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ABSTRACT 

 
Yao, Y., Wang, Y., Xue, Q.F. and Chang, X., 2021. Simulation of microseismic wave 
propagation using high-order finite difference velocity implementation on both source 
and media. Journal of Seismic Exploration, 30: 45-64. 

 
The characteristics of micro-seismic wave propagation of different source types 

have raised the interest of seismologists in the past few decades. When using staggered 
grid finite difference method as simulator, we need to establish a computational staggered 
grid which has N-th order accuracy and then do source implementation on this grid. 
There are two kinds of source implementations. One is the stress implementation, which 
applies the body force onto stress grid directly, and the other is the velocity 
implementation, which needs to convert body force into velocity component first and 
then applies the converted velocity component onto velocity grid. The existing velocity 
implementations mostly do the force-to-velocity conversion based on second-order 
accuracy, and this kind of implementation is fine when the wave propagation simulator 
also has second-order accuracy. However, with the increasing accuracy of finite 
difference simulator, there will be increasing errors due to the calculation order 
difference between wave propagation simulator and force-to-velocity conversion. We 
propose a N-th order staggered grid finite difference simulation formula which also has 
N-th order accuracy of force-to-velocity conversion. We make comparisons with 
analytical solutions in 3D homogeneous medium, and the results show the effectiveness 
and high accuracy of proposed approach. 

 
KEY WORDS: microseismic propagation simulation, moment tensor, 
       high-order velocity implementation, staggered grid finite difference. 
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INTRODUCTION 
 
Micro-seismic is a seismic wave caused by weak rock fracture. It 

generally occurs on fault plane of fracture and can be used to study the 
underground stress condition, as well as the processes of rock rupture 
(Staněk et al., 2014). Besides, micro-seismic can also depict the change of 
seismic property in space-time between the source and receiving points. 
Through the analysis of micro-seismic characteristics, we can study the 
fracture mechanism of underground cracks and evaluate the effect of 
hydraulic fracturing (Baig and Urbanic, 2010). 

  
Burridge and Knopoff (1964) proposed the moment tensor theory, 

which is helpful to study micro-seismic mechanisms. Any types of moment 
tensors can be decomposed into spherical tensor and deviatoric tensor. The 
latter part can be further broken down into a variety of forms. Among them, 
the moment tensor is more inclined to decompose into three components: 
isotropic (ISO), double-couple (DC), and compensated linear vector dipoles 
(CLVD). 

 
Generally speaking, an analytical solution is the most accurate method, 

which can obtain the displacement record by convolution of Green’s 
function with source time function. Some methods are proposed to calculate 
the Green’s function, including DWN (Bounchon，2003). Even though these 
methods have a higher computing efficiency, they can hardly be applied to 
complex medium. The convenience to insert source and the ability to solve 
complex problems make the numerical techniques stand out. 

 
Varieties of numerical methods that have been developed sufficiently 

mature, are of importance to seismology for providing abundant information, 
such as the simulation of wave propagation. The most widely used method 
in seismic applications is the Finite Difference (FD) method with staggered 
grids (Madariaga, 1976; Virieux, 1984, 1986; Levander, 1988). One key 
issue of microseismic wave propagation simulation is how to implement the 
seismic source into the staggered grid scheme. 

  
Owing to the velocity-stress equations, the source can be added to the 

stress grid (Coutant et al., 1995) or velocity grid (Yomogida and Etgen, 
1993). Graves (1996) proposed the detailed formulas to describe the 
incorporation of moment tensor sources, and we call it a conventional 
implementation (CI) method. From these formulas, Li et al. (2015) applied 
the equations into three basic kinds of moment tensor, obtaining the 
simulation of wave propagation in the different medium. 

 
In general, to improve the accuracy and minimize the discrepancy, 

higher order scheme is usually used in simulation. Nevertheless, when it 
comes to velocity implementation, only the second order spatial form will 
not introduce discrepancy problem. Therefore, we propose an improved 
formulation with velocity implementation, which also increases the 
accuracy. 
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 In this paper, the overview of moment tensor to explain source 
mechanism will be described firstly. Then the conventional implementation 
and proposed new implementation with high order spatial form through 
theoretical analysis are illustrated. Furthermore, we apply the new 
formulations into the 3D homogeneous elastic medium, obtaining a series of 
snapshots and records. A comparison with the analytical solution will 
demonstrate the superiority of the improved method.  

 
 
A BRIEF OVERVIEW OF MOMENT TENSOR 

 
Moment tensor provides a general theoretical description of seismic 

sources based on generalized force couple (Fig. 1). 
 

 M =
𝑀!! 𝑀!" 𝑀!"
𝑀!" 𝑀!! 𝑀!"
𝑀!" 𝑀!" 𝑀!!

   .                  (1) 

 

 

Fig. 1. The nine force couples used for microseismic source description. 

 

𝑀!!	 𝑀!" 𝑀!" 

𝑀!" 𝑀!! 𝑀!" 

𝑀!" 𝑀!" 𝑀!! 

Z 

X 
Y 

X X 

X 

X 

X 

X 

X 

X 

Y Y 

Y Y Y 

Y Y Y 

Z Z 

Z Z Z 

Z Z Z 



	

	
	

48 

Due to the conservation of angular and linear momentum, the seismic 
moment tensor is symmetrical, meaning that only six of the nine components 
are independent. The review paper by Jost and Herrmann (1998) has given 
the overview to the decomposition of moment tensors. There are two 
possible ways to decompose a full moment tensor, either into an isotropic 
and deviatoric tensor or into a general mixed-mode shear crack and a 
residual isotropic component. The deviatoric part can be further decomposed 
into DC or CLVD primary sources. This paper will adopt the first 
decomposition mode, as shown in the formulation (2), which can represent 
the ISO, DC, and CLVD by mathematical form, in sequence. The pure ISO 
source is a volumetric source and its moment tensor consist of equal-value 
diagonal elements and zeros for the off-diagonal elements; the DC source is 
caused by shear faulting; the CLVD source describes that one dipole can be 
compensated by two other dipoles. Note that the DC and CLVD sources 
both have no volumetric change because of zero traces of moment tensor. 

 

𝑀!"# =
1 0 0
0 1 0
0 0 1

    𝑀!" =
0 0 1
0 0 0
1 0 0

  𝑀!"#$ =
−1 0 0
0 −1 0
0 0 2

   (2) 

 
Additionally, it is necessary to understand the relationship between the 

moment tensor and body forces. According to the equations of Aki and 
Richards (2002), the equivalent forces yield the following equation. 

 

 𝑀!" = 𝑓!𝜂!𝑑𝑣
 
!    .                  (3) 

Here 𝑓!  means equivalent force, and 𝜂!  is the projection 
displacement. 

 
That is to say, for a small uniform volume, the body force in average 

can be deduced as follows: 

 𝑓! =
!!"
!∙!"

   .                         (4) 

Here V is the grid volume, 𝑑! is the spatial step. 

 
Conventional implementation schemes on velocity grid 

 
As previously mentioned, plenty of papers illustrate that body forces 

can be added to the velocity grid. The elastodynamic equations in the 
homogeneous medium can be described as 

 

 𝜌 !!!
!"
= !!!!

!"
+ !!!"

!"
+ !!!"

!"
+ 𝑓!   , (5) 
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 𝜌 !!!
!"
= !!!"

!"
+ !!!!

!"
+ !!!"

!"
+ 𝑓!   ,  (6) 

 𝜌 !!!
!"
= !!!"

!"
+ !!!"

!"
+ !!!!

!"
+ 𝑓!  . (7) 

 
Here, (𝑉! ,𝑉! ,𝑉!) represent the velocity components along x, y and z 

direction, respectively. 𝜏!! , 𝜏!! , 𝜏!! , 𝜏!" , 𝜏!" , 𝜏!"  are stress-tensor 
components, ρ is density, and (𝑓! , 𝑓! , 𝑓!) represent the equivalent forces.  

 
The elastodynamic equations can be solved by the staggered-grid FD 

method. Fig. 2 shows the discrete layout for staggered-grid used in the 
forward modeling. The spatial and temporal derivatives of the wavefield 
components are obtained by: 

 

𝑔! =
!"
!"
= !

∆!
𝑐![𝑓 𝑥 + 𝑛 − !

!
∆𝑥 − 𝑓 𝑥 − 𝑛 − !

!
∆𝑥 ]!

!!!  , (8) 
 

where 𝑐! is differences coefficients and 2N represents the order of FD 
scheme. Supposed the source locates at the grid point (𝑖, 𝑗, 𝑘), the discrete 
form of the elastodynamic eqs. (5-7) are given by: 
 
 

 
Fig. 2. The computing grid for the finite difference modeling scheme. 
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𝑉!
!!!! 𝑖 + !

!
, 𝑗, 𝑘 = 𝑉!

!!!! 𝑖 + !
!
, 𝑗, 𝑘 + !"

!
(𝑔 𝜏!! , 𝜏!" , 𝜏!" + 𝑓!) (9) 

𝑉!
!!!! 𝑖, 𝑗 + !

!
, 𝑘 = 𝑉!

!!!! 𝑖, 𝑗 + !
!
, 𝑘 + !"

!
(𝑔 𝜏!" , 𝜏!! , 𝜏!" + 𝑓!) (10) 

𝑉!
!!!! 𝑖, 𝑗, 𝑘 + !

!
= 𝑉!

!!!! 𝑖, 𝑗, 𝑘 + !
!
+ !"

!
(𝑔 𝜏!" , 𝜏!" , 𝜏!! + 𝑓!) (11) 

 
where 𝑔 𝜏!! , 𝜏!" , 𝜏!"  is a function of the spatial derivatives of 
𝜏!! , 𝜏!" , 𝜏!" . dt means the time interval. Shifting the equivalent forces 

outside of the bracket, the above equations formulate 

𝑉!
!!!! 𝑖 + !

!
, 𝑗, 𝑘 = 𝑉!

!!!! 𝑖 + !
!
, 𝑗, 𝑘 + !"

!
𝑔 𝜏!! , 𝜏!" , 𝜏!" + !"

!
𝑓!  (12) 

𝑉!
!!!! 𝑖, 𝑗 + !

!
, 𝑘 = 𝑉!

!!!! 𝑖, 𝑗 + !
!
, 𝑘 + !"

!
𝑔 𝜏!" , 𝜏!! , 𝜏!" + !"

!
𝑓! (13) 

𝑉!
!!!! 𝑖, 𝑗, 𝑘 + !

!
= 𝑉!

!!!! 𝑖, 𝑗, 𝑘 + !
!
+ !"

!
𝑔 𝜏!" , 𝜏!" , 𝜏!! + !"

!
𝑓! .(14) 

Therefore, the variations of velocity components due to the body force are: 

 ∆𝑉! 𝑖 +
!
!
, 𝑗, 𝑘 = !"

!
𝑓!  (15) 

 ∆𝑉! 𝑖, 𝑗 + !
!
, 𝑘 = !"

!
𝑓!  (16) 

                ∆𝑉! 𝑖, 𝑗, 𝑘 +
!
!
= !"

!
𝑓!   .               (17) 

 
And these eqs. (15-17) are adopted as the final velocity implementation 

form. Given that our research focuses on the microseismic, the source form 
should be moment tensor. Each of element of moment tensor means a couple 
of forces, armed in the coordinate direction. In other words, two forces with 
the same value but the opposite direction should be assigned at two adjacent 
grid points. Take the 𝑀!!  as an example, the velocity implementation 
forms are described as: 

                          ∆𝑉! 𝑖 + !
!
, 𝑗, 𝑘 = !"

!
𝑓!    (18) 

    ∆𝑉𝑥 𝑖− 1
2 , 𝑗,𝑘 = − 𝑑𝑡

𝜌 𝑓𝑥
  .               (19) 

 
We can also derive the implementation of an off-diagonal part 

similarly.  
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For example, the application of 𝑀!" is given by eqs. (20, 21) and 𝑀!" 
by eqs. (22, 23), respectively. 

 ∆𝑉! 𝑖 + !
!
, 𝑗, 𝑘 = − !"

!
𝑓!    ,      (20) 

 ∆𝑉! 𝑖 + !
!
, 𝑗, 𝑘 + 1 = !"

!
𝑓!  , (21) 

 ∆𝑉! 𝑖, 𝑗, 𝑘 + !
!
= − !"

!
𝑓!      ,     (22) 

 ∆𝑉! 𝑖 + 1, 𝑗, 𝑘 + !
!
= !"

!
𝑓!  . (23) 

 
The other components can be deduced in a similar way. Fig. 3 shows 

how the velocity is added at grid point around the adjacent points with three 
kinds of the source by the conventional implementation methods. 

 
Fig. 3. The sketch map of conventional implementation on velocity grid. (a) ISO sources 
as an explosive source. (b) DC source of share force on the x-z plane. (c) CLVD sources 
with no volumetric change.    
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Higher order implementation schemes on velocity grid 
 
As mentioned in the last part, current implementation can be finished as 

long as we apply the velocity components into the adjacent points of the 
source and nothing should be done for other positions. When discretize the 
elastodynamic equations in (9-11), the function g can take the 2N spatial 
scheme to improve the numerical accuracy. 

  
 It seems that equivalent forces have no relations with the calculations 

of function g. But it should be noted that the velocity components at this 
time will be used to calculate the stress components at the next time, which 
illustrate that the body force mixes into the stress components. Besides, 
stress implementation method, which adds the force to the stress components, 
has been validated by many scholars. It also reflects the body force cannot 
be ignored. So, when taking high order spatial forms, we need to convert 
body force into velocity component. 

 
Similarly, we assume the source grid point is (𝑖, 𝑗, 𝑘), and take the 

fourth spatial order scheme for easily understood. Referring to the stress 
implementation method, we make the body force f integrate into stress.  

 𝜏!!! 𝑖, 𝑗, 𝑘 = 𝜏!! 𝑖, 𝑗, 𝑘 − 𝑓! ∙ ∆𝑥 (24) 

Then the change of velocity components can be calculated by: 

 ∆𝑉! 𝑖 +
!
!
, 𝑗, 𝑘 = !"

!
(𝑔!!!

! + 𝑔!!" + 𝑔!!")   . (25) 

The 𝑔!!!
!  comprises of force f, and we make the following notation. 

           𝑔! 
! = !

∆!
[𝑓 𝑥 + 𝑛 − !

!
∆𝑥 − 𝑓 𝑥 − 𝑛 − !

!
∆𝑥 ]   . (26) 

Therefore, under the fourth order spatial form condition  

 𝑔!!!
! = 𝑐!𝑔!!!

!" + 𝑐!𝑔!!!
!"    . (27) 

And we can get 

           𝑔!!!
!" 𝑖 + !

!
, 𝑗, 𝑘 = !

∆!
[𝜏!! 𝑖 + 1, 𝑗, 𝑘 − 𝜏!!! 𝑖, 𝑗, 𝑘 ]        (28) 

           𝑔!!!
!" 𝑖 + !

!
, 𝑗, 𝑘 = !

∆!
[𝜏!! 𝑖 + 3, 𝑗, 𝑘 − 𝜏!!! 𝑖, 𝑗, 𝑘 ]   .    (29) 

Place eq. (24) into (28-29), and we can obtain the following equation 

 𝑔!!!
!" 𝑖 + !

!
, 𝑗, 𝑘 = 𝑔!!!

! 𝑖 + !
!
, 𝑗, 𝑘 + 𝑓! (30) 

        𝑔!!!
!" 𝑖 + !

!
, 𝑗, 𝑘 = 𝑔!!!

! 𝑖 + !
!
, 𝑗, 𝑘 + 𝑓!   . (31) 
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Place eq. (30) back to eqs. (27) and (25), Thus  

   ∆𝑉! 𝑖 +
!
!
, 𝑗, 𝑘 = !"

!
𝑔!!! + 𝑔!!" + 𝑔!!" +  !"

!
∙ 𝑐! ∙ 𝑓! . (32) 

Similarly, 

 ∆𝑉! 𝑖 +
!
!
, 𝑗, 𝑘 = !"

!
𝑔!!! + 𝑔!!" + 𝑔!!" +  !"

!
∙ 𝑐! ∙ 𝑓! (33) 

 ∆𝑉! 𝑖 −
!
!
, 𝑗, 𝑘 = !"

!
𝑔!!! + 𝑔!!" + 𝑔!!" −  !"

!
∙ 𝑐! ∙ 𝑓!      (34) 

    ∆𝑉! 𝑖 −
!
!
, 𝑗, 𝑘 = !"

!
𝑔!!! + 𝑔!!" + 𝑔!!" −  !"

!
∙ 𝑐! ∙ 𝑓!  .    (35) 

 
In eqs. (28) and (29), we can find that the calculation of the velocity at 

the point (i+1/2, j,k) and point (i+3/2, j,k) both rely on the body force f. That 
is the reason why we should make these two velocity grid points get 
accelerated. It is noted that eq. (24) is for the convenience of our new 
method description, but not the actual stress implementation for body force f. 
If the stress implementation wants to be equivalent to the velocity 
implementation, then the body force f should be changed to the derivative 
[eq. (36)] or the stress components does not need to be accumulated [eq. 
(37)]. 

 𝜏!!! 𝑖, 𝑗, 𝑘 = 𝜏!! 𝑖, 𝑗, 𝑘 − 𝑓! ∙ ∆𝑥 (36) 
 
 𝜏!!! 𝑖, 𝑗, 𝑘 = −𝑓! ∙ ∆𝑥   . (37) 
 
Fig. 4(a) shows the sketch map of velocity implementation in the 

x-direction by conventional velocity implementation method. 

 
Fig. 4. The sketch map of velocity implementation in the X direction. (a) second order 
spatial scheme and it indicates only two adjacent points will get accelerated, which is 
used in the conventional method, regardless of the spatial order scheme; (b) taking fourth 
order spatial scheme as an example, the higher implementation method requires the 
equivalent grid points should be get accelerated corresponding to the spatial order scheme, 
namely the 4-th order force-to-velocity conversion; (c) tenth order spatial sceme. The 
parameters (𝑐!, 𝑐!, 𝑐!, 𝑐!, 𝑐!) are the differences coefficients. 
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𝑉! 𝜏!! 
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 In contrast, Fig. 4(b) explains how to accelerate the velocity components 
by the new approach under the fourth-order spatial scheme. We can 
conclude that 4-th order staggered grid finite difference simulation should 
have 4-th order accuracy of force-to-velocity conversion. In our example, 
the fourth order spatial form will accelerate four velocity points. Likewise, 
ten velocity grid components should be got accelerated corresponding with 
tenth order spatial scheme [shown in Fig. 4(c)]. More velocity 
implementation equations of three basic types of sources with 2N order 
spatial scheme will be given in a similar way. Here, we present the 
expressions for the distribution of body forces caused by a moment tensor 
source under the high order spatial scheme. They can be derived from a 
similar manner as the x dimensional component. And combining with the 
relation (4), these equations are shown in (38) - (40). 

 

ISO 

 

1/2 , , 1

1/2 , ,

, 1/2 , 1

, 1/2 ,

, , 1/2

( 0,...., 1)

( ,...., 1)

( 0,...., 1)

( ,...., 1)

i l j k l

i l j k l

i j l k l

i j l k l

i j k L

Mxx dtVx c l N
dx V
Mxx dtVx c l N
dx V

Myy dtVy c l N
dy V
Myy dtVy c l N
dy V

Vz c

ρ

ρ

ρ

ρ

+ + +

+ + −

+ + +

+ + −

+ +

⋅
Δ = ⋅ = −

⋅ ⋅

⋅
Δ = − ⋅ = − −

⋅ ⋅

⋅
Δ = ⋅ = −

⋅ ⋅

⋅
Δ = − ⋅ = − −

⋅ ⋅

Δ = 1

, , 1/2

( 0,...., 1)

( ,...., 1)

l

i j k l l

Mzz dt l N
dz V

Mzz dtVz c l N
dz V

ρ

ρ

+

+ + −

⋅
⋅ = −

⋅ ⋅

⋅
Δ = − ⋅ = − −

⋅ ⋅  

(38) 

DC 

 

1/2, , +1+ 1

1/2, , 1

1 , , 1/2 1

1 , , 1/2

( 0,...., 1)

( ,...., 1)

( 0,...., 1)

( ,...., 1)

i j k l l

i j k l l

i l j k l

i l j k l

Mxz dtVx c l N
dx V
Mxz dtVx c l N
dx V

Mxz dtVz c l N
dz V
Mxz dtVz c l N
dz V

ρ

ρ

ρ

ρ

+ +

+ + + −

+ + + +

+ + + −

⋅
Δ = ⋅ = −

⋅ ⋅

⋅
Δ = − ⋅ = − −

⋅ ⋅

⋅
Δ = ⋅ = −

⋅ ⋅

⋅
Δ = − ⋅ = − −

⋅ ⋅  

(39) 
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CLVD 

 

1/2 , , 1

1/2 , ,

, 1/2 , 1

, 1/2 ,

, , 1/2

( 0,...., 1)

( ,...., 1)

= ( 0,...., 1)

( ,...., 1)

2

i l j k l

i l j k l

i j l k l

i j l k l

i j k L

Mxx dtVx c l N
dx V

Mxx dtVx c l N
dx V
Myy dtVy c l N
dy V

Myy dtVy c l N
dy V

Vz

ρ

ρ

ρ

ρ

+ + +

+ + −

+ + +

+ + −

+ +

⋅
Δ = − ⋅ = −

⋅ ⋅

⋅
Δ = ⋅ = − −

⋅ ⋅

⋅
Δ − ⋅ = −

⋅ ⋅

⋅
Δ = ⋅ = − −

⋅ ⋅

Δ = 1

, , 1/2

( 0,...., 1)

2 ( ,...., 1)

l

i j k l l

Mzz dtc l N
dz V

Mzz dtVz c l N
dz V

ρ

ρ

+

+ + −

⋅
⋅ ⋅ = −

⋅ ⋅

⋅
Δ = − ⋅ ⋅ = − −

⋅ ⋅

 (40) 

 
 

Comparison with Analytical solution 
 
We compare the solutions obtained by the finite difference method in an 

elastic, homogeneous infinite media. The parameters used in simulation are 
Vp = 3000 m/s, Vs = 1731 m/s, grid spacing - 2 m, and time step - 0.05 ms. 
The model size is 800 m×800 m×800 m. The source locates at the center 
of the model, whose time function is Ricker wavelet with a central frequency 
of 100 Hz. The geometry model is depicted in Fig. 5. There is one receiver 
located at (450 m, 470 m, 510 m). The displacement from a general moment 
tensor 𝑀!" in a homogeneous whole space is:  

𝑢! 𝑟, 𝑡 =
1

4𝜋𝑟!
15𝛾!𝛾!𝛾! − 3𝛾!𝛿!" − 6𝛾!𝛿!" 𝜏

!
!

!
!

𝑀!" 𝑡 − 𝜏 𝑑𝜏 

                    + !
!!!!!!

6𝛾!𝛾!𝛾! − 𝛾!𝛿!" − 2𝛾!𝛿!" 𝑀!" 𝑡 − !
!

  

                   − !
!!!!!!

6𝛾!𝛾!𝛾! − 𝛾!𝛿!" − 3𝛾!𝛿!" 𝑀!" 𝑡 − !
!

                   

                  + !
!!!!!

𝛾!𝛾!𝛾! 𝑀!" 𝑡 − !
!
+ !

!!!!!
𝛿!" − 𝛾!𝛾! 𝑀!" 𝑡 − !

!
  

                   (41) 
The displacement consists of the near-field, intermediate-field, and the 

far-field term. Before starting the simulation, it is necessary to demonstrate 
that the conventional method exactly exists discrepancy problem, which is 
caused by the incompatibility of the general scheme with high order 
formulation. The ISO source will be the best choice for observing whether 
the method exists discrepancy problem because it will not produce S-waves 
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in the homogeneous media and the error will be found easily. Fig. 6 shows 
the comparison of the simulation record resulting from the conventional 
method for different orders schemes. It is easily found that discrepancy does 
not appear in the 2nd order calculations and starts to appear in the 4th order 
simulations. However, it should be noted that 2nd order results deviate from 
the others simulations and that’s why we get rid of it in the following 
comparisons. From Fig. 7, the comparisons among conventional numerical 
results, new proposed results and analytical solution with different spatial 
orders turn out that as the order continues to increase, the discrepancy error 
from the traditional method will get arise too. The reason is that the degree 
of mismatch between source and medium discretization generally increase. 
We also find that the error from the new method is tailing off. On the basis 
of these results, all kind of typical sources, including ISO, DC, and CLVD, 
are tested by the two methods. Considering the accuracy, the tenth spatial 
order scheme is used in our simulations. 

 
 

  

 

  

 

 
Fig. 5.	 (a) The source-receiver configuration used for FDM computation. The red star 
represents microseismic source, the blue triangle means receiver. The microseismic 
source is placed in the middle of the model. (b-d) Projection of the source and receiver on 
surface XZ, YZ, XY, sequencely. 
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Fig. 6. Comparison of sesimic wave generated by ISO source between the analytical 
solution and the simulated records resulting from the conventional implementation (CI) 
scheme for different orders. 
 

    

    
Fig. 7. The differences of conventional solution and new solution from an analytical 
solution with (a) 4th order; (b) 6th order; (c) 8th order; (d) 10th order spatial discrete 
scheme. CI means the conventional implementation and HI represents the higher 
implementation. 
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ISO 
 
Fig. 8 shows the snapshots of the velocity components computed by the 

conventional method and the improved method in homogeneous model 
corresponding to the ISO source. In these diagrams, the snapshots in Fig. 8a 
contain not only P-waves but also waves of other forms, which are not 
expected. In contrast, Fig. 8b demonstrates a pure P-wave and is also in 
accordance with spherical moment tensor, only reflecting in volume change. 
In addition, we compare the solutions obtained by the numerical method, 
including conventional velocity implementation and new improved 
implementation, with exact solutions computed analytically. Figs. 9a, 9c, 
and 9e represent the microseismic waveforms of X, Y and Z components 
obtained from two numerical solutions and analytic solution, respectively. 
These curves are both normalized by their own maximum amplitude, which 
indicates the magnifying factors of X, Y and Z components. From these 
figures, two numerical solutions can basically match with the analytical 
solution. However, it’s apparently found that the conventional solutions (red 
dashed line) hold some residual records. To recognize them clearly, the 
quantitative differences are calculated through making the numerical 
solutions minus the analytical solution, and thus we can tell their difference. 
Figs. 9b, 9d, and 9f present the residuals of the two numerical schemes in X, 
Y, and Z direction, and the value of misfit equals the residual sum of square 
(RSS). The value of CI (Conventional Implementation) is larger than HI 
(Higher Implementation), which means new proposed method will reach a 
higher precision. 

 

	

 
 
Fig. 8. The seismic snapshots of ISO source computed by (a) conventional velocity 
implementation; (b) higher velocity implementation with 10th order spatial discrete 
scheme. From left to right is velocity component of X, Y, and Z, sequencely. 
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Fig. 9. The normalized velocity component obtained from two numerical solutions with 
10-th order spatial discrete and analytic solution are shown in the left column, and their 
differences are shown in the right column. The source type is same as Fig. 9. From top to 
bottom is velocity component of X, Y, and Z, sequencely. 
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DC  
 
We deal with this source in the same way as that in ISO source. 

Snapshots in Figs. 10a and 10b have barely noticeable difference. At the 
same time, the Figs. 11a, 11c and 11e also show both the conventional 
method and the new improved method can solve this situation since two 
numerical solutions fit the exact solutions very well. And now, the misfits 
play an essential role, because Figs. 11b, 11d and 11f reveal the proposed 
method (HI, blue dotted line) is closest to the real value and make it stand 
out. The reason why snapshots of two methods are almost the same is DC 
source can generate both P- and S-waves, and the S-wave has intense energy 
which covers the errors. In contrast, ISO source only produces P-waves in 
the homogeneous medium, thus the error, no matter how small, will be 
visible. In conclusion, the two methods can settle down the DC sources, but 
the new proposed method has higher accuracy. 

 
 
 

 
 
 

 
 
 
 
Fig. 10. The seismic snapshots of DC source computed by (a) conventional velocity 
implementation; (b) higher velocity implementation with 10-th order spatial discrete 
scheme. From left to right is velocity components of X, Y, and Z, sequencely. 
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Fig. 11. The normalized velocity component obtained from two numerical solutions with 
10th order spatial discrete and analytic solution are shown in the left column, and their 
differences are shown in the right column. The source type is same as Fig. 11. From top 
to bottom is velocity component of X, Y, and Z, sequencely. 
 
 
CLVD 

 
The CLVD source is more similar to the DC source since their moment 

tensors have the same trace and both they generate P- and S-waves. 
Therefore, there is no doubt that their result is analogous. Similarity, it is 
hard to tell the difference in snapshots between the Figs. 12a and 12b, as a 
result of the relatively small misfit. From Figs. 13a, 13c and13e, we can 
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recognize that both the conventional solution represented by the red dashed 
line and higher new solution represented by a blue dotted line, fit the exact 
solution well. And Figs. 13b, 13d and 13f demonstrate the same conclusion, 
that the new improved method will obtain a better solution. 

  
In short, both of the two methods can stimulate different source 

mechanism but the new improved method is more accurate. 
 

 

 
 

 
 
 
Fig. 12. The seismic snapshots of CLVD source computed by (a) conventional velocity 
implementation; (b) higher velocity implementation with 10-th order spatial discrete 
scheme. From left to right is velocity components of X, Y, and Z, sequencely. 

 
 

CONCLUSIONS 
 
This paper proposes an improved formula to simulate the wave 

propagation of a seismic source, by representation of moment tensor. And 
thus, we can obtain more accurate simulation of ISO, DC, CLVD sources in 
an elastic homogenous infinite media. From the snapshots and synthetic 
seismogram, we can make the following conclusions. 

 
The kernel of a higher velocity implementation is that a N-th order 

staggered grid finite difference simulation should have N-th order accuracy 
of force-to-velocity conversion. It is also the most important difference from 
the conventional velocity implementation. 
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Fig. 13. The normalized velocity component obtained from two numerical solutions with 
10-th order spatial discrete and analytic solution are shown in the left column, and their 
differences are shown in the right column. The source type is same as Fig. 12. From top 
to bottom is velocity component of X, Y, and Z, sequencely.  

 
 
 
Through the simulation, the result of new improved method fits the 

higher order scheme perfectly, meaning it can match the analytical solution 
well and has higher accuracy compared with the conventional method. 
Especially for ISO sources, the residual wave field caused by a conventional 
algorithm can be significantly reduced through the simulation. For the DC 
and CLVD source, the numerical error is covered by the real wave and 
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becomes not so evident, which seems that the conventional method is on 
equal terms with the improved method. But the improved one has the edge 
on the conventional method. 

 
It is confirmed that the improved method can be applied to more 

complex medium and complex focal mechanisms due to the flexibility of the 
finite difference method.  
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