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ABSTRACT 
 
Pan, X.P., Zhang, G.Z., Liu, J.X. and Ren, Z.Y., 2020. Estimating fluid term and 
anisotropic parameters in saturated transversely isotropic media with aligned fractures. 
Journal of Seismic Exploration, 30: 65-84. 
 
 The Gassmann’s equation and general linear-slip model can be combined to 
characterize the effective elastic properties of a fluid-saturated transversely isotropic 
medium with aligned fractures. Such a medium represents a saturated fractured porous 
rock with orthorhombic symmetry. Combining the analysis of orthorhombic anisotropic 
poroelasticity, we first propose the derivation for the weak-anisotropy stiffnesses of a 
saturated fractured porous medium with orthorhombic symmetry in terms of the moduli 
of the background homogeneous isotropic rock, Thomsen-type anisotropy parameters, 
fracture weaknesses, and fluid modulus. Compared with the exact stiffness components, 
the approximated components of saturated fractured porous media with orthorhombic 
symmetry satisfy the actual demands in practical use. Using the approximately linearized 
expressions of the stiffness components of saturated orthorhombic model with the 
assumption of small Thomsen-type anisotropic parameters and small fracture parameters, 
we then derive a linearized PP-wave reflection coefficient in such an orthorhombic model, 
including a fluid term, a rigidity term, a density term, two Thomsen-type anisotropy 
terms, and three fracture-weakness terms. With a novel parameterization for 
Thomsen-type anisotropy parameters and fracture weaknesses, we derive an azimuthal 
elastic impedance equation with decoupled fluid term and anisotropic parameters. 
Synthetic and real data sets are used to illustrate the proposed approach in fluid saturated 
fractured porous rocks with orthorhombic symmetry, Sichuan Basin, China. 
 
KEY WORDS: orthorhombic symmetry, fracture weakness, Bayesian seismic inversion, 
      saturated fractured porous media, decoupled fluid and fracture properties. 
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INTRODUCTION 
 
      A fractured model with orthorhombic symmetry can be formed from 
a transversely isotropic (VTI) layer with a vertical axis of symmetry 
containing a single set of vertical, aligned fractures (as illustrated by Fig. 1a, 
see Tsvankin, 1997; Schoenberg and Helbig, 1997; Bakulin et al., 2000a; 
Bachrach, 2015; Pan et al., 2017a, 2017b). Moreover, an isotropic or VTI 
layer containing two orthorhombic sets of vertical fractures with rotationally 
invariant properties also exhibits orthorhombic anisotropy (as illustrated by 
Figs. 1b and 1c, see Bakulin et al., 2000a; 2002; Downton and Roure, 2015; 
Chen et al., 2017; Pan et al., 2018a). A more complicated but should not be 
ignored fractured model is monoclinic symmetry, which can be formed by 
an isotropic or VTI layer containing two or more non-orthogonal sets of 
vertical fracture with rotationally invariant properties (Sayers, 1998; Bakulin 
et al., 2000b). However, this paper focuses on the fractured models with 
orthorhombic symmetry to perform the seismic fracture characterization and 
fluid discrimination. 
 
      Discriminations of fluid and fracture properties are the keys to the 
exploration and production in hydrocarbon reservoirs, and the ‘sweet spots’ 
information of high fracture density properties is required to target locations 
for infill drilling and maximize production (Sayers, 2009; Far et al., 2013; 
Zong and Yin, 2016). For the subsurface fracture detection, azimuthal 
seismic reflection amplitudes are widely used to estimate the fracture 
properties (Bachrach et al., 2009; Liu and Martinez, 2012; Pan et al., 2018b). 
Estimation of the fluid indicators from the prestack seismic data has been 
widely used in fluid identification (Russell et al., 2011). For the case of 
fracture-induced anisotropy, the fracture properties are usually characterized 
by the fracture compliances or weaknesses, in which the normal compliance 
NZ  or weakness Nδ  exhibits significant dependence on fluid infills, 

whereas the tangential compliance TZ  or weakness Tδ  do not vary with 
the fluid contents (Schoenberg and Douma, 1988). Therefore, the 
compliance ratio N TZ Z  is treated as a fluid indicator in fractures, and 
Shaw and Sen (2006) use the corresponding weakness ratio N Tδ δ  as a 
fluid indicator. However, these fracture fluid indicators (FFI) mentioned 
above present a coupling effect of fracture density and fluid infills, resulting 
in uncertainties of fluid and fracture characterization in fractured porous 
media with transversely isotropic symmetry (Pan et al., 2018c, 2018d). 
Therefore, we decouple the combined effects of fracture and fluid properties 
on seismic characterization in a saturated transversely isotropic media with 
aligned fractures. 
 
     For fractured porous rocks, the anisotropic Gassmann’s (1951) 
equations and linear-slip model can be combined to describe the fluid 
property in fractures (Gurevich, 2003; Huang et al., 2015). Considering two 
layers with the interface between them, we derive the linearized 
approximations of stiffnesses in an orthorhombic anisotropic medium. Using 
a first-order perturbation for elastic and anisotropic parameters (Thomsen, 
1986; Pšenčík and Vavryčuk, 1998; Golikov and Stovas, 2010; Ivanov and 
Stovas, 2017), we derive the PP-wave reflection coefficient in such a 
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fluid-saturated fractured porous media with orthorhombic symmetry, 
including a fluid term, a rigidity term, a density term, two Thomsen’s 
anisotropy terms, and three weakness terms. With a novel parameterization 
for anisotropic characteristic parameters with orthorhombic symmetry, we 
derive an azimuthal elastic impedance (AEI) equation for decoupled fluid 
term and fracture weakness parameters. We implement the Bayesian AEI 
iterative inversion to perform the seismic fluid identification and fracture 
characterization. The inversion results demonstrate that the fluid term and 
fracture weakness parameters can be reliably inverted in such a fractured 
porous medium with orthorhombic symmetry. 
 

(a)   

(b)   

(c)   

Fig. 1. Schematic diagram of fractured models with orthorhombic symmetry, where (a) is 
formed by a single set of vertical fractures embedded in a VTI background, (b) is formed 
by two orthogonal sets of rotationally invariant vertical fracture embedded in an isotropic 
background, and (c) is formed by two orthogonal sets of rotationally invariant vertical 
fracture embedded in a VTI background. 
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THEORY and METHOD 
 
Effective elastic properties and PP-wave reflection coefficient of  
fractured porous media with orthorhombic symmetry 
 
      Horizontal fine layers permeated with aligned vertical fractures are 
an equivalent orthorhombic anisotropic medium (Schoenberg and Helbig, 
1997). If the background porous rock with VTI symmetry contains one set of 
aligned fractures, we combine the weak-anisotropy approximations of 
Thomsen’s (1986) anisotropic parameters (Tsvankin, 1997; Pan et al., 
2018a), and give the expressions for dry-rock weak-anisotropy approximate 
stiffnesses in an orthorhombic medium as (Schoenberg and Helbig, 1997) 
 
 ( )11 1 2 ,ORT dry dry

dry N dry bC M Mδ ε− = − +     (1a) 

 ( )12 1 2 4 ,ORT dry dry
dry N dry b bC Mλ δ ε µγ− = − + −  (1b) 

 ( )13 1 ,ORT dry dry
dry N dry bC Mλ δ δ− = − +  (1c) 

 ( )2
22 1 2 ,ORT dry dry

dry N dry bC M Mχ δ ε− = − +  (1d) 

 ( )23 1 ,ORT dry dry
dry N dry bC Mλ χδ δ− = − +  (1e) 

 ( )2
33 1 ,ORT dry dry

dry NC M χ δ− = −  (1f) 

 44 ,ORT dryC µ− =  (1g) 

 ( )55 1 ,ORT dry
VC µ δ− = −  (1h) 

and 

 ( )66 1 2 .ORT dry
H bC µ δ µγ− = − −    (1i) 

      Here dryM  and µ  are the compressional (P-wave) modulus and 
shear (S-wave) moduli of dry rocks, respectively; = 2dry dryMλ µ−  
represents the first Lamé parameter of dry rocks, and dry dryMχ λ= ; Nδ , Vδ , 
and Hδ  denote the so-called dimensionless normal, vertically and 
horizontally shear fracture weaknesses in different directions due to the 
presence of fractures, respectively; bε , bγ , bδ  represent the Thomsen-type 
anisotropic parameters of VTI background (Sayers, 1994). 
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      According to Gurevich (2003) and Pan et al. (2018c, 2018d), the 
fluid saturated stiffnesses of fractured porous media with orthorhombic 
symmetry can be finally expressed in this form 
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where ORT dry

mnC −  and ORT sat
mnC −  denote the gas-saturated (or dry) and 

fluid-saturated stiffnesses with orthorhombic anisotropy; φ  denotes the 
porosity of rocks, which is the sum of the matrix porosity bφ  and the 
fracture porosity fφ ; 0K  denotes the mineral modulus, and fK  denotes 
the fluid modulus. 
 
     Based on the linearized dry-rock weak-anisotropy approximations of 
stiffnesses, we derive the saturated stiffnesses ORT sat

ij
−C  with orthorhombic 

symmetry, which are given by 
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( ) ( ) ( )( )
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44 = ,ORT satC µ−        (3g) 

( )55 = 1 ,ORT sat
VC µ δ− −   (3h) 

 
and 
 

( )66 = 1 2 .ORT sat
H bC µ δ µγ− − −   (3i) 

 
    The comparisons between the exact [eq. (2)] and approximate [eqs. 
(3a)-(3i)] components of stiffness tensor are illustrated in Fig. 2 to 
demonstrate the accuracy of derived stiffnesses for the fluid-saturated 
fractured porous medium with orthorhombic symmetry. The fractured 
porous rock is assumed to be homogeneously saturated with water and gas. 
From the comparative analysis of Figs. 2a and 2b, we see the differences 
between the exact and approximate stiffnesses decrease as the gas saturation 
increases. In addition, we find the differences increase with the decreasing 
normal weakness illustrated from the Figs. 2b and 2c. Even when the 
Thomsen-type anisotropic parameters turn into zero, the differences are still 
small (Figs. 2b and 2d).  
 
    Using the assumptions of weak anisotropy, small weak fracture 
weaknesses, and weak elastic contrast across an interface separating two 
orthorhombic anisotropic media, the first-order perturbations for saturated 
stiffnesses with orthorhombic symmetry can be derived. Integrating the 
perturbations in stiffnesses, the reflection coefficient of an orthorhombic 
medium can be defined as 
 

 ( ) ( )
6 6

2 2

1 1
sec sec ,

4 4

ORT sat
ORT mn
PP mn

m n

CR ρ
ξ θ η θ

ρ ρ

−

= =

Δ Δ
= +∑∑         (4) 

 
where θ  denotes the angle of incidence, and the symbol Δ  denotes the 
perturbations in property parameters; ξ  and mnη  are two parameters 
related to slowness and polarization vectors, which can be found in Shaw 
and Sen (2004). 
 
     Using the above methods and derived equations, we can derive the 
linearized PP-wave reflection coefficient with decoupled fluid and fracture 
parameters in orthorhombic anisotropic media, including a fluid term, a 
rigidity term, a density term, two Thomsen-type anisotropy terms, and three 
weakness terms, which is given by 
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Here ϕ  is the azimuthal angle, and the subscripts dry  and sat  denote 
the dry and saturated quantities;, 2

dry dryMγ µ=  and 2
sat satMγ µ= , which 

can be calculated following Russell et al. (2011). 
 
  
Azimuthal elastic impedance inversion in orthorhombic anisotropic 
media 
 
     To stably estimate the anisotropic parameters, we propose the new 
parameterization expressions for anisotropic parameters (Pan et al., 2017a). 
The proposed Thomsen-type quasi-anisotropy parameters are given by 
 

 ( )0
0

1 1 ,
1q b b b

b

ε ε ε
ε

= + −
−

         (7a) 

and 

 ( )0
0

1 1 .
1q b b b

b

δ δ δ
δ

= + −
−

 (7b) 

And the proposed fracture quasi-weaknesses are given by 

   ( )0
0
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1

dry dry dry
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N

δ δ δ
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and 
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1q H H H
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δ δ δ
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      (8c) 
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Fig. 2. Comparisons between the exact (black) and approximate (red) components of 
stiffness tensor for a gas-saturated fractured porous rock with orthorhombic symmetry, 
where 
(a) Gas content percent=30%, δN=0.1, εb=0.05, δb=0.02, γb=0.1;  
(b) Gas content percent=70%, δN=0.1, εb=0.05, δb=0.02, γb=0.1; 
(c) Gas content percent=70%, δN=0.2, εb=0.05, δb=0.02, γb=0.1; and 
(d) Gas content percent=70%, δN=0.1, εb=0, δb=0, γb=0. 
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In the above equations, 0bε , 0bδ , 0
dry
Nδ , 0Vδ , and 0Hδ  represent the 

average quantities of Thomsen-type anisotropic parameters and fracture 
weaknesses. 
 
   According to Connolly (1999) and Martins (2006), the reflection 
coefficient in orthorhombic anisotropic media can be approximated as 
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  (9) 

where EI denotes the elastic impedance. 
 
     The relative contrasts in eq. (9) can be approximately as 
 

[ ]lnEI EI EIΔ ≈Δ , [ ]lnf f fΔ ≈Δ , [ ]lnµ µ µΔ ≈ Δ , [ ]lnρ ρ ρΔ ≈ Δ , 

( ) ( )lnq b q b q bε ε ε⎡ ⎤Δ ≈ Δ⎣ ⎦ , ( ) ( )lnq b q b q bδ δ δ⎡ ⎤Δ ≈ Δ⎣ ⎦ ,                                   

       
( ) ( )lndry dry dry
q N q N q Nδ δ δ⎡ ⎤Δ ≈ Δ⎣ ⎦ , ( ) ( )lnq V q V q Vδ δ δ⎡ ⎤Δ ≈ Δ⎣ ⎦ ,   

and ( ) ( )lnq H q H q Hδ δ δ⎡ ⎤Δ ≈ Δ⎣ ⎦ .              (10) 
      
    Assuming the continuous variations in EI and model parameters, the 
relative contrasts in eq. (10) can be substituted by the linear differential 
expressions: 
 
Following the proposed Bayesian AEI inversion (Pan et al., 2017a), we 
iteratively solve this inverse problem. 
  
[ ] [ ]ln lnEI d EIΔ ≈ , [ ] [ ]ln lnf d fΔ ≈  , [ ] [ ]ln lndµ µΔ ≈  , [ ] [ ]ln lndρ ρΔ ≈ , 

( ) ( )ln lnq b q bdε ε⎡ ⎤ ⎡ ⎤Δ ≈⎣ ⎦ ⎣ ⎦ , ( ) ( )ln lnq b q bdδ δ⎡ ⎤ ⎡ ⎤Δ ≈⎣ ⎦ ⎣ ⎦ , 

( ) ( )ln lndry dry
q N q Ndδ δ⎡ ⎤ ⎡ ⎤Δ ≈⎣ ⎦ ⎣ ⎦ ,                    (11) 

( ) ( )ln lnq V q Vdδ δ⎡ ⎤ ⎡ ⎤Δ ≈⎣ ⎦ ⎣ ⎦ ,   and  ( ) ( )ln lnq H q Hdδ δ⎡ ⎤ ⎡ ⎤Δ ≈⎣ ⎦ ⎣ ⎦ . 

 
Finally, the azimuthal elastic impedance (AEI) equation can be written as 
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EXAMPLES 
 
Synthetic example 
 
     A logging data acquired in a saturated fractured porous field is used to 
demonstrate the proposed Bayesian AEI inversion for decoupled fluid and 
fracture properties. We first estimate the logging information of 
Thomsen-type anisotropic parameters and fracture weaknesses using the 
effective rock-physics model (Pan et al., 2017b). The process of constructing 
the rock-physics model of a fractured porous medium with orthorhombic 
symmetry is illustrated in Fig. 3 to be used for estimating the anisotropic 
well log information. Adding a random Gaussian noise to the noise-free 
synthetic data produces the noisy data, in which the different 
signal-to-noise-ratios (SNRs) are 5 (Fig. 4a) and 2 (Fig. 4b), respectively. 
The six azimuths are 00, 300, 600, 900, 1200, and 1500. We then implement 
the Bayesian AEI inversion for decoupled fluid and fracture properties.   
 
 

 

 
 
Fig. 3. Process of constructing the rock-physics model with orthorhombic symmetry to 
estimate the anisotropic well log information. 
 
 

Estimation of the mixed mineral moduli

Estimation of the VTI background moduli

Estimation of non-fractured dry skeleton

Calculation of orthorhombic stiffness matrix (Tsvankin, 1997)

Estimation of fractured dry skeleton

Estimation of fractured saturated skeleton with anisotropic Gassmann’s (1951) equation

Thomsen’ (1986) anisotropic parameters and fracture weaknesses
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(a) 

 

(b) 

Fig. 4.  Synthetic seismic angle gathers with different SNRS, where (a) SNR = 5, and  
(b) SNR = 2. 
 
 
     The original (black), initial (green) and inverted (red) well logs are 
demonstrated in Fig. 5, respectively. Figs. 5 and 6 are the inversion results 
with SNRs being 5 and 2, respectively. From the inversion results, we see 
that the model parameters are reasonably inverted even though the initial 
models of model parameters are fairly smoothing. Therefore, even in the 
cases of relatively low SNR, we can still get the reasonable inversion results 
of model parameters. Figs. 7a and 7b are the seismic data synthesized by 
inverted model parameters and convolution model. We find that the errors 
between the original and the synthetic data are small enough to demonstrate 
the applicability of proposed AEI inversion approach. 
 
 
Field example 
 

We demonstrate the Bayesian AEI inversion approach using a field data 
acquired in Sichuan Basin, Southwest China. The target layers mainly 
contain brine and gas, but belongs to low-porosity and low-permeability 
reservoir, in which its lithology is principally thick gray dolomite rocks. 
Moreover, before the inversion, the azimuthal seismic data should be 
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processed and preconditioned to guarantee that the observable PP-wave 
reflected amplitudes are the accurate reaction of the response of subsurface 
interfaces, and the workflow includes wave-front diffusion compensation, 
noise suppressed in multiple domains, spherical divergence correlation, 
inverse Q filtering, surface-consistent amplitude correction, pre-stack 
residual amplitude compensation, deconvolution, COV binning, migration 
velocity analysis, etc.  

 

(a) 

(b) 

(c) 

Fig. 5. Estimated model parameters using synthetic angle gathers with SNR = 5, where 
(a) the fluid term, shear modulus, and density parameters, (b) the Thomsen’s 
quasi-anisotropy parameters, and (c) the fracture quasi-weaknesses. 

 

Ti
m

e 
(s

)

f (GPa) µ (10·GPa) ρ (kg·m-3)

Ti
m

e 
(s

)

qεb qδb

Ti
m

e 
(s

)

qδN qδV qδH



 

 

77 

(a) 

(b) 

(c) 

Fig. 6. Estimated model parameters using synthetic angle gathers with SNR = 2, where  
(a) the fluid term, shear modulus, and density parameters, (b) the Thomsen’s 
quasi-anisotropy parameters, and (c) the fracture quasi-weaknesses. 

 
The input data include four azimuthal seismic data with average angles 

of azimuth being 22.50 (a range between 00 and 450), 67.50 (a range between 
450 and 900), 112.50 (a range between 900 and 1350) and 157.50 (a range 
between 1350 and 1800), respectively. It needs to be emphasized that the 
inversion accuracy can be improved by optimization for the strategy of 
azimuthal sector division. Therefore, the divided each azimuth among the 
azimuthal data should be ensured to contain enough SNRs, and the number 
of coverage times in each azimuth should be as uniform as possible. 
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(a) 

 

(b) 

Fig. 7. Comparison between the original and synthetic angle gathers with different SNRS, 
where (a) SNR = 5, and (b) SNR = 2. 

 
 

    Then the Bayesian AEI inversion are performed by using the azimuthal 
data. Fig. 8 just shows the input seismic data with the first azimuth, where 
the average angles of incidence for the near, middle and far angle-stacks are 
50 (a range between 00 and 100), 150 (a range between 100 and 200) and 250 (a 
range between 200 and 300), respectively. The corresponding inverted 
azimuthal elastic impedance sections are displayed in Fig. 9. We find that 
three inversion results in different angles of incidence show differences in 
values, but the low-value anomaly of estimated elastic impedance are related 
to the gas-bearing layers based on the analysis of well log data. Other 
azimuthal data can be also processed by using the same processing method, 
and we won’t show them here for brevity. 
 
    The inverted model parameters are shown in Figs. 10, 11, and 12. The 
information of Well A is used to construct the initial model parameters of 
elastic and fracture parameters, and the white ellipse illustrates the 
gas-bearing layers. The Well B is used to demonstrate the reliability and 
stability of inversion results, and we can see that the low-value elastic and 
background VTI parameters and high-value fracture parameters are more 
sensitive to the gas-bearing layers, in which the inverted fluid term and 
fracture weaknesses present a good indicator of hydrocarbon response and 

T
im

e 
(s

)

θ (0)

φ=00

θ (0) θ (0) θ (0) θ (0) θ (0)

φ=300 φ=600 φ=900 φ=1200 φ=1500

T
im

e 
(s

)

θ (0)

φ=00

θ (0) θ (0) θ (0) θ (0) θ (0)

φ=300 φ=600 φ=900 φ=1200 φ=1500



 

 

79 

fracture-development zones. As a result, the fluid indicator and fracture 
weaknesses can be provided as sensitive indicators for gas-bearing fractured 
reservoirs. 

 

Fig. 8. Input data with the first azimuth. 
 

 

Fig. 9. Output data with the first azimuth. 
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(a) 

 

 

(b) 

 

 

(c) 

 
Fig. 10. Inverted results of fluid, rigidity, and density, where (a) the fluid term f ,  
(b) the S-wave modulus , and (c) the density . 
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(a)     

(b) 

Fig. 11. Inverted Thomsen’s anisotropy parameters, where (a) , and (b) . 

 
CONCLUSIONS 
 
    We demonstrate to discriminate the decoupled fluid term and fracture 
weaknesses in saturated transversely isotropic media with aligned fractures 
using the observable azimuthal data. First of all, we derive the 
fluid-saturated linearized weak-anisotropy approximations of stiffnesses 
with orthorhombic symmetry. Next a linearized PP-wave reflection 
coefficient is derived in orthorhombic anisotropic media. Finally, a Bayesian 
AEI inversion approach is proposed and applied to the synthetic and real 
data sets acquired in a saturated fractured porous reservoir with 
orthorhombic symmetry, Sichuan Basin, Southwest China. It turns out that 
the proposed method appears to generate reliable fluid term and fracture 
weaknesses for fluid discrimination and fracture characterization. 
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(a)  

(b)  

(c)  

Fig. 12. Inverted results of fracture parameters, where (a) the normal fracture 
quasi-weakness ,  (b) the vertical tangential fracture quasi-weakness ,  and 
(c) the horizontal tangential fracture quasi-weakness . 
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