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ABSTRACT

Kim, S., Chung, W.K. and Lee, J.H., 2021. Acoustic full waveform inversion using
Discrete Cosine Transform (DCT). Journal of Seismic Exploration, 30: 365-380.

Full waveform inversion (FWI) has been implemented widely to reconstruct
high-quality velocity model in the subsurface. However, due to the advance in
geophysics data acquisition with increasing demand for high dimension velocity model
estimation, computational costs become prohibitive if not impossible. To alleviate
computational burdens, we incorporate discrete cosine transform, one of the most widely
used compression techniques in image processing, into FWI while estimation results are
still kept comparable to those from the full-model based FWI. The unknown velocity
fields are transformed in the DCT domain and only a small number of DCT coefficients
are included in FWI to describe common velocity model features without losing much
reconstruction accuracy. Generally, DCT coefficients can be chosen specific window
(e.g., square window). However, there can be more dominant DCT coefficients out of
this specific window. To take more dominant DCT coefficients, we sort the absolute
value of DCT coefficients in descending order and determine DCT coefficients with
compression ratio. Through the comparison reconstructed velocity models, our proposed
method generate more accurate velocity model than case of using square window. We
investigate the applicability of our DCT-based FWI method to two numerical examples.
It is shown that the proposed method can reduce the computational cost significantly and
produce satisfactory results. Through these results, we expect that our FWI method can
contribute to enhance computational efficiency for FWI with enormous amount of
unknown parameters.

KEY WORDS: acoustic, seismic, full waveform inversion (FWT),
Discrete Cosine Transform (DCT).
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INTRODUCTION

Full waveform inversion (FWI) is one of the promising seismic
imaging techniques that enable to obtain high-resolution velocity
information in the subsurface. To reconstruct subsurface velocity model,
FWI typically performs minimization of a misfit function that is defined as
the difference between modeled and observed data (Laily, 1983; Tarantola,
1984; Pratt et al., 1998; Virieux and Operto, 2009). In spite of its ability to
recover high-resolution velocity models, FWI has been regarded as
challenging because of 1) the large number of forward model run
proportional to the number of discretization grids or the number of
observations, and 2) the computational costs to construct, store and solve the
linear system whose size is a function of the number of discretization grids
or the number of observations. To overcome these computational challenges,
many techniques from linear algebra/optimization community such as back-
propagation (e.g., Tarantola, 1984) and limited-memory BFGS (e.g.,
Nocedal and Wright, 2006) have been applied for FWI.

Although several efficient methods can handle intermediate-scale
FWI problems successfully, it is still difficult to implement FWI to large-
scale with a tremendous amount of seismic data, high dimensional problems
with high-resolution survey with shorter spatial intervals. Thus, the
computational burden grows dramatically, especially when processing the
observation data, constructing Jacobian and Hessian matrices, and
computing the linear system for model updates. To address these issues, a
number of studies have been suggested for efficient FWI implementation by
reducing the number of observations and/or the number of unknowns while
the final inverse solution is kept close to one obtained from full-model
based FWI. One of widely used data reduction approaches is simultaneous-
source FWI method (Krebs et al., 2009; Gao et al., 2010; Ben-Hadj-Ali et
al., 2011; Son et al., 2012), which uses simultaneous-source gather that is
made from a lot of source gather with encoding scheme. Habashy et al.
(2011) propose a source and receiver compression technique by checking
the amount of redundancy in the data. These techniques can significantly
reduce the computational costs and storage by compressing the number of
receivers as well as sources. Recently, the compressive sensing technique
have also been applied to FWI for enhancing efficiency by subsampling data
in specific domain (Li et al., 2012, 2016; Zhu et al., 2017).

High-resolution velocity model reconstruction is another challenging
factor for computational burden. With high-resolution survey with fine
spatial grid intervals, the number of unknowns in velocity model can
increase tremendously. It requires that huge computational environment is
needed for obtaining high-resolution velocity model. In petroleum and
groundwater engineering, dimension reduction of the unknown subsurface
properties has been investigated recently (Jafarpour and McLaughlin, 2008;
Lee et al., 2016). However, only few studies have investigated the
applicability dimension reduction in FWI, for example, Lin et al. (2012)
utilized a discrete wavelet transform to decrease the number of unknowns in
velocity model during FWI. They choose a few dominant Daubechies
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wavelet basis vectors to perform model compression and reconstruct model
successfully. While they mentioned Daubechies 4 wavelet basis performed
better than Harr basis in their own study, no other wavelet basis was not
tested for performance comparison in a systematic way. In this study, we
propose a new FWI method using discrete cosine transform (DCT) for
efficient velocity model reconstruction. DCT is widely used to compress
image files (e.g. JPEG) in image processing applications for its flexibility
and asymptotically convergence to optimal Karhunen-Loeve transform (Jain,
1989). In geophysics, DCT has been applied to enhance efficiency for data
processing (Zhou and Li, 2013; Dalmau et al., 2014; Zhu et al., 2015). Zhou
and Li (2013) try to reduce the burden of large capacity of data by
compressing data in FWI on ground-penetrating radar (GPR) data. For
removing noise signal in seismic data, DCT can be used to make base
dictionary (i.e., basis vectors) for sparsity-promoting dictionary learning
(Zhu et al., 2015; Chen, 2017). Furthermore, DCT can be applied on top of
CS techniques to exploit the sparsity structures in the subsurface (Baraniuk
and Steeghs, 2017; Zhu et al., 2017). Since DCT has been previously used
for data compression in FWI, we investigate its applicability on reduction of
unknowns in the velocity model. In our FWI algorithm, the Gauss-Newton
method is used to minimize the misfit function and computational
bottleneck mostly comes from large Jacobian and Hessian matrix
constructions since their dimension is proportional to the number of
unknowns. Thus, reducing the number of unknowns is important to
implement FWI efficiently.

In following sections, we begin brief explanation about DCT and its
characteristics. Then we give a detailed account for the problem on size
reduction. Also, essential parts of our FWI algorithm implementation in
DCT domain is delineated. By comparing the reconstructed velocity models
obtained from fixed square window and our approach, we confirm the
accuracy of reconstructed velocity model and the applicability of our FWI
algorithm. After that we implement our FWI algorithm to two synthetic
models followed by discussion of results.

THEORY
Discrete Cosine Transform

Among several discrete cosine transform (DCT) formulations,
generally, DCT-II and DCT-III are widely used as forward DCT and inverse
DCT respectively. Two-dimensional forward and inverse DCT can be
expressed as follows (Jain, 1989):
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where v(x,z) is the original velocity model, p, q is the coordinate indexes
(integer) in transformed domain, V(p, q) is the transformed velocity model
of v(x,z), M,N is the number of grid in x and z-axis, and c(p), c(q) are
transform coefficient.
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DCT has a useful characteristic for data compression. It is that
almost of energies in DCT domain are concentrated near low frequency
(Lam and Goodman, 2000). In other words, when data are transformed
using DCT, most of dominant DCT coefficients are located near low
frequency. Even if we discard DCT coefficients at high frequency, we can
reconstruct data similar to original data. Because DCT coefficients at high
frequency are less dominant than its near low frequency to reconstruct data.
For this reason, DCT is mostly used for compressing image.

In DCT domain, each DCT coefficient corresponds to a specific
frequency. Fig. 1 shows the true velocity model used in this study and its
DCT coefficients. It is worth noting that most of energies in DCT domain
are concentrated near low frequency (Fig. 1b) so that the true model can be
reconstructed with only a small number of DCT coefficients. Fig. 2 shows
several DCT bases nearby DC component. Each DCT basis consist of
cosine function with its natural frequency (or period). The model is
reconstructed by summing the basis with appropriate coefficients.
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Fig. 1. True velocity model and transformed velocity model. a) Simple velocity model
with syncline and big anomaly, b) transformed velocity model (this figure was depicted
in absolute value and scaled by 200 times of maximum value).
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Fig. 2. 8 x 8 discrete cosine transform bases nearby DC component.

DCT-based dimension reduction in FWI

Compression properties in DCT allow dimension reduction of
unknown velocity in FWI. A velocity model can be transformed in the DCT
domain as below:

m' =Fm, 6)

where m is MXN original unknown velocity model, m’' is MXN
unknown DCT coefficients vector transformed from the original velocity
model and F is forward discrete cosine transform matrix. For reducing
dimension in FWI, we only use dominant DCT coefficients consisting of
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velocity model. In other words, we select the DCT coefficient based on the
absolute value of the DCT coefficients. Generally, dominant DCT bases are
located nearby low frequency. Dominant DCT coefficients can be chosen
with specific window such as square box window at low frequency.
However, there can be more dominant DCT coefficients out of this specific
window. To use more dominant DCT coefficients with same number of
DCT coefficients, we first sort the absolute value of current estimated DCT
coefficients in descending order as:

M =S(m’), (6)

where m is MNx1 sorted DCT coefficients vector in descending, § is
sorting operator. Then we determine n, that is the number of DCT
coefficients used in the inversion as:

n, = int|(1- rcl‘%) MN], )

where 1,5, is compression ratio and M, N is the number of grids in x
and z-axis in finite difference scheme with regular grid interval, respectively.
Eq. (7) indicates the number of DCT coefficients defined as compression
ratio 7.omp- Ny is generally chosen to a very small value compared to
MN with a high compression ratio 7.,,,, such as 5% or 10%. We select
the number of DCT coefficients with Eq. 7 in DCT coefficients array. Fig. 3
shows our strategy for determining number of DCT coefficients. After
determining the number of DCT coefficients for FWI, we use these DCT
coefficients for updating the velocity model in final step at each iteration.

2D DCT Coefficients M

n,

[ 1
—) {]IIIII[]|||]I]I|¥[I[]"'I[III]
MN
Sorting in descending order l

Use only n, DCT coefficients

Fig. 3. A mimetic diagram of our strategy for reducing unknowns of velocity model.

Full waveform inversion using Gauss-Newton method on DCT
coefficients

FWI is generally implemented by updating unknowns through
gradient descent or Gauss-Newton methods to minimize a nonlinear misfit
function iteratively. Misfit function based on the /2-norm is given by Eq. 8,
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where E is the misfit function, u and d are the modeled and recorded
common shot gather, respectively. Because we reduced the number of
unknowns of velocity model via DCT, we can apply the Gauss-Newton
method in FWI. It can be implemented with few DCT coefficients. For
performing FWI with Gauss-Newton scheme, we computed the Jacobian
matrix directly. To construct Jacobian matrix, we calculate Fréchet
derivative numerically,

ou  u[F1(m + Afm,)] — u[F 1ni]

Jiy, Ay,

, ©)

ou . . . . . 1 . .
where promlis Fréchet derivative about DCT coefficient, F~1 is inverse
k

discrete cosine transform operator and AM, is perturbation of DCT

coefficient at %-th point in M. With a% obtained from Eq. (9), we can
k
construct Jacobian matrix as follows:
_[ou Ou  Ou 10

where ] is n.,X n,Xnt Jacobian matrix that consist of Fréchet
derivative about DCT coefficient, n,., is number of receivers, and nt is
number of time series. After constructing Jacobian matrix, we can also
determine gradient direction and construct approximate Hessian matrix via
eq. (11) and eq. (12), respectively.

9E . an
H, =1 (12)

3E . . . . .
where ﬁ is gradient direction, Ad is residual vector defined by u —d,

H, is n,Xxn, approximate Hessian matrix and superscript T is transpose
operator. Now, we can obtain the update vector Ani:
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where A is damping term, defined as 1% of the absolute of largest value of
H,. With update vector Ami, we can finally obtain updated velocity model
by transforming m via inverse DCT.

miHt = Fo1(RK + AR . (14)

At every iteration, the velocity model m is obtained by
transforming inversely updated DCT coefficients fi. In summary, our FWI
algorithm is implemented as a flowchart shown in Fig. 4. Firstly, velocity
model is transformed by DCT, and the number of unknown parameters is
determined with compression ratio from Eq. 7. After that, Jacobian and
Hessian matrix are constructed by calculating the Fréchet derivative about
DCT coefficient and updating the selected DCT coefficients. Lastly,
updated velocity model is obtained by transforming inversely the updated
DCT coefficients.

| Set initial velocity model |
]

| Forward modeling }
i

I Apply DCT to velocity model | —cI Update DCT coefficients |

1 Apply Inverse DCT
Sort DCT coefficients in descending order to updated DCT coefficients

Add perturbation on T
DCT vector Determine number of DCT coefficients
according to compression ratio
Inverse DCT +
t—| construct Jacobian matrix |
Forward modeling ]
| Determine gradient direction and |

construct approximate Hessian matrix

finalized iteration?

| Final velocity model |

Calculate partial
derivative wavefield

Fig. 4. A flowchart of our FWI approach in DCT domain.

NUMERICAL EXAMPLES

In this part, we investigate the applicability and efficiency of our
FWI algorithm to synthetic velocity model reconstruction. Two synthetic
models are tested: 1) simple velocity model with syncline and big anomaly,
2) modified Marmousi-2 model.
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Model 1: simple velocity model with syncline and big anomaly
1) Comparison the reconstructed velocity model

Before testing our FWI algorithm, we first compare the
reconstructed velocity model obtained from DCT coefficients selected by
fixed square window and our approach. Fig. 1a is the true velocity model
used in this section. The model has three layers with big trapezoidal velocity
anomaly in the center. The dimensional scale of this velocity model is 4 km
X 2 km. The number of grids of velocity model is 201 X 101. The
thickness of water layer is 0.38 km. We assume that the velocity
information of water layer is known as 1.5 km/s hence the part of water
layer is not included in DCT and FWI process. Accordingly, the number of
total unknowns is 16,281. With a compression ratio 7,om,, of
approximately 90 percent, we use 1,600 unknowns in this test for comparing
reconstructed velocity models between case of sorting in descending order
and fixed square window. In case of fixed square window, we set square
window 40 X 40 in DCT domain at near frequency and choose DCT bases
in window. Fig. 5 shows chosen 1,600 selected DCT coefficients through
our approach and fixed square window and reconstructed models,
respectively. When comparing reconstructed velocity models, velocity
model obtained from our approach is more similar to true model (Fig. 1a)
and has less artifacts. We calculate pixel-wise RMS (Root-Mean Squares)
error with true model in entire zone. The equation for calculating RMS error
is given by

M N
1
Eris = |37 > > O (,) = m(x, )2 (16)

x=1y=1

where Egpys is pixel-wise RMS error between true and estimation model,
Meye 18 true velocity model and m is input velocity model for calculating
error. In case of our approach and fixed square window, pixel-wise RMS
error of reconstructed model is 0.03628 and 0.08945, respectively. From
this pixel-wise RMS error, we can tell that velocity model reconstructed by
our approach is more approximated to the true model than case of using
fixed square window. Fig. 6 shows reconstructed velocity models with
increasing number of used DCT bases. The more DCT bases are included,
the closer reconstructed velocity model is to true velocity model. Through
comparing reconstructed velocity model with same number of bases, we can
also find that proposed method is more accurate than case of using DCT
bases chosen with fixed square window for reconstructing velocity model. It
means that sorted basis case has more dominant bases than case using
chosen fixed window with same number of DCT bases. Successfully
reconstructed models indicate that we may be able to reconstruct the
velocity model by estimating the first few DCT coefficients instead of all
the velocity values at the grids. With this result, we expect that FWI with
our approach can generate satisfactory inversion result by updating DCT
coefficients. So, we implemented FWI on DCT coefficients selected by our
approach.
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Fig. 5. Selected DCT coefficients and reconstructed velocity model. a) selected 1,600
DCT coefficients via fixed square window 40 X 40, b) reconstructed velocity model
using a), ¢) selected 1,600 DCT coefficients via our approach, and d) reconstructed
velocity model using c).
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Fig. 6. Comparison of the reconstructed velocity model obtained from the case of chosen
fixed square window and our approach. a-c) reconstructed model with DCT bases
selected by square window (a: 10 X 10, b: 20 X 20, c¢: 30 X 30 bases, respectively),
d-f) reconstructed velocity model with DCT bases selected by our approach (d: 100, e:
400, f: 900 bases, respectively).
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2) Implementation of FWIwith DCT

We apply our FWI algorithm to simple velocity model with syncline
and anomaly. For performing our algorithm, we used 21 shots and 201
receivers. They were deployed with equidistant intervals, 0.2 km and 0.02
km, respectively. The first derivative Gaussian wavelet was used as source
wavelet and its maximum frequency is 12.5 Hz. We used 1,600 DCT
coefficients that were selected by our approach. Fig. 7a shows that initial
velocity model. We used smoothed velocity model as initial model for
implementing our algorithm. The number of iterations of inversion process
is 10th. Fig. 7b is inverted velocity models from our FWI algorithm,
respectively. When comparing with reconstructed velocity models (Fig. 5d),
our inversion result is very satisfactory despite of a small number of
unknowns. Big anomaly is inverted well, and especially boundary between
anomaly and syncline layer can be identified. Fig. 8 is normalized error
between modeled data and observed data. Error value reaches nearly 0
percent after finishing FWI process. From this result, we could confirm that
FWI with a small number of DCT coefficients selected by our approach can
produce the satisfactory inversion results.
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Fig. 7. a) initial velocity model, b) FWI results after 10 iterations obtained by our
approach.
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Fig. 8. Normalized RMS error curve on our FWI algorithm.

Model 2: modified Marmousi-2 model

For considering complex geological structure to test our FWI
algorithm, we also applied our FWI algorithm to modified Marmousi-2
model (Martin et al., 2006). Fig. 9a is true modified Marmousi-2 velocity
model. The dimensional scale of this modified Marmousi-2 velocity model
is 9 km X 3.5 km and spatial interval is 0.02 km. The number of grids of
this velocity model is 451 X 176. However, as mentioned earlier, we only
performed our FWI algorithm without water layer. The water layer is a
thickness about 0.44 km, its number of grid is 23. Thus, the net number of
grid is 451 X 153 (total: 69,003). With set compression ratio 7.,,,, as
92.5 percent in this FWI case, we only use 5,175 unknowns for FWI in Ber
domain. Fig. 9b indicates reconstructed modified Marmousi-2 velocity
model. It seems to similar with true velocity model (Fig. 9a). To implement
our FWI algorithm on this modified Marmousi-2 model, we used 31 shots
and 451 receivers. The shots were exploded with 0.3 km interval and
receivers were placed with equidistant spatial intervals, 0.02 km. Fig. 10a
shows initial velocity model for FWI. After implementing FWI to 14
iteration, the inverted velocity model is obtained as Fig. 10b. The inversion
result delineates high-resolved not only shallow geologic structure but deep
part. We note that inverted velocity model has high-resolution result despite
of a small number of unknowns compared to true velocity model (Fig. 9a).
Fig. 11 shows the normalized error curve in data-side as the result of our
FWI algorithm. After 14 iteration, error reaches nearly 1 percent.
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Fig. 9. a) true modified Marmousi-2 model, b) reconstructed modified Marmousi-2
velocity model according to compression ratio for 92.5 percent.
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Fig. 11. Normalized error curve as the result of our FWI algorithm on modified
Marmousi-2 model.

CONCLUSIONS

We present FWI algorithm with reduced number of unknowns of
velocity model. The number of unknowns can be reduced by applying
discrete cosine transform (DCT) on velocity model. After transforming
velocity model, DCT coefficients are sorted in descending order and chosen
based on compression ratio. By sorting DCT coefficients, we can use more
dominant DCT bases than case of using DCT bases chosen with window
(e.g., square window) in same number of DCT coefficients. This means that
our proposed method is more accurate for reconstructing velocity model.
With this approach, we only use a small number of unknowns for FWI.
Through reconstructed model using a few bases, we could identify the
applicability of our FWI algorithm. For testing our FWI algorithm, we
implement our FWI algorithm on simple velocity model and modified
Marmousi-2 model. These inversion results delineate that our FWI
algorithm can be generate satisfactory results despite of a small number of
unknowns. Through these results, we think that our FWI algorithm can be a
cornerstone for enhancing computational efficiency in FWI. We expect that
our FWI algorithm will have a great strength for 3D FWI. Thus, expanding
our FWI algorithm to 3D FWI is needed as further research. Although we
succeeded to reduce the number of unknowns considerably for FWI, our
approach is needed to enhance efficiency. Because we calculated directly
Fréchet derivative and constructed gradient direction, approximate Hessian
matrix. For enhancing efficiency of our FWI algorithm, efficient
optimization method (e.g., preconditioned conjugate-gradient method,
limited-memory BFGS method) or techniques such as back-propagation
technique are required to construct gradient direction or Hessian matrix
efficiently in our FWI algorithm.
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