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ABSTRACT  
 
Riahi, M.A., 2021. Application of improved Gabor deconvolution on zero-offset VSP 
data using a novel smoothing method in logarithmic spectrum. Journal of Seismic 
Exploration, 30: 147-172.  
 
 Absorption phenomenon attenuates seismic signal amplitudes, reduces the vertical 
resolution, and hassles the detection of thin layers. The key objective of this study is the 
vertical resolution enhancement of zero-offset vertical seismic profile data (ZVSP) by 
Gabor deconvolution. According to constant Q theory, it is reliable to apply a smoothing 
along hyperbolic trajectories in the time-frequency domain. In conventional hyperbolic 
smoothing, an empirical whitening factor is added to stabilize the process. Experiments 
on real seismic data show that the whitening factor can smear useful information or 
produce artifacts. To prevent these shortcomings, we apply a logarithmic magnitude 
spectrum (LMS) hyperbolic smoothing on ZVSP data. As a result, by replacing divisions 
with subtractions whitening factor is used. Smoothing the Gabor magnitude spectrum of 
seismic data along hyperbolic paths in the logarithmic spectrum can obtain the magnitude 
of the attenuation function, eliminate the effect of source wavelet, then, estimate the 
source wavelet amplitude spectrum. Applying different deconvolution methods on 
synthetic and real data we show that the performance of the Gabor deconvolution using 
the LMS  is better than that of other methods including Wiener deconvolution and 
conventional hyperbolic smoothing method. 
 
KEY WORDS: Gabor transform, Gabor deconvolution, smoothing, 
   logarithmic magnitude spectrum, vertical seismic profiling (VSP). 
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INTRODUCTION 
 

 Deconvolution is one of the main stages of processing seismic data to 
enhance the resolution and detection of multiples. The most commonly used 
deconvolution method is based on the Wiener filter that was introduced by 
Treitel and Robinson (1967). A trace can be obtained as a convolution of the 
seismic wavelet and reflection coefficient (RC) series. In Wiener's method, 
we can obtain a reflection coefficient (RC) series by using a recorded trace, 
and this operation is called deconvolution. However, the Wiener method has 
some conditions, including that the wavelet is a minimum phase and 
stationary, and RC series is random. In reality, due to the absorption, 
propagated waveform changes with time, and the so-called propagated 
wavelet is non-stationary. 
 
 For this reason, the use of a non-stationary deconvolution operator is 
necessary. Gabor deconvolution considers the seismic section as non-
stationary data. In this method, the loss of high frequency, amplitude, 
especially in later times that are attenuated due to absorption and spherical 
spreading, are approximated and compensated. Different methods of 
designing deconvolution operators for VSP data have been proposed. Anstey 
(1976) recommends averaging of the downgoing waves from all levels to 
design an inverse operator. Lee and Balch (1983) use the downgoing wave 
from a single level to deconvolve all of the VSP traces. Gaiser et al. (1984) 
and Hubbard (1979) recommends performing the deconvolution 
independently at each depth level. Ross and Shah (1987) suggest the level-
by-level deconvolution based on the entire downgoing wave train. Sun et al. 
(2009) suggest the level-by-level deconvolution based on the entire upgoing 
wavetrain. Gabor deconvolution is a new method based on a non-stationary 
convolutional model (Margrave et al., 2011).  A trace contains a non-
stationary seismic wavelet convolved with impulse response (reflection 
coefficients series), plus noise. The reflection coefficients, series will be 
calculated if the non-stationary wavelet is obtained. In order to estimate the 
non-stationary wavelet from a trace, Margrave (1998) proposed the theory of 
non-stationary filter and a non-stationary deconvolution operator. Then, 
Margrave and Lamoureoux (2001) developed a non-stationary 
deconvolution using the Gabor transform. Margrave et al. (2004) proposed a 
non-stationary deconvolution technique, called hyperbolic smoothing, to 
eliminate the amplitude equalization effect. Montana and Margrave (2004 
and 2005), Montana et al. (2006) used improved Gabor deconvolution 
performance by phase correction. Margrave et al. (2011) introduced Gabor 
transform based on a complete set of windows (Erhan and Nowack, 2020) 
and proposed a Gabor deconvolution algorithm by a spectral smoothing 
technique. Ahadi and Riahi (2013) applied the Gabor deconvolution method 
using boxcar smoothing and ordinary hyperbolic smoothing on zero-offset 
VSP data. Zengbao et al. (2013) applied hyperbolic smoothing as a least-
squares inverse problem. 
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 In this paper, a non-stationary deconvolution algorithm based on 
hyperbolic smoothing in the logarithmic magnitude spectrum is used for 
vertical seismic profile data. Unlike the conventional method of hyperbolic 
smoothing, in which each division must necessarily be associated with an 
experimental whitening factor, the new method of hyperbolic smoothing is 
in the logarithmic magnitude spectrum, i.e., LMS hyperbolic smoothing. 
This method mitigates many difficulties in conventional Gabor based 
methods because the LMS exponential attenuation function transforms into a 
linear one. At the same time, the effect of a whitening factor is removed by 
replacing the division by subtraction. Needless to say that the choice of the 
smoothing method is a key factor that significantly affects the final results. 
Until now, smoothing along hyperbolic trajectories has been used as a 
reliable way to obtain wavelet that generated from the effect of the sources 
and level-lines of attenuation function (Margarve et al., 2011). However,  the 
ordinary hyperbolic smoothing suffers from side effects of the whitening 
factor added during the iteration process  (Sun et al., 2012). On the other 
hand, a useful method of wavelet estimation is using VSP data, since VSP 
wavelets travel much less path than similar wavelets generated from surface 
seismic data (Dong et al., 2002). Therefore VSP data attenuation is less,  and 
the results of applying non-stationary wavelets on VSP data are much closer 
to the subsurface reality. 
 
 
THEORY 
 
Gabor transform algorithm 
 
 One of the key methods for non-stationary deconvolution is to use the 
Gabor transform. Gabor proposed the wave propagation in the form of 
Gaussian wave packets, to focus a signal to a specified time range, and then 
applies the Fourier transform of the wave packets (Gabor, 1946). In the 
following, the Gaussian wave packets are described as Gaussian windows. 
In some papers, the Gabor transform is introduced as a short-time Fourier 
transform. Repeating the Gaussian function to infinity and then apply a 
Fourier transform on it, a spectral Fourier spectrum is achieved. By shifting 
the windows in time and Repeat the above steps, the primary time function 
is regarded as a function of time, and frequency (seismic signal from the 
one-dimensional plane is transmitted to a 2D time-frequency plane). 
Because of the repetitive calculations of continuous Gabor transform, it 
appears that the use of Gaussian functions in the central discrete times is 
more appropriate. Discrete Gabor transform is proposed by taking one of the 
Gaussian functions, features  which is (Margrave and Lamoureux, 2001): 
 

𝛺 𝑡 − 𝑛∆𝜏 = 𝛺! ≈ 1
!∈!!∈!

      (1) 
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 This relationship defines a set of Gaussian windows that the sum of 
them in every moment is unitary. In eq. (1), Ωn means the shifted window Ω 
in the time n∆τ. Gaussian functions can be defined as follows (Gabor, 1946): 
 

𝛺 𝑡 − 𝑛 ∆𝜏 =
∆𝜏
𝑇 𝜋

 𝑒! !!!∆! !!!! (2) 

 
In this equation, 𝑇  is half the width of the Gaussian window, and ∆𝜏 is the 
distance between the Gaussian windows. In order to get 𝛺(𝑡 − 𝑛∆𝜏) the 
equation can be written  as a convolution with a function: 
 

𝛺 𝑡 − 𝑛∆𝜏 = (𝛺 ∗ 𝐶)(𝑡)
!∈!

 (3) 

 
The function is defined as: 
 

𝐶 𝑡 = 𝛿(𝑡 − 𝑘∆𝜏)
!

 (4) 

 
Fourier transform of 𝐶 𝑡  and 𝛺(𝑡) functions are defined as follows: 
 

Ω 𝑓 = 𝑒! !"# !∆𝜏 (5) 

𝐶 𝑓 =
1
∆𝜏

𝛿(𝑓 −
𝑛
∆𝜏
)

!

 (6) 

 
 Inserting the relations (5) and (6) in eq. (3), then calculating the 
inverse Fourier transform, we get: 
 

𝛺(𝑡 − 𝑛∆𝜏)
!∈!

= 1 + 2 cos
2𝜋𝑡
∆𝜏

𝑒!
!"
 ∆!

!

 
(7) 

 
 The second term of the equation determines the error. Therefore, by 
increasing !

∆!
, the amount of errors is reduced. Figs. (1a) and (1b) display 

Gaussian windows that the sum of them at every point in the time axis is 
unitary. The figures were drawn using eq. (7). Near the two sides of the 
summation curve in Fig. (1b), the graph is bellowing the unit because of the 
lower total accumulation of Gaussian windows (Margrave and Lamoureoux, 
2001). 
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Fig. 1. a) A set of Gaussian windows with the sum-of-windows curve. The window half-
width is 0.2 s, and the window increment is 0.1 s. b) On two sides of the summation 
Curve of Figure, because of the lower total accumulation of Gaussian windows, their 
summation is just under the unit. 
 
 
 
 A seismic signal 𝑥(𝑡) can be  described by Gaussian-like windows as 
following: 
 

𝑥 𝑡 = 𝑥 𝑡 𝛺 𝑡 − 𝑛∆𝜏
!∈!

= 𝑥 𝑡 𝛺 𝑡 − 𝑛∆𝜏
!∈!

= 𝑥! 𝑡        .
!∈!

 

(8) 
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Using the Fourier transform, we get: 
 

𝑥 𝑓 = 𝑥! 𝑡 𝑒!!!"#$𝑑𝑡
!∈!

= 𝑥! 𝑓       .
!∈!

 

(9) 

  
 In eq. (9), 𝑥 is the Fourier transform of x, and 𝑥!(𝑓) is the Fourier 
transform of 𝑥!(𝑡), which means: 
 

𝑥 𝑓 = 𝑥! 𝑡 𝑒!!!"#$  𝑑𝑡     . (10) 
 
 The original signal can be rewritten by applying an inverse Fourier 
transform on the eq. (10)  as: (Margrave and Lamoureoux, 2001) 
 

𝑥 𝑡 = 𝑥! 𝑓
!∈!

𝑒!!"#$𝑑𝑡  .      . 
(11) 

  
 The inverse Gabor transform also was defined as the above equation. 
It transforms a two-dimensional time-frequency spectrum into a one-
dimensional time-domain signal. 
 
 
Convolutional model for a non-stationary wavelet 
 
 Margrave and Lamoureoux (2001)  defined a non-stationary wavelet 
as follows: 
 

𝑤! 𝜏 ,𝜔 = 𝑤 𝜔 𝛼 𝜏 ,𝜔  (12) 
 
 In the above equation 𝑤 𝜔  is the Fourier transform of source wavelet 
and attenuation function is defined as follows (Aki and Richards, 1980):  
 

𝛼 𝜏,𝜔 = exp − !
!!
𝜏 + 𝑖 !

!!
𝐻 𝜔      ,                                      (13) (13) 

 
where H denotes the Hilbert transform. The quality factor of rocks is Q, 
which is the ratio of 2π times the peak power stored in power dissipated per 
cycle (O’Connell and Budiansky, 1978). The attenuation of seismic energy 
by the earth and the resulting non-stationary recorded data traces are 
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fundamental issues in seismic data processing and interpretation. There are 
two approaches for seismic pulse propagation and dispersion in attenuating 
media. The first method assumes that Q depends on frequency (Aki and 
Richards, 1980). The second approach assumes that Q is independent of 
frequency and is known as the constant-Q model; Q is then used to calculate 
the pulse broadening and dispersion. Therefore, a non-stationary synthetic 
trace can be constructed by a non-stationary convolution of the Q operator 
and the reflectivity, and then a stationary convolution with the wavelet. 
Here, we assume that Q is independent of frequency, which is called the 
constant-Q model (Kjartansson, 1979). Margrave (1998) proposed a non-
stationary filtering theory and a non-stationary convolution. Applicability of 
non-stationary deconvolution largely depends on the accuracy of non-
stationary wavelet estimation. A non-stationary seismic trace can be defined 
as follows (Margrave, 1998): 
  

𝑥 𝜔 = 𝑤! 𝜏,𝜔 𝑟 𝜏 𝑒!!"#𝑑𝜏        , (14) 
 
inserting the non-stationary wavelet equation  into eq. (14) we get: 
 

𝑥 𝜔 = 𝑤 𝜔  𝛼 𝜏,𝜔 𝑟 𝜏 𝑒!!"#𝑑𝜏     , (15) 
 

𝑥(𝜔) is a Fourier spectrum of trace, 𝑤(𝜔) is a Fourier spectrum of source 
wavelet, r is reflection coefficients, series, and is a time and frequency-
dependent attenuation function defined in eq. (13). 
 
 The non-stationary seismic trace in the time domain can be given by 
an inverse Fourier transform of eq. (15), as follows: 
 

𝑥 𝑡 = 𝑤 𝑓 𝛼 𝑢, 𝑓 𝑟 𝑢 𝑒!!"#(!!!)𝑑𝑓𝑑𝑢    . (16) 
 
Eq. (16) shows the convolution between the non-stationary wavelet and a 
reflection coefficients series. 
 
 The Gabor spectrum of a seismic trace is expressed as (Margrave and 
Lamoureoux, 2001): 
 

𝐺 𝑥 𝜏 , 𝑓 ≈ 𝑓 𝛼! 𝜏, 𝑓 𝐺 𝑟 𝜏 , 𝑓       , (17) 
 
where the 𝐺 𝑟 𝜏 , 𝑓  is the Gabor spectrum of reflectivity. The important 
point is that there is no need to calculate the phase; by estimation of 
𝑤 𝑓 𝛼! 𝜏 , 𝑓 we can consider a minimum-phase function. Now we 

assume that 𝐺 𝑥 𝜏 , 𝑓 is a function that shifts rapidly in both time and 
frequency domains. Also, we assume that 𝑤 𝑓  is independent of τ and is 
smooth in 𝑓 , while 𝛼! 𝜏, 𝑓   is exponentially attenuated in both the time 
and frequency. Assumptions that we consider for 𝐺 𝑟 𝜏 , 𝑓  is similar to a 
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random series of reflection coefficients, which is considered in the theory of 
stationary deconvolution. The assumed Gaussian window is effective where 
the signal’s components have dissimilar frequencies and amplitudes so that 
the selected window is shorter in time, the frequency will be smoother and 
vice versa (Cattani and Rushchitsky, 2007) We estimate the attenuated 
wavelet in the Gabor domain 𝑤 𝑓 |𝛼! 𝜏 , 𝑓 | by smoothing 𝐺 𝑥 𝜏 , 𝑓  . 
This will be carried out by convolving it with a hyperbolic function in the 
time-frequency domain. The method evaluated in this paper is an 
improvement to the other smoothing methods. 
 
 By smoothing, we can eliminate the effect of the reflectivity from a 
seismic trace (Margrave et al., 2002; Ross and Shah, 1987). 
 
 
Hyperbolic smoothing 
 
 Hyperbolic smoothing, tries to estimate the attenuation function and 
the Gabor spectrum of source wavelet separately. Suppose that α 𝑡, 𝑓  is the 
attenuation function or Q-constant operator, where t is time and f is 
frequency. We have, 

 

α 𝑡, 𝑓 =  𝑒
!!"#
! !!" !!"#

!       . (18) 

 
 As eq. (18) shows, in a constant Q model the attenuation contours are 
determined by t f = Constant, and appear as a family of hyperbolas. Based on 
this analysis, it is reasonable to divide the entire time-frequency plane into a 
number of hyperbolic strips, average over each strip, and take these average 
values as a measurement of the amplitude loss caused by the attenuation. At 
first, the attenuation surface can be roughly approximated by filling these 
strips with their respective average values (or by interpolation). Let 𝐼!(𝑡, 𝑓) 
be the indicator function for the n-th hyperbolic strip, in other words, 𝐼!   is 
zero everywhere except where the points inside the n-th strip is unity. This 
process can be shown in two equations (Sun et al., 2012), 
 

𝑎! = 𝑚𝑒𝑎𝑛!,! 𝐺 𝑥 𝜏 , 𝑓 𝐼! 𝑡, 𝑓    ,           (19)        

𝛼(𝜏, 𝑓) !"# = 𝑎!!
!!! 𝐼! 𝑡, 𝑓    , (20) 

 
 
where N is the total number of hyperbolic strips. Given the 𝛼(𝜏, 𝑓) !"#, the 
source signature 𝑊(𝑓) can be obtained by averaging the ! ! ! ,!

!(!,!) !"#
 over all 

time samples and then running smoothing in the frequency direction with a 
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suitable convolutional smoother b(f ), which is a 2D boxcar (Margrave, 
2011), 
 
            𝑊(𝑓)

!"#
= 𝑏 𝑓 ∗𝑚𝑒𝑎𝑛!

! ! ! ,!
! !,! !"#!!!!"#

    , (21) 

 
where ∗ denotes the convolution operator, ε is an extra whitening factor to 
prevent any division by 0, and 𝐴!"# is the maximum value of dividends. 
Because of the existence of source signature, the first estimation of  𝛼(𝜏, 𝑓)  
is always higher than the actual value, which will cause an underestimated 
source in eq. (22). If we remove 𝑊(𝑓)

!"#
from 𝐺 𝑥 𝜏 , 𝑓  , and repeat the 

hyperbolic smoothing, a more authentic attenuation function will be 
obtained. Therefore, an iterative process is favorable in eliminating the 
residual source effect from the estimation of  𝛼(𝜏, 𝑓)  (Sun et al., 2012).  
 
 These whitening factor during the iteration are the primary concern of 
our study; it is found that these factors will also influence the ultimate 
results. This leaves room for further improvement in hyperbolic smoothing. 
 
 
LMS Hyperbolic smoothing 
 
 In the logarithmic magnitude spectrum (LMS), the attenuation 
surfaces still track along hyperbolic trajectories, and LMS hyperbolic 
smoothing means the hyperbolic smoothing in this spectrum. There are two 
major advantages over the hyperbolic smoothing method in the normal 
spectrum. The exponential relationship of amplitude loss versus the time and 
frequency is transformed into a linear relationship in LMS, simplifying 
many problems. More importantly, divisions in the ordinary magnitude 
spectrum will be converted into subtractions in LMS, which is useful in 
avoiding the artifacts caused by the whitening factor and reducing human 
intervention (Sun et al., 2012). 
 
 As the solid black line is shown in Fig. 2, the attenuation function in 
LMS is transformed into linear form with respect to t f 
 
            𝐿!(𝑡, 𝑓) =

!!
!
𝑡𝑓   , (22) 

 
where, 𝐿! stands for the logarithm operation on 𝛼(𝜏, 𝑓) . Furthermore, the 
actual logarithmic magnitude spectrum could be formulated as an addition of 
3 terms. 
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        𝐿 ! ! 𝑡, 𝑓 =
−𝜋
𝑄
𝑡𝑓 + 𝐿! 𝑓 + 𝐿! ! (𝑡, 𝑓)  

(23) 
 
It is evident that this linear relationship's gradient is closely related to Q, 
while the intercept is caused by source and reflectivity.  

 

 
 
Fig. 2. Iteration process of seeking the optimum Q (Sun et al., 2012). 

 
 
 After dividing the LMS into numbers of hyperbolic strips and then 
cross-plotting the magnitude average with the center position of each strip, 
we will get an 'attenuation curve' (the dotted dash lines in Fig. 1). Because 
the curve's tail is collected at larger tf, an area with insufficient samples for 
creating a convincing statistical character, it is often cut off before seeking 
an optimum linear fit. Dropping the intercept term, the attenuation function 
could be obtained by utilizing the Q extracted from optimum linear fit's 
gradient. Similarly, the Q estimation should be set in an iteration process. As 
shown in Fig. 2, an attenuation function with satisfying accuracy is 
generated only after several iterations. And the source 𝐿!   could be acquired 
after subtracting the attenuation from 𝐿 ! ! , and then averaging over all 
time and smoothing slightly in frequency. Actually, the mathematical logic 
behind the eqs. (19) to (22) still makes sense in LMS hyperbolic smoothing, 
except that division should be replaced by subtraction. This is useful when it 
comes to experimental seismic data, for that the assumption of a constant Q 
is rather impractical for the whole seismic section (Sun et al., 2012). 



 

 

157  

Deconvolution algorithm in Gabor domain 
 
 The next step is to estimate the Gabor spectrum of the reflectivity 
series. For this purpose, the Gabor spectrum of the trace should be divided 
by the Gabor spectrum of the wavelet:  
 

𝐺[𝑟 𝜏, 𝑓 ] = ! ! ! ,!
! ! ! ,! !"##$!!!" !,! !!" !! ! ,! !"#

     .  
(24) 

 
 This division is called deconvolution, and because it has been done in 
the Gabor domain, it is called deconvolution in the Gabor domain or Gabor 
deconvolution. By applying the inverse Gabor transform to the Gabor 
spectrum of the reflectivity, the reflectivity in the time domain is obtained. 
 
 In what follows, the process is applied to synthetic and experimental l 
zero-offset VSP data. 
 
 
Gabor deconvolution of synthetic VSP data 
 
 The designed synthetic model consists of 10 layers, where each layer 
thickness and velocity are shown in Table 1. In this model, receivers spacing 
is 50 m, and Q is set to be 40. Fig. 3, top and bottom, shows synthetic zero-
offset VSP data without and with 10% random noise, respectively. These 
sections are composed of downgoing and upgoing waves. Upgoing waves 
are reflections received from deep layers, and downgoing waves are direct 
arrivals.  
 
 
Table 1. Shows the velocity and thickness of each layer. 

 
Layers Thickness (m) Velocity (m/s) 
1 160 800 
2 150 1300 
3 130 2100 
4 200 1700 
5 190 2000 
6 110 2200 
7 185 2400 
8 220 2100 
9 85 1900 
10 130 2550 
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Fig. 3. Zero-offset VSP data designed according to Table 1. Data without noise (top) and 
data with 10% random noise (bottom). 
 
 
 In VSP data processing, to apply the deconvolution operator, it is 
necessary to separate the upgoing wavefield from the downgoing 
wavefields. In this study, for the separation of these two wavefields, a 
median filter (Hardage, 1983) is used. Fig. 4 shows the flattened upgoing 
waves in both the clean and noisy data sets. From Fig. 4, in particular, it is 
seen that the reflections received from the 10-th layer are affected by a 
severe amplitude attenuation. These reflections are hardly detectable in the 
noisy data. Some amounts of amplitude attenuation are also seen in the 
reflections received from the eighth and ninth layers. These reflections are 
marked by ellipses in both data sets in Fig. 4. After the aforementioned step, 
the VSP data are ready for applying the deconvolution operator. 
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Fig. 4. Flattened and separated upgoing waves in both data sets without noise (top) and 
with 10% random noise (bottom). 
 
 
  The deconvolution operator is designed by using the downgoing 
waves in the VSP data. The required seismic wavelet for deconvolution of 
the upgoing data is also estimated using the same waves. It should be noted 
that the improved Gabor deconvolution is applied separately to each trace of 
the seismic section. Wavelet estimation is one of the most important stages 
of a deconvolution. To evaluate the precision of the wavelet estimation by 
LMS hyperbolic smoothing, the seismic wavelet is selected from downgoing 
wavefields. Next, based on the method proposed by Gaiser et al. (1984), the 
deconvolution operator is used independently on each layer. The results of 
using proper estimation of the upgoing waves by the proposed LMS 
hyperbolic smoothing are shown in Fig. 5.  
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Fig. 5. Shows the results before (panel a) and after Gabor deconvolution with LMS 
approach on upcoming reflections (panel b). Note that for both cases, the final results 
show the improvements in amplitude (attenuation case). c) A comparison between the 
amplitude spectrum before (blue curve) and after applying improved Gabor 
deconvolution (red curve). 
 
 
         In the above figures, the severe attenuation in amplitude is obvious in 
reflections shown within the ellipse in the top left panel before applying 
LMS Gabor deconvolution. While considerable enhancement in the 
amplitude of the reflections shown within the ellipse in the top right panel 
after applying LMS Gabor deconvolution. This enhancement is due to the 
proper estimation of the wavelet by the proposed LMS hyperbolic 
smoothing. 
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        For the noise-contaminated data the results are shown in Fig. 6. In this 
figure, the severe attenuation in amplitude is obvious in reflections shown 
within the ellipse in the bottom left panel before applying LMS Gabor 
deconvolution. While considerable enhancement in the amplitude of the 
reflections shown within the ellipse in the bottom right panel after applying 
LMS Gabor deconvolution. This enhancement is due to the proper 
estimation of the wavelet by the proposed LMS hyperbolic smoothing. A 
comparison between amplitude spectrum before (blue line) and after 
applying improved  Gabor deconvolution (red line). 
 
 

 

 

 
 

 

Fig. 6. Zero-offset VSP data of Fig. 4 after applying improved Gabor deconvolution 
designed from downgoing waves on to data without noise (a) and to data with 10% 
random noise (b). c) A comparison between the amplitude spectrum before (blue line) 
and after applying improved Gabor deconvolution (red line). 
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            To have a better comparison of the proposed method with the 
conventional Wiener deconvolution. The Wiener deconvolution operator is 
designed by using the downgoing VSP waves and applied to the upgoing 
waves. The Wiener deconvolution with ordinary hyperbolic smoothing 
applied to the same model used by Ahadi and Riahi (2013). As shown in 
Fig. 7, the results obtained after applying the Wiener deconvolution, the 
reflections marked with an arrow are not enhanced. In addition, a series of 
artifacts that may cause confusion appears parallel to the primary reflections 
marked within the ellipses in Fig. 7.  
 

 

 

Fig. 7. Zero-offset VSP data using conventional hyperbolic smoothing, an empirical 
whitening factor is added to stabilize the process. The Wiener deconvolution is applied to 
data with a 10% random noise. Artifacts are visible in the ellipses. Using the conventional 
hyperbolic smoothing, the whitening factor smeared useful information and produced 
artifacts. 
 
 
          The results presented in Fig. 8 clearly show that the LMS Gabor 
deconvolution has a greater ability to restore attenuated reflections than the 
Wiener deconvolution. Despite a sharp attenuation in signal amplitudes before 
deconvolution in the deep reflections shown within an ellipse (bottom left 
panel), using improved Gabor deconvolution shows a noticeable amplitude 
enhancement in the deep reflections (bottom right panel). Namely that, using 
the Gabor deconvolution has increased the amplitude of reflections received 
from deeper layers, whereas reflections amplitudes are not well reconstructed 
after applying the Wiener deconvolution (Fig. 7).  
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Fig. 8. Zero-offset VSP data of before (left panel) and after (right) using conventional 
Gabor deconvolution designed from downgoing waves on to data without noise. The 
attenuated reflection amplitudes shown within left ellipse are noticeably are enhanced 
within the right ellipse after using Gabor deconvolution. 
 
 
    To examine the stability of the  LMS Gabor deconvolution via the presence 
of random noise, 10% random noise added to the Zero-offset VSP data. Figs. 
9a and 9b, show the results of noisy data before (left panel) and after (right) 
using the LMS Gabor deconvolution. The attenuated reflection amplitudes are 
shown within the left ellipse are noticeably enhanced in the right ellipse after 
using the LMS Gabor deconvolution. Indicating that, by using logarithmic 
magnitude spectrum (LMS) hyperbolic smoothing is stable via the presence of 
random noise and illuminates useful information, and eliminates artifacts. 

 

Fig. 9. Zero-offset VSP data before (left panel) and after (right) using the LMS Gabor 
deconvolution designed from up-going waves on to data with a 10% random noise. The 
attenuated reflection amplitudes is shown within the left ellipse are noticeably enhanced in 
the right ellipse after using Gabor deconvolution. Using logarithmic magnitude spectrum 
(LMS) hyperbolic smoothing illuminates useful information and eliminates artifacts. 
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          The deconvolution operator was designed by separating downgoing 
wavefields from the upgoing wavefield in the aforementioned data, and the 
processes go on with designing a deconvolution operator with downgoing 
wavefield and then applying to the upgoing wavefield. LMS hyperbolic 
smoothing is used to estimate non-stationary wavelets. Fig. 10a shows the 
Gabor transform of traces in LMS domain with 20 hyperbolae of tf = constant, 
smoothing through these strips we can obtain an estimation of non-stationary 
wavelet. Fig. 10b shows the Gabor spectrum of reflectivity resulted in 
improved Gabor deconvolution. 
 
 

 
 
 
Fig. 10. The Gabor transform of traces in the logarithmic magnitude spectrum with 20 
hyperbolae of t f = constant (Left) and Gabor spectrum of reflectivity resulted by applying 
Gabor deconvolution with LMS approach (right). 
 

Gabor deconvolution of experimental VSP data 
 
         Above, deconvolution results from synthetic data were studied in the 
Gabor domain. In this step, the Gabor deconvolution is applied to an 
experimental zero-offset VSP data set. The data are from one of the southern 
Iranian oil fields. It is worth mentioning that the processing steps in the 
experimental data are performed using the MATLAB software (the Matlab 
script is included in the Appendix). Fig. 11 represents the experimental VSP 
data. This data contains 243 traces, and geophone interval are 15 m, the 
sampling interval is 2 ms. The acquisition depth is from 712 to 4235 m, we 
have chosen 80 traces from 1755 to 2954 m and apply improved Gabor 
deconvolution on them. Fig. 12 shows the experimental data after applying 
AGC, the upgoing, and downgoing waves are observable. 
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  Fig. 11. Zero-offset  VSP experimental data. 
 
 

 
 
Fig. 12. Zero-offset VSP experimental data after applying AGC. 



 

 

166  

        After flattening the upgoing waves and applying median filters (to 
separate upgoing and downgoing waves), the experimental data are ready for 
the application of the deconvolution operator. Fig. 13 shows the experimental 
data after performing these steps. The deconvolution operator of the Gabor 
domain is designed based on the downgoing waves and applied to the upgoing 
waves. The results can be seen in Fig. 14 where reconstruction of the 
reflections is shown by the yellow ovals in this figure. 
 

 

Fig. 13. Flattened and separated upgoing waves before applying Gabor deconvolution. 

 
 

Fig. 14. Upgoing waves after applying the improved Gabor deconvolution. A noticeable 
improvement is obvious on reflectors at 1.6 and 2 seconds, respectively. 
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          In order to clarify the results, a comparison has been made between 
three experimental recorded seismographs in three different depths before 
and after applying Gabor deconvolution. These three seismographs were 
selected from depths of 100, 750, and 1300 m, which are shown in Fig. 15, 
respectively. As is noticeable, these three traces are improved considerably 
after applying the improved Gabor deconvolution. 

 
Fig. 15. shows three seismographs selected from depths of 100, 750, and 1300 meters, 
which are resulted before (green) and after (blue) applying improved Gabor 
deconvolution, respectively. As is noticeable, these three traces are improved 
considerably after applying the Gabor deconvolution. 

 
 

CONCLUSION 
  
 Gabor deconvolution includes an amplifier function that can affect the 
amplitude of the estimated nonstationary wavelets. Application of our 
improved Gabor deconvolution with LMS hyperbolic smoothing on two 
synthetic VSP data sets (with and without random noise) showed a higher 
resolution and improved reconstruction of wavelets, compared with the 
Wiener and conventional Gabor deconvolution operators. Using the 
improved Gabor deconvolution operator on real VSP data we observed an 
increase in quality and resolution and an improvement in the reconstruction 
of different reflections. Our method also makes data processing faster. In the 
presented Gabor deconvolution, it is not necessary to separately eliminate 
the attenuation effect, as is in the conventional method. In LMS, the 
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exponential equation transforms into a linear form, therefore it avoids a 
whitening factor that is conventionally selected by a user. Our results 
demonstrate that our improved Gabor deconvolution can successfully 
estimate nonstationary wavelets from zero-offset VSP data. It improves the 
quality of VSP data without considerable sensitivity to random noise. This is 
shown by comparing our improved Gabor deconvolution operator with 
Wiener and conventional Gabor deconvolution operators. 
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APPENDIX 
 
%Gabor Transform 
function [ tfs,tout,fout,tnorm ] = 
Gabor_transform2(trace,t,twindow,tincrease ); 
          
 taper=200;  
 normalize=1;  
 power=1;  
 
taper=taper*twindow/max(t); 
 
tmin=t(1); 
t=t-tmin; 
 
%row vecters 
[m,n]=size(trace); 
if(n==1) trace=trace.'; end 
[m,n]=size(t); 
if(n==1) t=t'; end 
dt=t(2)-t(1); 
 
%taper trace 
trace=trace.*mwhalf(length(trace),taper)'; 
 
%pqwer trace 
trace=padpow2(trace); 



 

 

170  

t=(0:length(trace)-1)*(t(2)-t(1)); 
%number of windows 
tmax=t(end); 
nwin=tmax/tincrease+1; 
nwin=round(nwin); 
tinc=tmax/(nwin-1); 
tout=(0:nwin-1)*tinc; 
tnorm=zeros(size(t)); 
itn=zeros(1,nwin); 
 
for k=1:nwin 
    %Gaussian 
    tnot=(k-1)*tinc; 
    itn(k)=round((tnot-t(1))/dt)+1; 
    gwin=exp(-((t-tnot)/twindow).^2)/(sqrt(pi)*twindow/tincrease); 
    tnorm=tnorm+gwin; 
     
    if(k==1) 
        [tmp,fout]=fftrl(gwin.*trace,t); 
        tfs=zeros(nwin,length(tmp)); 
        tfs(k,:)=tmp; 
    elseif(k<nwin) 
        tfs(k,:)=fftrl(gwin.*trace,t); 
    else 
        tfs(k,:)=fftrl(gwin.*trace,t); 
    end 
end 
function [spechyp,smooth,tf] = hyperbolic_smoothing(tfs,t,f,n) 
 
%n=levels in Smoothing 
 
nt=length(t); 
nf=length(f); 
 
if(n>nf)  
    n=nf;  
end 
 
if(nargin<4) 
    n=nf;  
end 
 
tfmax=t(end)*f(end); 
deltf=tfmax/n; 
 
tf=t(:)*(f(:)'); 
 
smooth=zeros(1,n+1); 
fold=smooth; 
tflevels=linspace(0,tfmax,n+1); 
for k=1:nf 
    for kk=1:nt 
        tf1=tf(kk,k); 
        klevel=floor(tf1/deltf)+1; 
        smooth(klevel)=smooth(klevel)+tfs(kk,k); 
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        fold(klevel)=fold(klevel)+1; 
   end 
end 
%Hyperbolic Smoothing 
smooth=smooth./fold; 
 
spechyp=zeros(size(tfs)); 
for k=1:nt 
    for kk=1:nf 
        iuse1=floor(tf(k,kk)/deltf)+1; 
        iuse2=ceil(tf(k,kk)/deltf)+1; 
        if(iuse2==iuse1) 
            spechyp(k,kk)=smooth(iuse1); 
        else 
            spechyp(k,kk)=smooth(iuse1)+(smooth(iuse2)-
smooth(iuse1))*... 
                (tf(k,kk)-tflevels(iuse1))/(tflevels(iuse2)-
tflevels(iuse1)); 
        end 
    end 
 end 
function [ trout,spectrum ] = 
gabordeconvolution(trace,t,twindow,tincrease,tsmoothing,fsmoothing,s
tab,phase,ioperator) 
 
% ioperator     1 operator with analysis windowing 
%               2 operator with synthesis windowing 
%   
% stab          stability constant 
% 
% phase         0 for zero phase, 1 for minimum phase 
 
[ tfs,tout,fout ] = Gabor_transform2( trace,t,twindow,tincrease ); 
 
tmp=max(tfs,[],2);%Find the maximum of each spectrum 
amax=abs(min(tmp)); 
 
dt=tout(2)-tout(1); 
df=fout(2)-fout(1); 
nt=round(tsmoothing/dt)+1; 
nf=round(fsmoothing/df)+1; 
 
if(tsmoothing<max(t)) 
 % smooth with boxcar smoothing 
 spectrum=conv2(abs(tfs)+stab*amax,ones(nt,nf),'same'); 
else 
    %hyperbolic smoothing 
    spechyp=hyperbolic_smoothing(abs(tfs),tout,fout,100); 
    %estimate wavelet 
    w=mean(abs(tfs)./spechyp); 
    w=convz(w,ones(1,nf))/nf; 
    spectrum=spechyp.*w(ones(length(tout),1),:); 
 end 
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if phase==1 
    L1=1:length(f);L2=length(f)-1:-1:2; 
    symspec=[spectrum(:,L1) spectrum(:,L2)]; 
    symspec2=hilbert(log(symspec')).'; 
    spectrum=exp(-conj(symspec2(:,L1))); 
else 
     spectrum=1 ./spectrum; 
end 
 
%deconvolve 
if(ioperator ~= 2) 
    tfs=tfs.*spectrum; 
end 
 
%inverse transform 
if(ioperator == 1) 
    trout=inverse_gabor(tfs,fout); 
end 
trout=trout(1:length(trace)); 
trout=balans(trout,trace); 
%inverse gabor 
function [trout,t]=inverse_gabor(spec,f) 
 
[trout,t]=ifftrl(sum(spec),f); 
 
trout=trout(:); 
%Gabor decon VSP-Data 
[n,m]=size(sec2); 
fnyq=1/(2*dt); 
fmax=fnyq/2; 
fwid=fnyq/20; 
 
%Estimat Reflectivity by Gabor deconvolution 
for i=1:n 
    r2=gabordecon(sec4(i,:),t,.1,.01,max(t),5,0,1,1); 
    r2=filtf(r2,t,[0 0],[fmax fwid]); 
    r2=balans(r2,sec(i,:)); 
    secgabor1(i,:)=r2; 
end 
 
%Wavelet * Estimated Reflectivity = Section after Gabor 
deconvolution 
for i=1:n 
    secgabor2=convolution(w,secgabor1(i,:),2); 
    secgabor3(i,:)=secgabor2; 
end 
 
%Showing of Estimated Reflectivity 
figure 
formaroof(secgabor1,RS) 
 
%Showing of Section after gabor deconvolution 
figure 
formaroof(secgabor3,RS) 


