoexploration Science and 
Technology, Jilin University, Changchun 130012, P.R. China. 
 
(Received July 8, 2019; revised version accepted April 23, 2020) 
 
 
ABSTRACT 
 
Ju, H.Q., Li, Y., Wang, H.Z. and Yang, B.J., 2020. Desert low frequency noise 
suppression based on multi-level wavelet convolution neural network. Journal of Seismic 
Exploration, 29: 575-586. 
 
  Due to the effect of various environment factors, the random noise in desert 
seismic exploration has complex characteristics, including low frequency, non-Gaussian 
and frequency band aliasing of signal and noise. Therefore, it is difficult for the 
denoising processing. Aiming at this problem, a Multi-level Wavelet Convolution Neural 
Network (MWCNN) is proposed to suppress the desert noise. MWCNN is a combination 
of two-dimensional discrete wavelet transformation and convolution neural network. 
Specifically, Discrete Wavelet Transformation (DWT) and inverse wavelet 
transformation (IWT) are used to replace the pooling layer and up-convolution of U-net 
respectively. So that the trade-off between receptive field and computational efficiency 
can be achieved. Consequently, the expansion of the receptive field can obtain more 
overall information of the events. In this paper, by adjusting the training set and structure 
of MWCNN, it is applied to suppress the random noise in desert seismic exploration. 
Furthermore, compared with other neural networks, MWCNN achieves better better 
denoising effect and better events’ continuity by enlarging the receptive field in desert 
seismic records. And experiments on simulated synthetic records and actual seismic 
records respectively show our trained MWCNN model achieve a satisfactory denoising 
performance for the random noise in desert seismic exploration. 
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INTRODUCTION 

The random noise of the seismic signal in desert area is complicated 
and unpredictable. It is always randomly distributed in both the time domain 
and the spatial domain, moreover, its frequency band are mixed with the 
frequency band of the signal. These characteristics impact the denoising 
processing seriously. Since the seismic data with a high signal-to-noise ratio 
(SNR) is the premise of the subsequent analyzing, such as studying the 
stratigraphic structure and attribute analysis, so improving SNR is an 
important link in seismic signal processing. However the characteristics of 
random noise are quite different from the Gaussian noise, so some methods 
suitable for removing the Gaussian noise can not completely suppress 
random noise. At present, some methods are widely used in seismic data 
processing such as f-x deconvolution (Harris et al., 1997), wavelet transform 
(Cao et al., 2005; Wang et al., 2016), direction control filter (Li et al., 2016), 
sparse dictionary learning (Zhang et al., 2017), etc.. Although the above 
traditional methods can improve the quality of seismic records to a certain 
extent, aiming at the complexity of desert seismic noise, the effect of these 
traditional methods is insignificant and the denoising parameters need to be 
adjusted manually. Meanwhile, these methods often have the deficiency in 
the amplitude preservation of effective signal and can’t suppress the random 
noise thoroughly, so these methods are difficult to meet the need for modern 
high-precision detection and and it is urgent to find a more intelligent 
denoising method. 

  
 In recent years, Hinton put forward the concept of deep learning. The 

deeper layers and stronger learning ability of deep artificial neural network 
make the application of neural network widespread. So far, neural network 
has developed into a variety of models, such as deep belief network, 
convolution neural network (CNN) and generative adversarial network. 
Because of the local connection and weight sharing mechanism of CNN, it 
has been widely used in image classification (Krizhevsky et al., 2012), 
feature fusion (Tang et al., 2016), and image segmentation (Zhang et al., 
2015). At the same time, it has been applied in some fields of seismic 
exploration. Zhao et al. (2019) applied CNN to classify and recognize the 
seismic waveform. Huang et al. (2017) applied CNN to seismic fault 
detection, and achieved good effect. In terms of denoising, Jain (2008) first 
proposed the natural image denoising with CNN in 2008, and achieved 
similar results with traditional methods. In 2017, Zhang et al. (2017) 
proposed a deeper CNN network called DNCNN. It has achieved excellent 
results at different noise levels, which shows that CNN has a good ability to 
learn noise characteristics. 

 
In this paper, an improved convolution neural network is introduced to 

denoise the desert random noise (Liu et al., 2018). In our network, the 
pooling layer and the up-convolution of U-net (Ronneberger et al., 2015) is 
replaced by the DWT and IWT, so as to solve the drawbacks of sampling 
distortion in the pooling layer and the trade-off between the receptive field 
and the training difficulty. According to the simulation experiment and 
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actual record processing, the good denoising effect manifests the that the 
introduced network is suitable for suppressing the random noise in the desert 
seismic signal. 

 
 

MULTI-LEVEL WAVELET DENOISING CONVOLUTION NEURAL 
NETWORK 
 
Network structure 

 
As shown in Fig. 1, it is the network structure of MWCNN, which is 

proposed on the basis of U-net. Firstly, the four filters LL, LH, HL, HH are 
deployed to process signal by using the DWT. The four filters represent the 
high-frequency and low-frequency components in the vertical and horizontal 
directions respectively. This is a process of sampling and compression, 
which is equivalent to the role of the pooling layer in U-net. Then it is 
composed of four layers of full convolution network (FCN) without pooling 
layers. Each layer is composed of 3*3 convolution layer, batch 
normalization layer and correction linear unit connected in turn. The 
convolution layers of U-net will increase the number of feature channels. 
The difference is that MWCNN will increase the number of feature channels 
in the first layer of convolution layers. And other convolution layers will not 
increase the number of feature channels. It increase the number of feature 
channels in the DWT. Then the IWT replaces the up-convolution process of 
U-net, but it is different from the lossy process of the pooling layers and the 
up-convolution layers. Due to the biorthogonal nature of DWT, the original 
signal can be reconstructed accurately and error-free according to the four 
components of decomposition, so it is expected to achieve better denoising 
effect by MWCNN. In addition, similar to the pruning and merging of U-net 
network to achieve shallow feature fusion, MWCNN uses the element 
summation method to combine the feature graph of the contracting and 
expanding sub-networks. 

 
 

 
Fig. 1. MWCNN model. 
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  Computational efficiency and performance are considered. The 

network structure of MWCNN is shown in Fig. 2. As shown in the figure, a 
three-level contracting and expanding sub-networks are adopted, and the 
CNN blocks at each level are composed of four layers of FCN without 
pooling layers. The first convolution layer of the first level contracting 
sub-network uses a filter size of 3*3*4*160 and the other three use 
3*3*160*160. The last convolution layer of the first level expanding 
sub-network uses a filter size of 3*3*160*4. The first convolution layer of 
the second level contracting sub-network uses a filter size of 3*3*640*256 
and the other three use 3*3*256*256. The last convolution layer of the 
second level expanding sub-network uses a filter size of 3*3*256*640. The 
first convolution layer of the third level contracting sub-network uses a filter 
size of 3*3*1024*256 and the other three use 3*3*256*256. Then the last 
convolution layer of the third level expanding sub-network uses a filter size 
of 3*3*256*1024. Finally, a 24-layer MWCNN network structure is formed. 
 

 
 
Fig. 2. 24-layer MWCNN structure. 
 
 
Denoising Principle 

 
At present, MWCNN mainly eliminates the Gaussian noise in the image, 

so the noisy signal is represented as: 
 

    nxy +=   ,                                           (1) 
 
among them, x represents a pure image, n represents the interference of 
Gaussian noise, and y represents the image of noise pollution. MWCNN 
does not adopt the method of residual learning.θ represents the parameters of 
MWCNN. ),( θyF represents the output through the network, N

ii xy 1},{
represents the training set, yi represents the i-th noisy signal in the training 
set, and ix  represents the corresponding i-th pure signal. The following loss 
function is used in training: 
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     ADAM (Kingma et al., 2014) algorithm is adopted to minimize )(θL . 
The parameters of ADAM are 01.0=α , 9.01 =β , 999.02 =β , and 8-10=ε , 
respectively. The other parameters of ADAM algorithm adopt the default 
values. It uses the initialization method proposed by Kaiming (2015) to 
initialize the parameters of the network, so as to solve the problem that the 
inappropriate selection of the initialization parameters leads to the 
increasing difficulty of training. 
 
 
Production of training set 

 
The random noise in desert seismic record is very different from the 

Gaussian noise, and the seismic events are also different from pictures. It is 
necessary to make pure signal set and corresponding noise set to suppress 
random noise from desert seismic data. For a pure set of signal, seismic 
events are usually short-term impulsive vibration generated by a source that 
propagates through the stratum. The most widely mathematical model of a 
seismic wavelet proposed by Ricker is called the Ricker wavelet. Its 
mathematical expression is as follows: 
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in the formula, A represents the maximum amplitude of the Ricker wavelet 
and fm represents the main frequency of the Ricker wavelet. And using the 
frequency 15-30 Hz and propagation speed of 500-7000 m/s Ricker 
wavelets makes 3000 simulated data of size 640*200. In addition, due to the 
input of data blocks, patches with the size of 192*192 and the step size of 15 
are used to sample the above data, so as to obtain 60000 pure signal training 
set of 192*192. Next comes the construction of the most important noise set. 
The quality of the noise set directly affects the effect of denoising. In order 
to make the noise set better and richer, we make 20000 simulated desert 
random noise of size 640*200. Patches with the size of 192*192 and the 
step size of 150 are used to sample the above data. There is not only random 
noise in the actual seismic record, but also a certain amount of surface wave 
which is intercepted from the actual record is added to the noise training set. 
The random noise patches with a size of 192*192 are obtained which are 
about 60000. 
 
  The following is the process of implementing denoising training: 
 
1) Batch training is adopted, 15 pairs of data are input for each batch, and 
data is extracted from signal set and noise set successively. 
2) The input noise is n, and the large difference in the input noise amplitude 
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is not conducive to training. The maximum value of noise is assumed to be 
A, and n/A is used to standardize the noise, so that the noise is within the 
range of (-1,1). 
3) At the same time, in order to ensure that the pure signal does not show a 
negative value, it is assumed that the pure signal input is x. Since the 
maximum amplitude of the Ricker wavelet is 0.5, (x+0.3) is used as the 
input of the pure signal. 

 
  In summary, the input of the network is )(5)3.0( Anxy ÷×++= , 

and 5 times of the random noise is used as the noise input. The label of the 
network is )3.0( +x , assuming the output of the signal is y, y and )3.0( +x  are 
input into the network to optimize the parameters. 

 
  Meanwhile, the SNR and mean square error (MSE) are used to test 

the ability of noise suppression and signal amplitude preservation. 
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among them, X represents the pure signal, M and N represents the number of 
sampling points and traces of the signal, X represents the average value of
X , andY represents the signal after processing. 
 
 
SYNTHETIC EXPERIMENT 

 
  First, design a synthetic seismic record containing 400 traces with 

640 sampling points per trace. As shown in Fig. 3(a), it is a simulated 
seismic record with the main frequencies of 20, 22, 23 and 25 Hz of ricker 
wavelets including linearity, curve, crossover and discontinuity. b is the 
added random noise of desert seismic record. In order to make the denoising 
effect extensive, the added random noise is not the noise in the training set. 
c is a noisy record with noise added, and the SNR is -9.8437 dB. 

 

 
Fig. 3. Synthetic record. (a) Pure signal. (b) Desert noise. (c) Noisy signal. 
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 Figs. 4 a, b, c are the corresponding F-K spectrum. As shown in Fig. 4, 

the signal and noise frequency have a certain overlap; 
 
 

 
 

Fig. 4. F-K spectrum. (a) Pure signal. (b) Desert noise. (c) Noisy signal. 
 
 
 
 The trained model is validated with the simulated seismic record 

designed above. As shown in Fig. 5(a), the trained MWCNN model can 
effectively learn the characteristics of the events including the more 
complex crossover events. After denoising, the SNR is 16.5585 dB, which is 
about 25 dB higher than that of noisy record. Fig. 5(b) is the difference 
between noisy signal and predicted signal, and it can be seen that there is no 
residual signal in the difference. 

 
  We take the 30th trace and 150th trace for single-trace comparison in 
Fig. 6. From the result of single trace, it can be seen that the pure signal and 
denoised signal basically coincide, which shows that the trained MWCNN 
has good performance in denoising and amplitude preservation. 

 
 

 
 

Fig. 5. MWCNN denoising results. (a) The denoising result. (b) Difference value. 
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Fig. 6. Single-trace comparison. (a) The 30th trace. (b) The 150th trace. 
 
 
  In order to further illustrate the advantages of MWCNN, we 

compared with some traditional methods. The a, b, c, d and e in the Fig. 7 
are the pure signal, wavelet transform, f-x deconvolution, band-pass filter 
and the results of trained MWCNN processing. Fig. 8 is corresponding F-K 
spectrum after denoising by various methods. It can be seen that compared 
with the three methods, the frequency distribution of the signal after the 
denoising of the trained MWCNN is closer to that of the pure signal, which 
indicates that the trained MWCNN can more accurately predict the effective 
signal. 

 
 

 

 
Fig. 7. Denoising result. (a) Pure signal. (b) Wavelet transform. (c) F-X deconvolution. 
(d) Band-pass filter. (e) Trained MWCNN. 
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Fig. 8. F-K spectrum.  (a) Pure signal.  (b) Wavelet transform.  (c) F-X deconvolution. 
(d) Band-pass filter. (e) Trained MWCNN. 

 
 
 In addition, in order to test the ability of the trained MWCNN to 

suppress random noise blindly, the trained MWCNN model and three other 
methods are used to process 10 data with different intensity of desert noise. 
SNR and MSE are used to measure the ability of noise suppression and 
signal amplitude retention. As shown in Table 1, we can see that the trained 
MWCNN is better than the previous three methods. The SNR is obviously 
improved and the MSE is very small, which indicates that there is basically 
no energy loss in the signal. 

 
 

Table 1. Noise reduction results of several methods with different noise levels. 
 

Original 
data 

Wavelet 
transform 

F-X 
deconvoluti
on 

Band-pass 
filter 

Trained 
MWCNN 

SNR 
(dB) 

MS
E 

SNR 
(dB) 

MS
E 

SNR 
(dB) 

MS
E 

SNR 
(dB) 

MS
E 

SNR 
(dB) 

MS
E 

0.78
59 

0.01
27 

6.70
07 

0.00
33 

5.64
96 

0.00
42 

4.28
08 

0.00
57 

17.0
617 

0.00
0299 

-5.2
347 

0.05
09 

0.72
02 

0.01
29 

5.56
87 

0.00
42 

4.23
08 

0.00
58 

16.9
517 

0.00
0307 

-9.6
717 

0.14
13 

-3.7
082 

0.03
58 

5.45
04 

0.00
43 

4.11
44 

0.00
59 

16.5
877 

0.00
0344 

-11.
2553 

0.20
35 

-5.2
909 

0.05
15 

5.38
56 

0.00
44 

4.03
63 

0.00
6 

16.2
35 

0.00
0362 

-12.
5942 

0.27
7 

-6.6
326 

0.07
02 

5.31
58 

0.00
45 

3.94
57 

0.00
61 

15.9
811 

0.00
0384 

-13.
754 

0.36
18 

-7.8
022 

0.09
19 

5.24
08 

0.00
46 

3.84
35 

0.00
63 

15.8
232 

0.00
0398 

-14.
7771 

0.45
79 

-8.8
457 

0.11
68 

5.16
06 

0.00
46 

3.73
05 

0.00
65 

14.2
075 

0.00
0578 

-15.
6933 

0.56
53 

-9.7
934 

0.14
53 

5.07
56 

0.00
47 

3.60
76 

0.00
66 

14.1
997 

0.00
0579 

-16.
5201 

0.68
4 

-10.
6666 

0.17
77 

4.98
62 

0.00
48 

3.47
57 

0.00
68 

12.2
981 

0.00
0897 

-17.
2759 

0.81
4 

-11.
4803 

0.21
43 

4.89
3 

0.00
49 

3.33
57 

0.00
71 

11.2
946 

0.00
11 
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ACTUAL DATA PROCESSING 
 
  In order to verify the effect of suppressing random noise in actual 

records, we select a field desert seismic record for processing. As shown in 
Fig. 9(a), it is a common shot point seismic record containing 183 traces and 
each track contains 1300 sample points. The sampling frequency is 500 Hz. 
Fig. 9(e) is the result of using MWCNN processing. At the same time, we 
compare it with the traditional methods. Fig. 9(b) is the result of wavelet 
transform, 9(c) is the result of f-x deconvolution and 9(d) is the result of 
band-pass filtering. 

 
 

 
 

Fig. 9. Processing results. (a) Original record. (b) Wavelet transform. (c) f-x 
deconvolution. (d) Band-pass filter. (e) Trained MWCNN. 
 

 
  After observing the original record and the results after several times of 

processing, the f-x deconvolution has a good effect of suppressing surface 
wave, but the ability of suppressing random noise is poor, leading to events 
still submerged in noise. The wavelet transform and band-pass filter can 
suppress certain random noise and the events also has good continuity, but 
there is a lack in the suppression of surface wave. The band-pass filter 
suppresses a certain amount of surface wave, but the suppression is not very 
thorough. The wavelet transform has no effect in the suppression of surface 
wave. By observing the result of the trained MWCNN processing, it has a 
good effect in suppressing the surface wave and random noise, and does not 
lose the continuity of the events. 
 

 In order to better reflect the superiority of the trained MWCNN in 
suppressing random noise, we deal with the difference of various methods. 
As shown in Figs. 10, a, b, c, d are the difference images between the 
denoising results of the above methods and the original record. 

  
 It can be seen from the difference of various processing methods that 

there are some signal residues in the difference between f-x deconvolution 
and band-pass filter processing, which indicates that there are some 
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deficiencies in the amplitude preservation of the two methods. Then it can 
be seen from the result of wavelet transform difference. Although there is no 
noise residue, the color of the difference image looks lighter and the noise 
amplitude is small. It shows that the ability of suppressing random noise is 
poor. Looking at the difference after MWCNN processing, there is basically 
no residual signal and the complete surface wave in the difference figure 
shows that the surface wave suppression effect is also good. 

 

 
 
Fig. 10. Difference results. (a) Wavelet transform. (b) F-X deconvolution. (c) Band-pass 
filter. (d) Trained MWCNN. 

 

 In summary, through the simulation and actual data testing, our trained 
MWCNN model has better effect in suppressing random noise and surface 
wave than other traditional methods, and basically there is no loss of 
amplitude in the signal. 

 
 

CONCLUSION 
 
 In this paper, MWCNN is improved to suppress the random noise in the 

desert seismic exploration. To sum up, compared with some traditional 
methods, it has the following advantages: 

 
1) The introduction of discrete wavelet transformation by MWCNN enables 
it to have a larger feeling field when the training difficulty is the same as 
that of other networks, so that more comprehensive information of the 
effective signal can be obtained, that is, our method can improve the 
continuity and integrity of the retained signal; 
2) MWCNN has the universal applicability. In the process of suppressing 
the noise with different intensity, the trained MWCNN model with single 
intensity of the desert noise obtained better denoising effect and amplitude 
preservation than the traditional methods. 
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3) The trained MWCNN not only suppresses the random noise effectively, 
but also suppresses the surface wave in the actual record, which is more 
advantageous than the traditional methods for the actual records in which 
the events are submerged in the surface wave. 
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