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ABSTRACT 

 
Bashir, Y., Babasafari, A.B., Alashloo, S.Y.M., Muztaza, N.M., Ali, S.H. and Imran, 
Q.S., 2020. Seismic wave propagation characteristics using conventional and advance 
modelling algorithm for D-data imaging. Journal of Seismic Exploration, 30: 21-44. 
  
 The importance of seismic imaging is being impetrative in the petroleum industry 
because of exploiting minor hydrocarbon reservoirs traps in highly tectonic and complex 
structures increased. The primary objective of diffraction data imaging is to improve the 
image of subsurface in looking for structural topographies and the extreme super 
resolution which can express the sharpness and insides feature in it. These high-
resolution images are tools for interpreters to allow for immediate proof of identity the 
smaller events, pitchouts and edges of the anomalies such as faults, fractures and Salt 
bodies. After the seismic imaging technology is being advance in recognition of the 
diffracted wave which is found is a carrier of the high-resolution imaging. In this paper, 
an algorithm is introduced based on low-rank symbol approximation for modelling the 
seismic wave propagation. The results demonstrate a dispersion free modelled data 
which is further used for D-data (diffraction data) imaging. The modelling is performed 
using low-rank (LR) and Finite difference (FD) methods and observed LR is better than 
FD. The results of the D-Data images show an enhancement in the band of frequency 
from 0 to 10 Hz and from 50 to 60 Hz. This paper demonstrates how this can be used to 
assess the characteristics of subsurface features and enhance the resolution of seismic 
data to explore the hydrocarbon reservoir. 
 
KEY WORDS: finite difference, low-rank, wave modelling, diffraction, high-resolution. 
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INTRODUCTION 
 
 It is difficult to read a road symbol if a person has a weak vision, 
therefore a driving license is issued with the limitations requiring that 
corrective lenses must be worn. Similarly, it is tough to explore subsurface 
reserves if a geoscientist cannot clearly see the target or monitor the 
movement of fluids in the subsurface reservoir (Neal and Krohn, 2012). The 
oil & gas exploration company’s goal is to constantly improve the 
subsurface seismic data to find and produce oil & gas in the reservoirs. 
Seismological research that addresses the imaging limitation is advancing 
worldwide on acquiring data with a new array of technologies but the 
problems such as layers of salt, thrust sheets, fractured basement, Carbonate 
Karstification, gas masking effect, and unknown medium highlight not only 
the challenges to achieving higher resolution, but also concern on depth 
conversion. 
 
 Seismic wave propagation in time plays a substantial role in seismic 
modelling and depth imaging. Currently, in the conventional way of wave 
extrapolation method is implemented by Finite Difference Modelling 
(FDM) (Etgen and Brandsberg-Dahl, 2009). Theoretically speaking, high-
resolution seismic diffraction images enable one to image details outside the 
classical Rayleigh boundary of half a seismic wavelength. Diffracted waves 
have thoroughly examined in the seismic literature because of their 
imaginary and practical importance in modelling, imaging, and 
interpretation (Coimbra et al., 2018). Improvements in high-resolution 
imaging methods through diffraction are already explained in many 
published papers, for example Bansal and Imhof, 2005; Fomel et al., 2007; 
Landa and Keydar, 1998; Taner et al., 2006. 
  
 The systematic technique comprises the designing of wave 
extrapolation operatives by reminiscent of the space wavenumber matrix 
symbol with a low-rank decomposition. The method used in this paper 
involved selecting a small set of representative spatial locations and a small 
set of representative wavenumbers. Nevertheless, the LR algorithm 
implementation is more expensive than FD in the sense of computational 
power and time consumption but the results accuracy is higher. LR 
algorithm was extended to anisotropic media for wave propagation back in 
2009 by Behura and Tsvankin, in 2013 by Fomel et al., and then by Bashir  
et al. (2016, 2017, 2018, 2019, 2020). They involve the Eigenfunction 
instead of the columns and rows of the original extrapolation matrix (Song 
et al., 2013). 
 
 It is normal practice to use a second order Finite Difference for 
temporal derivatives and high-order Finite Difference for spatial derivatives, 
to reduce the noise and the dispersion for improving the accuracy of the 
output data. The coefficients of the Finite Difference methods are calculated 
using a Taylor series expansion around zero wavenumbers (Dablain, 1986; 
Kindelan et al., 1990). Improvements in the FD method has applied 
previously, for example one-way wave extrapolation. Holberg (1987, 1988) 
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has improved the FD method by matching the spectral response in the 
wavenumber domain. The FD method has been further developed by 
researchers over the last decade (Liu and Sen 2011; 2009; Mousa et al. 
2009; Soubaras 1996; Takeuchi and Geller 2000; Holberg 1988; Holloway 
1981) but the method is still slightly poor when trying to model seismic data 
without noise and dispersion. 
 
 The technique of “D-Data imaging” used in this paper entails the 
separation of the diffraction data through the well-known Claerbout method 
of “plane-wave destruction” (PWD). The proposed method is opposite to the 
more common “full-wave imaging”, which images a full shot record of all 
the information including reflection, diffractions, and multiples.  
 
 This paper inspects the challenges of getting a high-resolution of 
subsurface structural images in case of complex Salt deposit which leads to 
the emerging research trends for strong reflection and diffraction imaging 
technologies aimed at carrying a more precise reservoir. We first introduce 
the wave modelling method (the low-rank approximation method) which 
provides an accurate wave extrapolation method. Next, the paper presents 
wave modelling using the FD method in a smooth velocity model which is 
then compared with the LR method to give improved and dispersion-free 
results. Furthermore, this approach is applied to the Sigsbee model in order 
to compare diffraction migration and full wave migration. The Marmousi 
data set is then used to enhance the resolution of the seismic data through 
diffraction and reflection imaging, separately. A frequency spectrum of both 
datasets demonstrates that diffraction imaging can enlarge the bandwidth of 
the data at low frequencies (0 - 10 Hz) and higher frequencies (40 - 60 Hz). 
 
 
Theory & Method for Advance Wave Modelling 
 
 Here, we present the theory behind the algorithm and tested its 
correctness on artificial data from the Gulf of Mexico. The wave equation is 
a linear second-order partial differential equation which describes the 
propagation of oscillations at a fixed speed in some quantity of  
 

1
𝑣!

 
𝜕!𝑦
𝜕𝑡!

=
𝜕!𝑦
𝜕𝑥!

      ,                                                                       (1) 
 
where 𝑣 is the velocity of wave, and 𝑡 is traveltime of the wave propagation. 
Plane wave in physical model, we can define the mathematically as, 
 

𝜕𝑃
𝜕𝑥

  + 𝜎  
𝜕𝑃
𝜕𝑡

 = 0    ,                                                                   (2) 
 
where 𝜕𝑃 is the wave field and 𝜎  is the local slope which is dependent on 
distance (x) and traveltime (𝑡).  
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 In eq. (3), P(x,t) is wavefield of seismic at spatial position 𝑥 and 
temporal time 𝑡 . Wavefield on the subsequent time step (t+dt) is estimated 
using given operator below (Wards et al., 2008). 
 

𝑃 𝑥, 𝑡 +   ∆𝑡 = 𝑃 𝑘, 𝑡 𝑒! ∅ !,   !,   ∆! 𝑑𝐾    ,                                (3) 

 
here 𝑃 𝑘, 𝑡  is an spatial Fourier transform of 𝑃 𝑥, 𝑡  and  
 

𝑃 𝑘, 𝑡 =  
1
2𝜋!

𝑃(𝑥, 𝑡)𝑒!! !" 𝑑𝑥    ,                                               (4) 

 
where 𝑘 represents the wavenumber in the spatial domain. ∅ x, k,∆t  
describes the function of phase that seems in eq. (3), which can be rough 
calculate into the equation of wave and then extract geometrical higher 
frequency asymptotic of its. Eikonal-like equation is led in the case of 
seismic wave propagation (Fomel et al., 2013): 
 

𝜕∅
𝜕𝑡

= ± 𝑉 𝑥, 𝑘    ∇∅       ,                                                                  (5) 
 
where 𝑉 𝑥, 𝑘  is the velocity of phase function, If we assume small 
incremental phases ∆𝑡 in eq. (3), this can be used to shape successive 
guesstimates for phase function ∅ by intensifying it into a Taylor series 
(TS). In individual, the presentation of the phase function is given below:  

∅ 𝑥, 𝑘, 𝑡 ≈ 𝑘 . 𝑥 +  ∅! 𝑥, 𝑘 𝑡 +  ∅! 𝑥, 𝑘
𝑡!

2
+⋯      .               (6) 

 
Respectively, 
 

∇∅ ≈ 𝑘 +
∇∅!. 𝑘
𝑘

𝑡 + 𝑂 𝑡!        .                                                 (7) 

 
Replacing eqs. (6) and (7) in eq. (5) and unraveling the terms with dissimilar 
powers of t, we found: 
 

∅! 𝑥, 𝑘 = 𝑉 𝑥, 𝑘 𝑘       ,                                                                 (8) 
 
                   ∅! 𝑥, 𝑘 = 𝑉 𝑥, 𝑘 ∇ 𝑉. 𝑘        .                                                        (9) 
 
 In the case of gradient velocity ∇V and the time step ∇t is small, then 
the Taylor expansion of eq. (7) will be condensed to double terms, in the 
sense, decreases eq. (3) to an aware appearance (Etgen and Brandsberg-
Dahl, 2009). 
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              𝑃 𝑥, 𝑡 +  ∆𝑡 ≈ 𝑃 𝑘, 𝑡 𝑒! !"!! !,! ! ∆! 𝑑𝑘  ,                             (10) 
or 

𝑃 𝑥, 𝑡 + ∆𝑡 + 𝑃 𝑥, 𝑡 − ∆𝑡 ≈ 2 𝑃 𝑘, 𝑡 𝑒!"#    cos 𝑉 𝑘, 𝑡 𝑘 ∆𝑡 𝑑k  (11) 

 
 In the case of the velocity model (which is rough and the ∇𝑉 gradient 
does not exist), eq. (5) can be solved numerically or by applying 
approximations instead of the Taylor expansion (6). 
 
 
Low-rank Approximation 
 
 Actually, the low-rank estimation is a reducing function problem in 
which the total function measures the best fit between some given matrix 
data and approximating matrix data. All these processes lead to the 
constraint that the approximating matrix has a reduced rank up to the 
optimum rank. The main idea behind low-rank decomposition is to 
decompose the wave extrapolation matrix, thus: 
 
               𝑊 𝑥, 𝑘 =  𝑒! ∅ !,!,∆! !!"          .                                                       (12) 
 
Here 𝑊 𝑥, 𝑘  is the Acoustic wave field for a fixed ∆𝑡, a separated 
representation could be:  
 

𝑊 𝑥, 𝑘 ≈ 𝑊 𝑥, 𝑘! 𝑎!"𝑊 𝑥! , 𝑘        .             
!

!!!

!

!!!

             (13) 

 
Representation (13) fasting the computation as the P (𝑥, 𝑡,∆𝑡) are defined in 
eq. (14) which simply optimize the calculation up to the optimum rank, 
since: 
 

𝑃 𝑥, 𝑡 + ∆𝑡 =  𝑒!"#𝑊 𝑥, 𝑘 𝑃 𝑘, 𝑡 𝑑𝑘

≈  𝑊 𝑥, 𝑘!

!

!!!

 𝑎!"

!

!!!

𝑒!"#𝑊 𝑥! , 𝑘 𝑃 𝑘, 𝑡 𝑑𝑘         .          (14) 

 
𝑃 𝑥, 𝑡 + ∆𝑡  is wave field of  the P-wave at a distance 𝑥 and time 𝑡 and 𝑃  is 
the 3D Fourier transform of P. The expression of eq. (14) is effectually 
equivalent to put on N inverse to the Fast Fourier Transform. Numerically, a 
distinguishable low-rank approximation amounts to choosing a set of 
representative a wavenumber (M) and spatial locations (N) (Bashir et al., 
2016a). 
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Diffraction vs. Reflection 
 
 Diffraction is a fundamental concept in light or wave propagation, and 
it constitutes the heart of an imaging process. As Fig. 1 shows the light 
source which is passing through a slit, supposedly the other side should be 
light and dark portion but because of slit’s edges (known as Huygen’s 
sources) produce a diffracted light which is slightly darker in nature. This 
same principle executes in the seismic wave propagation shown in Fig. 2. 
The source and receiver’s geometry on the surface for recording a 
discontinuous layer in the subsurface. The “Off reflector” means the 
acquisition geometry is above no reflection and “On reflector” means the 
source and receiver are above the reflector. The recorded data shows 
seismic reflection on the continues and the edges of the horizon a diffraction 
hyperbola is produced. The + and – signs show the polarity of the amplitude 
recorded either side of the hyperbola (Berryhill, 1977; Hilterman, 1970, 
1975). More elaboration of these seismic diffraction events is recognized by 
opposite in polarity on either side of the hyperbola as shown in Fig. 3(a). 
Once these negative and positive amplitudes cancel out, the only one 
dominant trace is left behind which represents the reflection  [Fig. 3(b)]. 
 
 

 
 

Fig. 1. Diffraction theory in a light wave, passing through a Slit causing a diffracted 
light. Source of diffraction is the edges of Slit as Huygen’s sources. 
 
 
Better Amplitude & Phase Preservation 
 
 Reflection seismology does not explain the seismic amplitude and 
phase but diffraction seismology explains these seismic parameters 
accurately. There is an 1800 change in phase from positive to negative on 
either side of the hyperbola as shown in Fig. 3. Based on diffraction 
seismology each reflection point is produced after the cancelation of 
diffraction energy on both sides of the flank which preserve proper 
amplitude of the seismic wave. 
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Fig. 2. Acquisition geometry for a discontinuous layer. Diffraction hyperbola is produced 
on the edges of the layer. 

 
Fig. 3. (a) Illustration of diffraction hyperbola in 2D common-offset section in which 
positive and negative phase change of 1800, and (b) After summation of the diffraction 
the concentrated energy in the apex only one trace left behind to produce a reflection. 
 
 
Seismic Wave Modelling  
 
 Wave modelling is conducted through different approaches: Finite 
Difference (Fig. 4a) and low-rank approximation (Fig. 4b). The velocity of 
the model in this example is a smooth and the source with input ricker 
wavelet, which is placed at the center of the model. FDM results show the 
dispersion artifacts whereas, the outcome of the low-rank approximation 
corresponding to that of the Fourier Finite Difference (FFD) method, is 
dispersion-free, as shown in Fig. 4b with a better reflection, easily 
interpretation and no noise artifacts. Further, the amplitude spectrum of the 
two methods are plotted in Fig. 5, that shows a clear identification of signal 
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using low-rank can be achieved in the other hand finite difference modeling 
algorithm provide data with noise. 
 

 
 
Fig. 4. (a) Captured Snap of a wavefield propagation in the velocity model computed 
using the FD modelling, and (b) The LR wavefield in the same velocity model. 
 
 

 
 

 
Fig. 5. Amplitude display of the propagated wavefield in 2-layer velocity model using 
(a) Finite Difference method, and (b) Low-rank modeling method. 
  
 
 The workflow used in this research study is shown in Fig. 6. It starts 
with the velocity model, which is converted into a reflectivity series for 
modelling. The reflectivity is achieved by the acoustic impedance contrast 
of velocity and density. After that zero-offset data is acquired by FD and LR 
modelling algorithm, full-wave migration, and diffraction migration is 
applied to the data. The payback of the diffraction migration is to identify 
important small-scale events, which could not be counted in the normal 
reflection imaging. 
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Fig. 6. Conventional and proposed workflow diagram for high-resolution imaging. 
 
 
RESULTS and DISCUSSIONS  
 
Examples of a Salt deposit model from GOM: The Sigsbee 
 
 Most of the subsurface information obtained from super-resolution 
seismic images are the result of diffraction consideration in imaging. The 
concern of these diffractions is necessary during advanced processing 
because, in conventional processing, diffraction data is removed either 
intentionally or implicitly. Separation of these diffractions before filtering is 
necessary which is perfomed by plane wave destruction filter to have an 
accurate amplitude for seismic migration. For verification purpose proposed 
modelling and diffraction imaging method, we performed modelling the 
wave propagation in the Sigsbee 2A Model in order to learn wave 
propagation in a complex velocity field which contains a sedimentary 
sequence fragmented up by a number of normal and thrust faults (Fig. 7). 
Moreover, there is a complex salt structure is available in the model that 
results in illumination problems using the current processing and imaging 
approach. The model has the features of an absorbing free-surface condition 
and a weaker than normal water bottom reflection as shown in Fig. 7 (Irons, 
2007). This property of the model does not produce the outcome of free 
surface multiples and less than normal internal multiples. Sigsbee 2A and 
Sigsbee 2B models are similar, structurally, the only difference being the 
velocity contrast of the water bottom level.  
 
 The same configuration of the survey was designed to model the 
seismic data for LR and FD, as shown in Figs. 8 and 9 for the accurate 
evaluation. Dispersion-free seismic was produced using the low-rank 
approximation for the wave propagation shown in Figs. 8a and 9a. A 
comparison of the results was achieved by conventional Finite Difference 
Modelling as shown in Figs. 8b and 9b. The effect of dispersion in the 
recorded seismic data is minor, as shown by the difference in the simple 
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velocity model in Fig. 4 as well. This method can be implemented in both 
the frequency-wavenumber and frequency-space domains. As shown in 
Figs. 10b and 11b, the use of conventional modelling data for seismic 
modelling and imaging was unable to illuminate the edges of the subsurface 
salt body deposit. These problems are very common in current seismic data 
processing and imaging in the oil and gas industry, but they offer 
opportunities for researchers to develop new technologies and methods for 
solving related issues. In this paper, we have used D-Data imaging to solve 
salt deposit issues. 

 
 
Fig. 7. Sigsbee stratigraphic velocity model with a salt dome of higher velocity between 
the layered strata. The red and green rectangle shows the extracted model for analysis. 
 
 
 Low-rank wave modelling provides the better preservation of seismic 
reflection and diffraction at the edges of the salt body. A small part of the 
seismic section is taken for detailed analysis of wave behavior in a complex 
structure like Sigsbee and comparison shows with Finite difference 
modelling (Fig. 8). Fig. 8(a) show with a highlighted red arrow has 
continuities of hyperbolic behavior on the other hand, in Fig. 8(b) the 
hyperbola is not sharp, and diffracted energy has a loss with depth. 
 
 One of the most common problems in exploration seismic is a vertical 
resolution for thin-bed identification also related to reflection seismology. 
Which is the ability to distinguish between two different features with 
minimum acoustic impedance difference. Improvement in seismic 
modelling is being able to recover these features as shown in Fig. 9. Fig. 
9(a) shows a better delineation of two separate events highlighted with the 
red arrow and also led to a sharp reflection shown in the red circle. This 
feature was not recorded in the FD wave modelling as shown in Fig. 9(b), a 
two-layer bed is not recovered properly. Which is a cause of low vertical 
seismic resolution. 
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Fig. 8. (a) A cropped seismic section from Sigsbee data using Advance wave modelling, 
which shows an enhancement of diffraction and preserve the amplitude and phase of the 
seismic wave, and (b) cropped section using conventional modelling. 
 
 

 
 
Fig. 9. Improvement in seismic reflection data acquisition (a) reflection data using 
Advance wave modelling and b) Reflection data using conventional wave modelling. 
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 Fig. 10(a) is the migrated seismic section of the data acquired by LR 
wave modelling that shows a better reflection data imaging and positioning 
of layers are accurate as highlighted by the red arrow. Fig. 10(b) is the 
imaged section using FD wave modelling that has not to recover the horizon 
properly and shows more than one layer. These poor imaging results would 
be difficult to interpret as well as the accurate position of the subsurface 
structure. 
 

 
 
Fig. 10. Final migrated seismic data a) Seismic image with advance wave modelling, 
show better reflection amplitude and explain the phase correction, and (b) Seismic image 
using convention modelling, reflection amplitude is dispersed at the reflection point and 
not recover properly. 
 
 
 Although our main aim is to get a higher resolution image in all over 
the research, getting the sharp edges of a structure is highly important to 
define the boundary of the target reservoir. Fig. 11(a) shows the imaged 
section of the salt body which has recovered all the required objectives, but 
the FD modelling data has a lack to image the boundaries and edges of the 
structure shown in Fig. 11(b).  
 
 Fig. 12 shows the comparison of the full wave migration of FD (Fig. 
12b) and LR wave modelling results (Fig. 12a), which shows an 
improvement in image quality overall. As it shows the edges of the salt 
body being illuminated and the reflector below the salt body at a depth of 9 
km is imaged by the LR wave modelling data, on the other hand FD wave 
modelling data is unable to image the reflector. 
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Fig. 11. Final seismic imaging of Salt body structure with edges, (a) seismic image of the 
salt body using advance wave modelling, shows the significant improvement in imaging 
(b) conventional modelling, loss of reflection specifically from the edges of the salt 
body. 
 
 
 The method used for separating the reflection and diffraction data is an 
improved version of the Claerbout method, which has been used before 
(Bashir et al., 2017). Fomel contributed to improving the plane-wave 
destruction filtering technique in 2002 and proved its use on simulated data 
as well as on real field data.  
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Fig. 12. (a) The outcome of full wave imaging using the proposed low-rank 
approximation method, and (b) Conventional modelling using the finite difference 
method and conventional imaging of the data, edges of the salt body are not resolved. 
 
 
  Fig. 13(a) shows the dip component of the model data and recognizes 
that an exact fortitude of the dipping waves is important because this is an 
important constraint for PWD filtering, separating reflection and diffraction 
from full-wave data. In this work, we have separated the seismic diffractions 
from the reflections using PED filtering (as shown in Fig. 13b) and anxious 
to image separated diffractions with a accurate velocity model (Fig. 14a); 
the same velocity model is used for zero-offset reflection migration. Fig. 
14(b) is the illustration of frequency spectrums of the migrated data, full 
wave migration with Split Step Fourier migration is shown in green and 
diffraction imaging is shown in purple. The frequency spectrum reveals the 
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preservation of lower frequencies which reflects the deeper events in the 
data and a higher frequency which reflects the small-scale events and sharp 
edges of the salt body is improved. Which is a cause of the higher resolution 
imaging using diffraction data and this long period low frequencies signals 
are sometime risky for numerous zones of seismic exploration.  
 

                  

 
 

 
 

Fig. 13. (a) The calculated dip of the seismic data, using plane wave destruction,  
(b) separated diffraction after implementation of the plane wave destruction filtering.   
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Fig. 14. (a) Diffraction imaging; small-scale events inside the salt bodies are illuminated, 
and (b) frequency spectrum of full-wave migrated data (green) and diffraction migration 
(purple). An enhancement of the lower frequency from 0-10 Hz was recovered and high-
resolution imaging was recovered for higher frequency data (50 - 60 Hz). 

 
Examples of a complex faulted model: The Marmousi 
 
 Secondly, research was extended to a well-known geological model, the 
Marmousi, which was developed by the Institut Français du Pétrole (IFP) in 
1988 (Versteeg, 1994). This model contains 158 horizontally layered 
horizons and a succession of faulting, that brands it multifaceted, 
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particularly in the middle. The model is 9.20 kilometres in width and 3 km 
in depth. Fig. 15a illustrates the Marmousi Model, wherein the challenge is 
to image the structural reservoir which lies below an anticline. A Ricker 
wavelet is used to acquire the data using 40 Hz of dominant frequency. The 
sptial grid size (∆x) was 4 meter and ∆z was also 4 meters.  Fig. 15b 
displays the impulse response of the wave propagation at 5 km, to confirm 
that the propagation effect is real and has a dispersion-free recording 
system. After carefully defining the acquisition geometry parameters, the 
zero-offset data set shown in Fig. 15c was achieved. 
 
 As our objective was to get a high-resolution image of the 158 layers 
and associated faulting which can be easily interpreted in the model, this is 
very challenging for a seismic data processing and imaging geophysicist. 
Conventional methods are used in (Bashir et al., 2016b) but there are still 
drawbacks in the final image. A fundamental concept was used innovatively 
(Fomel, 2002; Fomel et al., 2007a, 2007b; Klokov and Fomel, 2013; 
Behura, 2009) to produce the high-resolution imaging used in this paper.  
 
 Fig. 16a shows the measured dip field of the data using plane-wave 
destruction filtering for separating diffraction, whilst Fig. 16b estimates the 
flatness, which is the inverse of the plane-wave destruction filtering for 
separating reflection data. 
 
 The workflow shown in Fig. 6 is an innovative way for high-resolution 
seismic diffraction imaging. Testing of the workflow is performed on the 
model data by separating reflection and diffraction. Fig. 17a illustrates the 
separated diffraction using plane wave destruction filter; diffraction 
hyperbola can be seen in the red circle, which indicates the 3 major faults as 
well as a series of diffraction curves on an inclined reflector. Fig. 17b shows 
the residual reflections, after separating the diffractions from the full wave 
data. 
  
 In conventional migration methods (without diffraction separation and 
migration), a processing sequence is applied to the raw data without 
considering diffraction as explained in the workflow. Fig. 18a shows the 
conventional migrated seismic section which has a low resolution in the 
shallow parts and the amplitude is not recovered on the targeted area 
(highlighted with a red circle). 
  
 Fig. 18b is the imaged section using the proposed workflow, which 
contains both reflection migration and diffraction migration separately 
followed by merging data after migration, shows improvements in 
resolution, especially for fault amplitude and discontinuities, which were not 
resolved. For the quantitative accuracy of the results, a frequency spectrum 
of conventional imaging (red) and diffraction imaging (green) are shown in 
Fig. 18c. Enhancement of the amplitude recovery from 0 to 10 Hz, improves 
imaging of the deeper parts as low frequencies travel deeper than high 
frequencies. Furthermore, low-frequency data produce a higher diffraction 
response. The amplitude recovery of higher frequency data (between 50 and 
60 Hz) is improved for high-resolution imaging in the shallow areas. 
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Fig. 15. (a) Marmousi Velocity Model, (b) impulse response of the wave propagation at a 
5-kilometer shot point, and (c) zero-offset seismic data. 
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Fig. 16. (a) Estimated slope for the diffraction data separation, and (b) is flatness of the 
data using inverse plane-wave destruction for reflection data separation. 
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Fig. 17. Application of separation on the seismic response, (a) diffraction only data, and 
(b) specular reflection data. 
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Fig. 18.  Appearance of migration results, (a) migrated data using conventional wave 
propagation modelling, and (b) low rank modelling migration using diffraction data 
migration, and (c) display data in a frequency spectrum for comparison. 
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CONCLUSIONS  
 
 A low-rank modelling method with a new workflow for imaging is 
presented to add value to modelling and imaging. Implementation of the 
proposed workflow has proven for complex structure as Salt deposit (SEG 
Sigsbee from GOM) and a fractured model data set (EAGE Marmousi). We 
have presented two different algorithms for the sake of improvements in 
seismic imaging through wave modelling and diffraction imaging. 
Comparison of the Finite Difference Method and the low-rank 
approximation is achieved on the model, which shows that low-rank 
decomposition for wave approximation is much better and generates data 
without any dispersion artifacts; the data is best for full-wave imaging with 
the extended split-step technique. 
 
  The second aim of this paper is to incorporate diffractions into seismic 
imaging, as in the past these diffractions were considered as noise and were 
suppressed during processing. our research focus remains to preserves 
diffraction and separate reflection, then migrates these data separately and 
combines. We found that a combination of these two data sets (full-wave 
and diffraction imaging) with an accurate velocity model enabled us to 
produce a high-resolution image. Furthermore, an enhancement of low 
frequencies data (0 to 10 Hz) for deeper imaging and higher frequencies (50 
to 60 Hz) for vertical resolution in the data is achieved. This diffracted 
image can greatly assist an interpreter when trying to identify structural 
features, such as the boundaries of salt bodies and reservoirs below the 
complex, faulted structures on imaged sections. 
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