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ABSTRACT 
 
Li, Z., Gao, J.H., Wang, Z.G., Liu, N.H. and Sun, F.Y., 2020. Time-frequency analysis 
of seismic data for the characterization of geologic structures via synchroextracting 
transform. Journal of Seismic Exploration, 30: 101-120. 
 
 Time-frequency (TF) analysis based method is one of the most powerful tools in 
seismic data processing and interpretation. To delineate the subsurface geological 
structures clearly, the energy concentration of the seismic TF representation (TFR) is as 
high as possible. The traditional TF methods, such as the short-time Fourier transform 
(STFT) and wavelet transform (WT), have been widely applied for seismic TF analysis. 
However, they suffer from the diffused TFR because of the Heisenberg uncertainty 
principle. To achieve a higher energy-concentrated TF result, the synchrosqueezing 
transform (SST) was proposed. The SST method has been successfully used for seismic 
processing. In this paper, we introduce a novel approach for seismic spectrum analysis 
based on the synchroextracting transform (SET), which is an extension of the 
Fourier-based SST (FSST). The SET extracts the TF information only located at the 
instantaneous frequency (IF) trajectory of the analyzed signal and removes the most 
smeared TF energy, which leads to a highly sharpened TFR. We also put forward a 
theorem to prove that the SET can get the exact IF of a linear chirp signal. All the results 
of the synthetic signal and real seismic data demonstrate the validity and effectiveness of 
the proposed method. 
 
KEY WORDS: time-frequency analysis, seismic data processing, 
     high energy-concentrated, synchroextracting transform, 
     Fourier-based synchrosqueezing transform. 
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INTRODUCTION 
 

Time-frequency analysis (TFA) is a significant tool to process and 
interpret non-stationary seismic signals to discover the available information. 
The TFA method transforms a 1D signal into a 2D time-frequency plane, 
which is widely applied to characterize time-varying features of the seismic 
data. The linear TFA technique is one important type of the most traditional 
TFA methods. 

  
The short-time Fourier transform (STFT), wavelet transform (WT), and 

S-transform (ST) are three representative linear TFA methods. Since 1999, 
the STFT has been successfully used to process the field seismic data 
(Partyka and Gridley, 1999; Lu and Zhang, 2009). However, the predefined 
window length of the STFT provides an invariable spectral resolution 
(Mallat, 2008; Lu and Li, 2013). In practice, the long window length can 
provide a high-frequency resolution but a low time resolution. Conversely, a 
short window length provides a high time resolution but a low-frequency 
resolution (Tary et al., 2014). The fixed time-frequency (TF) resolution 
limits the seismic application of the STFT. As an improvement to enhance 
the property interpretation of a seismic signal, the WT overcomes the 
drawback of the STFT with a certain extent and offers a superior variable 
spectral resolution (Morlet et al., 1982; Daubechies, 1992). The WT is one 
of the most widely used TFA methods. New wavelet basis functions are still 
proposed to enhance the adaptation for the seismic signal processing (Gao et 
al., 2006; Lilly and Olhede, 2010; Wang et al., 2017). However, the choice 
of parameters that makes the wavelet basis function best matching the given 
signal is a problem (Daubechies, 1992; Gao et al., 1996). Stockwell et al. 
(1996) proposed the ST, which inherits the advantages of the STFT and WT. 
However, the resolution is dependent on the frequency, which limits the 
flexibility of its ST. Several variations of the ST have been proposed and 
successfully applied in seismic data processing and interpretation (Gao et al., 
2003; Sejdić et al., 2008; Liu et al., 2018). Unfortunately, these linear TF 
approaches are all restricted by the Heisenberg uncertainty principle, which 
denotes that the best time and frequency resolutions cannot be attained 
simultaneously (Gabor, 1946; Hlawatesch and Boudreaux, 1992). Thus, the 
time-frequency representation (TFR) obtained by these classical linear 
methods are always diffused near the center frequency of a signal.  

 
In seismic data processing, the blurry TFR will be bad for the 

subsequent geological interpretation, such as the channel detection and 
hydrocarbon indicator (Li et al., 2016; Liu et al., 2018). To improve the 
readability or quality of the TFR, some advanced approaches have been 
proposed including the matching pursuit (MP) algorithms (Mallat and 
Zhang, 1993; Liu and Marfurt, 2007), the reassignment methods (RM) 
(Auger and Flandrin, 1995; Auger et al., 2013) and the synchrosqueezing 
transform (SST) (Daubechies and Maes, 1996; Daubechies et al., 2011). The 
MP is an adaptive method and can get a sparse TFR. It has been applied for 
field seismic spectrum analysis (Wang, 2007; Wang et al. 2016). 
Nevertheless, the time cost of the MP is slightly expensive, especially for 
the big storage of the 3D seismic volume. The RM reassigns the TF 
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coefficients into the instantaneous frequency (IF) trajectory. Thus, the RM 
obtains a high concentrated TFR. However, it is unable to reconstruct the 
original signal because of the insufficient TF information. As a special case 
of the RM, the SST only squeezes the TF coefficients along the IF in the 
frequency direction to enhance the concentration of the TFR. The SST 
allows for the signal reconstruction but suffers from a lower TF 
concentration for the strong frequency-modulated (FM) signal (Daubechies 
et al., 2011). Even so, the SST has been widely applied in seismic data 
processing (Chen et al., 2014; Herrera et al., 2014; Wang et al., 2014; Liu et 
al., 2016; Liu et al., 2017). Based on the SST algorithm, several extensions 
of the SST have been proposed recently and applied in seismic data 
application, for example, the synchrosqueezed wave packet transform 
(Wang and Gao, 2017), STFT-based SST (FSST) (Oberlin, 2014), 
synchrosqueezing three parameter wavelet transform (SST-TPW) (Liu et al., 
2015) and synchrosqueezing generalized S-Transform (SSGST) (Wang et 
al., 2018). As is well known, these SST-based methods are suitable for 
signals with slowly varying IF, and it will suffer from the blurred TFR for 
the signals with fast varying IF (Daubechies et al., 2011; Li and Liang, 
2012). 

 
Generally, all the modified methods are aimed at improving the 

concentration of the TFR. In this study, we apply the synchroextracting 
transform (SET) (Yu et al., 2017) in seismic TFA to show its potential in 
fluvial channel detection with the 3D seismic data. The SET is inspired by 
the FSST and ITFA theory (Stanković et al., 2014). It only extracts the 
information of the STFT result that is most related to the IF of a signal (Yu 
et al., 2017). Therefore, the SET can generate more sparse TFR compared 
with the FSST for time-varying signals. Even, we will give a theorem that 
the SET can provide a highly concentrated TFR for signals containing high 
FM modes, which is not considered by Yu et al. (2017). The more 
concentrated TFR denotes the better ability of the TF localization and the 
better characterization of time-varying features. So, we introduce the SET 
method for seismic data processing to enhance the quality of the TF result, 
and further improve the delineation of subsurface fluvial channels. 

 
In this paper, we will show the desirable properties of the SET in the 

TFR of seismic signals. In the next section, we present the basic theoretical 
background concerning the STFT, FSST, and SET. We also give a theorem 
about the frequency estimation of a chirp signal to show that the SET still 
can obtain a highly concentrated TFR for the strongly FM signal. In a 
following section, several synthetic examples are employed to illustrate the 
performance in concentrating the TF distribution, and applications on field 
data further demonstrate the potential for subsurface channel 
characterizations. Finally, we draw conclusions in the last section. 
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THEORETICAL BACKGROUND 
                                     
The short-time Fourier transform 
 

The Fourier transform ˆ ( )f η  of the signal 1( ) ( )f t L R∈  is defined as the 
following normalization: 

2ˆ ( ) ( ) i tf f t e dtπηη
+∞ −

−∞
= ∫  .                      (1) 

As is well-known, the Fourier spectrogram ˆ ( )f η  only displays the 
frequency η  of ( )f t  on the whole time domain. To get the time-varying 
frequency spectrum, the short-time Fourier transform (STFT). For a given 
function 2( ) ( )f t L R∈  and a window function 2 ( )g L R∈ , the STFT is defined 
by 

 
2( , ) ( ) ( ) i

fV t f g t e dπητη ξ ξ ξ
+∞ −

−∞
= −∫  ,                 (2) 

 
which is a local version of the Fourier transform obtained by means of the 
sliding window 2 ( )g L R∈ . Considering an additional phase shift 2i te πη , the 
expression of the standard STFT can be modified as 
 

   
2 ( )( , ) ( ) ( ) .i t

fV t f g t e dπη τη ξ ξ ξ
+∞ − −

−∞
= −∫                  (3) 

 
We now study the STFT of an amplitude-modulated and 

frequency-modulated (AM-FM) mode 
 

2 ( )( ) ( ) ,i tf t A t e πφ=                          (4) 
 
where ( )A t  and ( )tφ  are the time-varying amplitude and phase function of 
the signal ( )f t , respectively. The derivative of the phase ( )tφ  is the 
instantaneous frequency (IF). If the amplitudes ( )A t  and IF ( )tφʹ  are 
positive and vary slowly enough, we can give a first-order expansion of the 
phase combined with a zero-th order expansion of the amplitude, which 
leads to the following approximation of f (t) 
 

0 02 [ ( ) ( )]
0( ) ( ) .i t t tf t A t e π φ φʹ+ −≈                      (5) 

 
Then the corresponding approximation of the STFT is obtained as 

(Daubechies et al., 2011; Oberlin et al., 2014): 
 

ˆ( , ) ( ) ( ( ))fV t f t g tη η φʹ≈ − ,                     (6) 
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which denotes that the spectrum energy of ( )f t  is distributed along the 
ridge ( )tη φʹ=  in the time-frequency (TF) plane. According to eq. (6), if 
the time-frequency representation (TFR) is concentrated enough, each signal 
( )f t  exists in a standalone TF strip [see Fig. 1(b)]. Then it allows for the 

detection and reconstruction. However, for the multicomponent signal, if the 
TF distribution ( , )fV tη  is not enough quality, the modes may overlap or 
couple in the TF plane [see Fig. 2(b)], which will affect the subsequent 
processing.  
 

 
Fourier-based synchrosqueezing transform 

 
The synchrosqueezing transform (SST) was originally proposed in the 

wavelet frame for the audio signal processing (Daubechies and Maes, 1996), 
and its corresponding theoretical analysis was provided by Daubechies et al. 
(2011) (Daubechies et al., 2011). The SST can sharpen the TFR of a signal 
using a nonlinear operator and allow for mode reconstruction. Like the SST, 
the aim of the Fourier-based synchrosqueezing transform (FSST) (Oberlin et 
al., 2014) is to provide a concentrated TFR that enables to detect and present 
the different modes within the signal. Analogously, the FSST reassigns the 
coefficients ( , )fV tη  according to the map ˆ( , ) ( ( , ), )ft t tη ω ηa  to enhance 
the concentration of the TFR obtained by the STFT. The frequency operator 
ˆ ( , )f tω η  is the estimation of the local IF defined by (Auger and Flandrin, 

1995) 
  

( , )1 1ˆ ( , ) arg ( , ) { },
2 2 ( , )

t f
f t f

f

V t
t V t

i V t
η

ω η η
π π η

∂
= ∂ =ℜ             (7) 

 
which is indeed a good local approximation of the IF ( )tφʹ for the weak 
AM-FM signal. Then, the FSST is expressed as 
 

ˆ( , ) ( , ) ( ( , )) .f f fT t V t t dω η δ ω ω η η
+∞

−∞
= ⋅ −∫                 (8) 

 
where δ  is the Dirac distribution. Now, we show the performance of the 
FSST for the test signal in f1(t) Fig. 1. To obtain the IF estimation (7), we 
need to calculate the derivative of ( , )fV tη  with respect to time. According 
to eq. (6), we have 
 

02
0

0

ˆ( , ) { ( )}

               2 ( , )

i t
t f t

f

V t Ae g
i V t

πωη η ω

π ω η

∂ = ∂ −

= ⋅

⋅

⋅
.                  (9) 

 
Then, submitting (9) into (7), we can get 
 

0ˆ ( , ) ,f tω η ω=                          (10) 
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which means ˆ ( , )f tω η  actually matching the IF 0ω  for the purely harmonic 
signal. In this case, the FSST achieves an ideal TFR [see Fig. 1(c)]. For the 
perturbations of pure waves that contains slowly-varying amplitude and 
instantaneous frequency. The correlative main theory analysis was given in 
(Behera et al., 2017), which provides a strong approximation result. The 
non-zero coefficients of the FSST result are localized on a TF strip centered 
on the instantaneous frequency ( )tφʹ . To summarize, the FSST achieves a 
good localization if the following restrictive conditions are satisfied: 
 
• the low-modulation assumption ( )tφ εʹ́ ≤ . 
 

Through the synchrosqueezing operation, the FSST obtains a 
significantly higher concentrated TFR than the modified STFT [see Fig. 1(c) 
and Fig. 2(c)]. In practice, signals always contain high-modulation 
components, which means that the ( )tφʹ́  is non-negligible. For such signals 
with fast varying frequency, the FSST still inevitably results in a diffused 
TF distribution as labeled in Fig. 2(c). 

 

 

 

 

 
Fig. 1. The illustration of the harmonic signal f1(t). (a) The waveform, (b) the STFT 

result, (c) the FSST result, and (d) the SET result. Compared with the diffused TFR from 
the STFT, the FSST- or SET-based result provides a better one toward to the ideal TFR 
of f1(t). 

(a) (b) 

(c) (d) 
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Fig. 2. The illustration of signal f2(t) with high FM modes. (a) The waveform, (b) the 
STFT result, (c) the FSST result, and (d) the SET result. The STFT- and FSST-based 
results are both diffused, while the SET provides a much concentrated TFR. 

 
 
 
The synchroextracting transform 

 
To further enhance the energy concentration of the TFR, Yu et al. 

(2017) proposed the synchroextracting transform (SET), which is different 
from the manner of the FSST. The definition of the SET is 

  
ˆ( , ) ( , ) ( ( , )),f fTe t V t tη η δ η ω η= ⋅ −                  (11) 

 
where δ  is the discrete Delta function. The operator ˆ( ( , ))f tδ η ω η−  is 
defined by 
 

 
ˆ1 ( , )

ˆ( ( , )) ˆ0 ( , ).
f

f
f

t
t

t
η ω η

δ η ω η
η ω η

=⎧
− = ⎨ ≠⎩

                 (12) 

 
Then, submitting this equation to (11), it holds   

ˆ( , ) ( , )
( , ) ˆ0 ( , ).

f f

f

V t t
Te t

t
η η ω η

η
η ω η

=⎧
= ⎨ ≠⎩

                  (13) 

(a) (b) 

(c) (d) 
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So, we can use the coefficients only in trajectory ˆ ( , )f tη ω η=  to sharp 

the TFR of the STFT. Due to the extracting manner (13), this novel method 
is termed SET, and ˆ( ( , ))f tδ η ω η− denotes the synchroextracting operator 
(SEO). 

 
By analyzing the steps of the FSST and SET, the only difference 

between them is the last process [i.e., eqs. (8) and (11)]. Starting from the 
STFT, the FSST squeezes the coefficients ( , )fV tη  into a more compact TF 
domain according to the map ˆ( , ) ( ( , ), )ft t tη ω ηa . While the SET only 
extracts the coefficients of ( , )fV tη  where ˆ ( , )f tη ω η= . Fig. 1(d) shows that 
the SET achieves a perfect result for the harmonic wave the same as that of 
FSST. Moreover, it gets a more concentrated TFR for the signal with strong 
FM modes, as displayed in Fig. 2(d). In order to better analyze the different 
performance of the FSST and SET, we put forward the following theorem. 
 

Theorem 1.  

 Consider a Gaussian window function and a pure linear chirp 

signal 2 ( )( ) i tf t Ae πφ= , where ( )tφ  is a second-order polynomial and 0A > . 

Then, for the reassignment operators ˆ ( , )f tω η  [defined as eq. (7)], it holds 

2

2 2

( ( ))ˆ ( , ) ( ) ( ( ))
( / ) ( ( ))f

tt t t
b t

φ
ω η φ η φ

π φ
ʹ́

ʹ ʹ= + −
ʹ́+

 and ˆ ( ( ), ) ( )f t t tω φ φʹ ʹ=  at each time 

t. 
 
The proof of this theorem is available in the Appendix. 
 

Because 
2

2 2

( ( )) 1
1/ ( ) ( ( ))

t
b t
φ

π φ
ʹ́

<
ʹ́+

, it holds ˆ| ( , ) ( ) | | ( ( )) |f t t tω η φ η φʹ ʹ− ≤ − . Thus, 

the FSST indeed achieves a more energy-concentrated TFR compared with 

the STFT. Theorem 1 clearly proves that the frequency estimation 

ˆ ( , ) ( )f t tω η φʹ≠  as soon as ( ) 0tφʹ́ ≠  i.e. 0c ≠ . If the | ( ) |tφʹ́  is not small 
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enough, the deviation of the frequency estimation and the IF is 

non-negligible. This theorem also gives a theoretical analysis why the FSST 

obtains a diffused TFR for the high-modulation signals [see Fig. 2(c)], 

especially at parts indicated by the arrows. Furthermore, the bigger ( )tφʹ́  

is, the more diffused the TFR (indicated by the arrows in Fig. 4). However, 

the SET can always extract an accurate IF even for the chirp signal. In this 

context, the SET provides a well-concentrated TFR for the signal containing 

high FM modes [see Fig. 2(d)]. The more concentrated TFR denotes a better 

ability of the TF localization and a better characterization of the 

time-varying features, which is useful for seismic signal processing. 

 

 
 

 

 
Fig. 3. Example of a noisy signal. (a) The noisy signal obtained by the signal f2(t)  added with 5dB noise. The TF distributions achieved by the (b) STFT, (c) FSST, (d) 
SET. 

(a) (b) 

(c) (d) 
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NUMERICAL SIMULATIONS 
  
Synthetic signals 

 
In this section, we apply the proposed SET to three simulation data to 

illustrate its capability and effectiveness. The first simulated data is shown 
in Fig. 3(a), which is the signal f2(t) added with the Gaussian white noise. 
The signal-to-noise ratio (SNR) in Fig. 3(a) equals to 5 dB. The second one 
is a synthetic seismic trace containing three different seismic wavelets, as 
displayed in Fig. 4(a). Fig. 5(a) represents the last example, which comes 
from adding the 5dB Gaussian white noise to the second simulated signal in 
Fig. 4(a). Note that we introduce the STFT and FSST as the contrast 
methods. 

  
The SET spectrum of the signal f2(t) has been shown in Fig. 2(d), 

which is more concentrated than the other two spectra in Figs. 2(b) and 2(c). 
In practice, the analyzed signal often contains noise which makes it difficult 
to achieve an uncontaminated TFR. The STFT is particularly sensitiveness 
to the Gaussian white noise, hence, its spectrum in Fig. 3(b) is blurred badly. 
Fig. 3(c) shows the TFR computed by the FSST with a better robustness 
than that calculated by the STFT. However, the energy still spreads out, 
especially where the frequency components change quickly. In Fig. 3(d), the 
SET spectrum is the most robustness and energy-concentrated. Thereby, 
images in Fig. 3 illustrate the robustness and effectiveness of the SET. 

 
The second synthetic signal is a seismic trace in Fig. 4(a). It is 

composed of three seismic wavelets with different dominant frequencies. 
The dominant frequency of the first event is 30 Hz and the arrival time is 
0.2 s. The second wavelet is a superposition of two Ricker wavelets with a 
50 Hz domain frequency and arrive at 0.7 s and 0.715 s, respectively. The 
TFRs produced by the three methods are shown in Figs. 4(b), 4(c), and 4(d). 
The STFT obtains a fuzzy TFR [in Fig. 4(b)] and cannot describe the second 
event clearly and precisely. The FSST improves the readability of the TF 
distribution [in Fig. 4(c)] and is almost able to distinguish different wavelets 
at different time locations, but its spectrum is slightly fuzzy because of the 
energy diffusion. The SET result, as represented in Fig. 4(d), is the most 
concentrated and distinguishes the events the most clearly and accurately 
among these three spectra. Hence, we can easily draw a conclusion that the 
proposed SET based method can characterize subtle TF features of the 
analyzed signal by achieving a concentrated TF spectrum. 

 
We add the Gaussian white noise to the synthetic seismic trace [in Fig. 

4(a)] to verify the stability of the SET. Fig. 5(a) displays the noisy seismic 
trace, whose SNR is 5dB. The STFT and FSST are both blurred by the noise, 
and cannot characterize different wavelets well, shown in Figs. 9(b) and 9(c). 
The SET image shows the different wavelet clearly (indicated by the black 
arrows), and it is almost not affected by the added noise. Thus, the SET is 
more stable and more effective in the TF analysis of seismic signals 
compared with the STFT and FSST.  
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Fig. 4. The synthetic trace. (a) The single trace data. The TFR of the trace obtained by 
the (b) STFT, (c) FSST, and (d) SET. 

 
 

 

 

 
Fig. 5. The noisy synthetic trace. (a) The trace [in Fig. 8(a)] under 0 dB noise level. The 
TFR of the noisy trace calculated by the (b) STFT, (c) FSST, (d) SET. 

 

(a) (b) 

(c) (d) 

(c) (d) 

(a) (b) 
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Field data 
 
To further prove the availability of the SET, we apply it to a 3D 

seismic data from a sedimentary basin in China. Both of the crossline and 
inline numbers are 401. The horizon slice of this 3D field data is shown in 
Fig. 6. Fig. As the study (Wang et al., 2012), the fluvial channels mainly 
controls the reservoir. There are many channel structures in this area, but 
they are distinguished difficultly. We can only see a few large-scale 
channels with discontinuity in the slice. 

 

 

Fig. 6. A horizon slice of a 3D seismic data from a sedimentary basin in China. This 3D 
seismic volume, with 401 inlines and 401 crosslines, contains many flow channels. 

 
 
Firstly, we process the seismic section of inline 1729, indicated the red 

line (in Fig. 6), that over the channels A and B. The corresponding section 
are displayed in Fig. 7. The two fluvial channels are generated at 1.22 s and 
1.25 s, respectively. One is between common-midpoints (CMP) 4060 and 
4120 (left ellipse), the other one is between CMP 4265 and 4305 (right 
ellipse). We extract the CMP 4285 that cross the channel A, as represented 
in Fig. 8(a). The corresponding TF image obtained by the STFT, FSST, and 
SET are shown in Figs. 8(b), 8(c) and 8(d), respectively. Due to the seismic 
attenuation, the frequency is damped with time increasing. In each 
time-frequency plane, there is a strong 30-Hz anomaly at 1.25 s because of 
the channel trace. Due to the energy diffusion, the results of the STFT [in 
Fig. 8(b)] and FSST [in Fig. 8(c)] are both blurry. The SET provides a more 
energy-concentrated TFR, so it displays the time and frequency locations of 
the anomaly clearly. Fig. 9 represents the 30-Hz sections of the STFT, FSST 
and SET results of the seismic section. Compared with the other two 
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methods, the SET provides a result with the higher TF resolution. Thus the 
SET presents the location and extent of spectral anomalies more accurately. 
In the spectrogram of the SET, the energy is sparser and more concentrated, 
which is more beneficial to further detect the edges of fluvial channels [see 
Fig. 9(c)]. 

 

Fig. 7. The seismic section of inline 1729 over the channel A and B, as highlighted by 
the ellipses. 

 

 

 

 
Fig. 8. (a) The CMP 4285 in Fig. 7. It crossed the channel at 1.25 s. The TFR of the 
CMP 180 gained by the (b) STFT, (c) FSST, (d) SET. The channel generates a strong 
30-Hz anomaly at 1.25 s. 

(c) (d) 

(a) (b) 
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Fig. 9. The 30-Hz sections of the various TF spectrums using the (a) STFT, (b) FSST, 
and (c) SET. The SET obtains a higher time-frequency resolution and characterizes the 
fluvial channels more clearly. 
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Fig. 10. The 50 Hz seismic slices of the 3D field seismic data from the various TFRs 
obtained by the (b) STFT, (c) FSST, and (d) SET. The channels are indicated by the 
green arrows and white ellipse. 
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 Then, we employ the various TF algorithms to calculate the single 
frequency volume of the 3D seismic data in Fig. 6. As shown in Fig. 10, we 
extract the 30-Hz horizontal slices from the different TFRs in our work. The 
features of the STFT image [Fig. 10(a)] are obscure because of the diffused 
energy.  As indicated by the green arrows and white ellipse,  the FSST 
[Fig. 10(b)] and the SET [Fig. 10(c)] results display the potential fluvial 
channel more clearly. We also obtain that the results are consistent with the 
Fig. 9 at the channel A and B. Owing to the enhancement in the energy 
concentration and robustness, the SET image reveals more distinct and 
continuous subtle fluvial channels features, especially the boundaries of 
channels. To better compare the SET with the FSST, we introduce the 
red-green-blue (RGB) color-blending technique, which is applied to 
represent the 30-Hz, 45-Hz, and 60-Hz spectral components. The 
corresponding color-blending results are shown in Fig. 11. The RGB image 
describes more subsurface structures compared the single frequency slice, 
such those parts that are indicated by the yellow arrows and white ellipse in 
Fig. 10. Through the comparing, the SET describes the more continuous 
channels and clearer thicknesses of channel sand than the FSST, especially 
in the white ellipse. Thus, the seismic spectrum analysis with the SET is 
more helpful in indicating the geologic details. 

 

Fig. 11. The RGB blending results of the spectral components (SCs) at 30 Hz (red),  
50 Hz (green), and 70 Hz (blue) obtained by the (a) FSST and (b) SET. 
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CONCLUSIONS 
 

In this paper, we provided a theorem that the SET could achieve the 
exact IF for the chirp signal. Thus, the SET is suitable for processing the 
signal with highly FM modes. The experiments on the synthetic 
multicomponent signals show that the SET can achieve a TFR with better 
TF concentration compared with the STFT and FSST. The more 
energy-concentrated TF distribution leads to the better ability of the TF 
localization and the better characterization of the time-varying features in 
the TF plane. The improvement of the TF concentration makes the SET 
attractive in seismic data processing and interpretation for better describing 
subsurface geological structures. The SET-based results of the 2D and 3D 
data provide a better localization and delineate more details of fluvial 
channels, which demonstrates the potential of the SET for the seismic 
time-frequency analysis. 
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APPENDIX 

 We consider a linear chirp signal 2 ( )( ) i tf t Ae πφ=  with 
21

1 1 12( )t a b t c tφ = + +  and a generalized Gaussian window function 
2

( ) btg t ae−= . For such a signal, wherever t and τ , we have   

21
22 [ ( ) ( ) ]( ) ( ) i t tx t x t e π φ τ φ ττ ʹ ʹ́++ =                   (A-1) 

According to eq. (3), the STFT of the mode ( )f t  is then derived as  
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with tτ ξ= − . We can denote ( )u b i tπφʹ́= −  and 2 ( ( ))v tπ η φʹ= − , then 
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Submitting u  and v  to (19), we obtain the final STFT result 
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According to the formula (8) and ( ) 0tφʹ́ʹ = , we first calculate the 
derivative of 
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Then, we derive the expression of the IF estimation 
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It is easy to get the conclusion 
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