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ABSTRACT 
 
Bakulin, A., Silvestrov, I., Neklyudov, D.,  Gadylshin, K. and Protasov, M., 2021. 3D 
data-domain reflection tomography for initial velocity model building using challenging 
3D seismic data. Journal of Seismic Exploration, 30: 419-446. 

 
We present a novel workflow to build a reliable initial velocity depth model from 

challenging seismic data. This workflow is based on automated 3D grid reflection 
tomography that utilizes coherent poststack and prestack reflection events in the data 
domain. The workflow consists of two parts: data preconditioning and nonlinear 
tomographic inversion. Data preconditioning is underpinned by robust data-driven 
prestack data enhancement in the form of 3D nonlinear beamforming. Operating directly 
in the data domain, we obtain robust NMO velocities and pick main reflection events on 
stacked time images. Ray-based tomographic inversion fits prestack traveltimes 
approximated by hyperbolae using the engine of standard grid reflection tomography. 

 
 Powerful prestack enhancement, combined with regularization of observed 
traveltimes by hyperbolae, delivers a robust and computationally efficient approach to 
reconstructing the velocity depth model directly in the data domain during the early 
stages of seismic processing. The new approach enables iterative depth processing critical 
for low signal-to-noise ratio data such as land seismic with small field arrays or single 
sensors. We present the tomographic workflow details and showcase the method’s 
capabilities using synthetic and real data examples. 
 
KEY WORDS: reflection tomography, inverse problem, land seismic data. 
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INTRODUCTION 
 
Estimation of the depth velocity model plays a vital role in the modern 

seismic data processing. Many approaches to tackle this problem have been 
proposed during the past decades (Robein, 2010). A classical solution is a 
reflection traveltime tomography.  Gjoystdal and Ursin (1981) proposed one 
of the earliest 3D algorithms in which the model to be recovered is 
represented by a set of layers. Each layer is characterized by laterally 
varying velocity between continuous reflectors at the top and bottom of the 
layer. Velocity distribution in the layers and shape of the reflectors should be 
recovered by inversion of reflection traveltimes. The method requires 
picking of reflectors and corresponding reflection traveltimes that become an 
input data for tomography. The main challenge for such classical techniques 
is how to robustly extract kinematical information such as traveltimes of the 
reflected waves from complex, noisy wavefields in an automated way. 

  
An effective alternative solution is provided by migration velocity 

analysis (MVA). Nowadays, it is often considered a standard practical 
method for depth velocity model building (Robein, 2010). In this method, 
the picking is automatically performed, but after the data are transformed 
into the depth domain by prestack depth migration (PSDM) with some initial 
velocity model. Modern MVA implementations make no assumptions on the 
reflections’ continuity and operate with several independent reflection points 
in depth. By analyzing common-image gathers (CIGs) obtained during the 
migration of different data subvolumes, we can estimate traveltime residuals 
induced by inaccuracies in the initial velocity model. These residuals are 
used as input data for reflection traveltime tomography to update the initial 
velocity model. In essence, prestack depth migration inside MVA transforms 
the data into a better-conditioned (image) domain for traveltime tomography 
as compared to the classical algorithms. The disadvantage of MVA is the 
need to repeat computationally expensive and lengthy cycles of 3D prestack 
depth migration and perform re-picking at every nonlinear iteration of the 
velocity model update. To converge effectively, MVA requires starting from 
an adequate and good enough initial velocity model that provides coherent 
and focused CIGs for residual moveouts’ picking. 

  
Another approach operating directly in the data domain and allowing 

nonlinear tomography iterations without additional cycles of PSDM, is slope 
tomography or stereotomography (Billette and Lambaré, 1998; Lambaré, 
2008). In this method, reflected events are described as coherent local events 
in prestack data. The events’ traveltimes and slopes are obtained from the 
observed data by automated picking. Together with the known positions of 
source and receiver, these quantities serve as inputs to estimate the unknown 
velocity model. The reliable picking of all local coherent events’ attributes 
required for tomography in noisy prestack data is quite challenging, 
especially on land. To overcome this issue and to provide more reliable data 
for stereotomography, several approaches have been proposed. In poststack 
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stereotomography, estimated kinematic parameters from a common-
reflection surface (CRS) method are utilized to derive the local kinematic 
attributes (Lavaud et al., 2004). The CRS method uses global approximation, 
meaning that its kinematic parameters are estimated at zero offset using a 
subset of data with a wide range of offsets and midpoints. Hence, it can 
provide more robust but less resolved attributes’ estimation. The resolution 
may be improved by residual stereotomography (Neckludov et al., 2006), 
which deals with data traces and may be very computationally expensive in 
3D. Both of these approaches rely on the use of stereotomography inversion 
engine and can be considered as a data preparation procedure for 
stereotomogaphy. Another approach related to poststack stereotomography 
is normal-incidence-point (NIP) tomography proposed by Duveneck (2004), 
where global kinematic parameters from the CRS method are directly used 
for inversion. These parameters are the traveltimes themselves, their second-
order derivatives, and the lateral positions of the attributes picked from CRS 
stack sections. As in poststack stereotomography, picking is facilitated in the 
poststack data domain with its higher signal-to-noise ratio. Since only 
locally coherent events are considered, no assumptions are required about 
interfaces’ continuity, and no interpretation of events is necessary. Both 
NIP-tomography and stereotomography have been implemented as grid 
tomographic approaches. An extensive comparison of these methods may be 
found in Dümmong et al. (2008). 

  
To combine the flexibility of the original prestack stereotomography 

and robustness of picking in the migrated domain, an approach based on 
kinematic invariants has been introduced (Chauris et al., 2002; Guillaume et 
al., 2008; Lambaré et al., 2014). The coherent local events are picked in 
depth- or time-migrated domains. They are then demigrated back to the data 
domain using the same reference velocity model as for the original 
migration. This provides the input data required for stereotomography, and 
closes the loop between stereotomography and MVA methods. So it is a 
powerful tool for velocity model building that does not require multiple 
cycles of PSDM; it is a relatively sophisticated method. Similar to NIP-
tomography, it needs computationally expensive dynamic ray tracing. Both 
of them rely on the sensitivity matrices explicitly built from the paraxial 
quantities, which are quite complex in both cases. This might lead to a 
computational burden when massive 3D data sets are processed. One more 
drawback of this approach results from a misfit function containing several 
terms of different nature and dimensions such as traveltimes and their first- 
and/or second-order derivatives. Such hybrid misfit function requires a very 
careful choice of regularization parameters. It can otherwise lead to poorly 
conditioned inversion with unreliable results. 

  
This paper proposes a simplified but more computationally efficient 

reflection tomography algorithm that does not require cycles of PSDM and 
re-picking. Our approach is based on kinematic attributes, which are readily 
available at the early stages of seismic processing, namely stacking 
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velocities. We are also using coherent local events from the stacked volume, 
picked automatically together with their corresponding dips. They probably 
represent the most robust kinematical and structural parameters obtained 
from seismic data early in the processing flow. The presented method uses 
only traveltime residuals between observed and synthetic data in the misfit 
function. It can be implemented using only conventional kinematic ray 
tracing and tomographic inversion algorithms. Since the kinematics of the 
travelitmes in the observed data is approximated by the stacking velocities, 
the method has similarities with the previous velocity inversion approaches 
(Rakotoarisoa et al., 1995; Guiziou et al., 1996; Sexton, 1998; Sexton and 
Williamson, 1998). However, it does not require interpretation of the 
horizons. It can be considered an automatic extension of these algorithms 
based on grid tomography's current industry best practice. The main 
approximation of our approach is the usage of hyperbolic moveout 
approximation. If the prestack data quality allows,  this approximation can 
be relaxed by introducing more elaborate representation of input traveltimes, 
for example arising from using local prestack kinematic attributes etc. In 
summary, more complex traveltime approximations can be easily 
incorporated using the same framework. 

 
The proposed method’s primary intent is to retrieve initial velocity 

models for noisy land and marine data earlier in the processing flow. Other 
methods of initial model building often struggle with challenging prestack 
data quality. At the same time, the success of the computationally 
demanding procedures such as MVA, stereotomography, or full-waveform 
inversion hinges on the quality of the initial model. To mitigate the data 
quality challenge, enhancement of the prestack data before tomographic 
inversion is essential. Data-driven enhancement techniques based on multi-
dimensional local stacking of neighboring traces  are very effective for this 
purpose (Baykulov and Gajewski, 2009; Buzlukov and Landa, 2013; Xie, 
2017; Berkovitch et al., 2011, Rauch-Davies et al. 2013; Bakulin et al., 
2018a,b, 2020). Notably, a nonlinear beamforming algorithm improves 
stacking velocity analysis results and the quality of stack volumes (Bakulin 
et al., 2018a,b, 2020). Furthermore, the same algorithm can estimate the 
coherent local events and their dips from the enhanced stacks to form the 
input data for the proposed tomography. 

  
The content of the paper is as follows. First, we present the proposed 

tomographic workflow and describe in more detail each step of the 
algorithm. We also cover some implementation details of the developed 
software code. Next, we present a realistic 3D synthetic example from the 
area with the salt intrusion. Finally, we show field examples using a marine 
ocean-bottom-cable seismic dataset.  

 
 
 



	

	

423 

TOMOGRAPHIC WORKFLOW 
 
Any traveltime tomographic approach can be decomposed into two 

main parts: calculation of traveltime residuals between observed and 
simulated arrivals and inversion of traveltime residuals. This paper proposes 
a novel way to prepare the observed traveltimes and other input data for 3D 
data with a low signal-to-noise ratio. At the same time, the inversion itself is 
based on a well-established industry workflow for reflection grid 
tomography. The workflow is divided into two parts: data preparation and 
nonlinear tomographic inversion. Required inputs are prestack 3D seismic 
data and the initial depth velocity model, whereas the output is the final 
updated depth velocity model. Fig. 1 summarizes the new workflow, and 
below, we describe it in detail.        

 

Fig. 1. Schematic workflow for 3D data-domain reflection tomography. 

 
Part I: Data preparation 
 

Input for this part is 3D prestack seismic data volume. Since we target 
data with low SNR at the early stages of time processing, this step requires a 
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robust data-driven enhancement procedure capable of significantly 
increasing SNR to enable: 

 
• automatic NMO velocity estimation providing reliable stacking 

velocities,  
• stacked time image of enhanced data exhibiting locally coherent 

events that could be reliably picked.  
 
 The data preparation step's output is the NMO velocity cube, and 
semblance and estimated dips picked on the stacked image. Let us describe 
the main stages in detail. 
 
   
Stage 1: prestack seismic data enhancement 

 
We select nonlinear beamforming or NLBF (Bakulin et al., 2018a,b, 

2020) as the primary pre-conditioning step applied to the original 3D 
prestack seismic data. The main idea behind NLBF  is to collect signals from 
neighboring traces along locally defined surfaces that follow the local 
moveout of coherent seismic signals. Parameters that describe these surfaces 
may be treated as local wavefront attributes of reflected waves and are 
estimated directly from the data (Bakulin et al., 2020). These parameters are 
dips and curvatures of seismic wavefronts in specific directions in the 
acquisition plane. We find 3D data enhancement particularly useful in the 
cross-spread domain for modern land and OBC orthogonal acquisition 
geometries (Bakulin et al., 2020). In this case, only five local kinematical 
parameters are estimated on a coarse grid to improve the method's 
efficiency. After this, local summation along the defined local traveltime 
surfaces is performed. As a result of this stage, an enhanced dataset is 
obtained, satisfying the requirements of the data preparation step outlined 
above. We emphasize that an increase in SNR is especially dramatic for land 
seismic data acquired with single sensors or small field arrays. Such land 
data before enhancement is usually unable to deliver the required outputs for 
robust tomographic inversion. 

 
   

Stage 2: obtaining inputs for data-domain nonlinear tomography 
 
Enhanced prestack data serve as an input to the next step of estimating 

stacking velocities (𝑉!"# ) and poststack attributes (times and slopes) 
required for data-domain tomography. A cube of NMO velocities is obtained 
using conventional velocity analysis. Since we are using the enhanced data 
with significantly increased SNR, estimation of 𝑉!"# becomes more reliable 
than when velocity analysis is performed using the original field data 
(Bakulin et al., 2018b, 2020). A 3D CMP stack volume for time and slope 
picking is also constructed using the enhanced data with better SNR and 
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improved event continuity. Whereas stacked volumes can be enhanced by 
other methods, such as structurally-oriented filters (Fehmers and Höcker, 
2003), NLBF in a single run delivers both enhanced stack and prestack data 
with improved SNR. Local coherent events are picked automatically within 
the 3D CMP stack volume, similarly to Duveneck (2004). The picking 
algorithm searches for such events in the CMP stack volume using 
maximum semblance criteria. Suppose the semblance value calculated in a 
current point is more than a predefined threshold. In that case, the point is 
considered as an actual local reflected event or "pick." Each accepted pick is 
associated with a normal ray. A pick is characterized by: 

 
a) coordinates on the acquisition plane, 𝑋!"#, 𝑌!"#,  
b) the two-way traveltime along the normal ray, 𝑇!,   
c) local slopes in inline and crossline directions 𝐷𝐼𝑃!, 𝐷𝐼𝑃! which can 

be recalculated into normal ray's emergence angles 𝛾! ,  𝛾!  in inline X-
direction,  and crossline Y-direction, using the expression 𝐷𝐼𝑃!,! =

!"# !!,!!
!

  
where 𝑉 is the initial velocity at the point (𝑋!"#, 𝑌!"#) on the acquisition 
surface (Hubral and Krey, 1980). 

  
Picking can be conveniently done using the nonlinear beamforming 

algorithm itself (Bakulin et al., 2020) applied to poststack data or other 
suitable techniques. As a result of this stage, a collection of independent 
picks describing strong reflected events are obtained in the 3D poststack data 
domain.  
 
 
Part II: Data-domain nonlinear tomographic inversion  

 
Inputs for the second part of the tomographic workflow are volume of 

NMO velocities, initial depth velocity model, and volume of picks, i.e., dips 
and semblances estimated on the stack. The output is the final updated 
velocity model in depth. Nonlinear tomography inversion contains several 
linear steps. Each step consists of three stages: generation of synthetic 
traveltimes with ray tracing in the initial depth velocity model, estimation of 
observed traveltimes, and linear tomographic inversion.  Since original picks 
were obtained from the 3D CMP stack volume, the first stage localizes them 
into the depth domain using top-down normal ray tracing. Then bottom-up 
ray tracing from the depth picks is performed to compute traveltimes in the 
current velocity model and form a tomography matrix. The second stage 
estimates observed traveltimes using a hyperbolic approximation. In the 
third stage, an actual linear traveltime inversion is performed, and the initial 
depth model is updated. These three stages are repeated iteratively to 
improve the fit and arrive at the final depth model. Let us describe them in 
more detail.      
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Stage 1: generation of synthetic traveltimes using ray tracing 
  
  Modeled traveltimes are generated in two steps. First, we localize or 
“move” the picks to the depth image domain. Then, we ray trace from the 
pick location in depth until we hit the acquisition surface to obtain synthetic 
traveltimes and form a tomography matrix. 
  
 
Stage 1.1: localization of picks in depth using normal ray tracing 
 
Each accepted pick is localized in depth using zero-offset ray tracing using 
the initial depth velocity model (Fig. 2a). As we mentioned above, each pick 
is characterized by five parameters: 𝑋!"#, 𝑌!"#, 𝑇!,	𝛾!, 𝛾!. For each pick, an 
associated normal ray is traced in the initial velocity model starting from the 
point (𝑋!"#, 𝑌!"#) at the acquisition surface with the emergence direction 
defined by the angles 𝛾!, 𝛾!. The normal ray is traced in the inhomogeneous 
initial velocity model until time 𝑇!/2 has been reached (Fig. 2a). The normal 
ray's final point defines a position (𝑋,𝑌,𝑍) and orientation given by a 
normal vector 𝑁  of the local reflection surface at depth in the current 
velocity model (Hubral and Krey, 1980; Gjoystdal and Ursin, 1981). All 
elementary reflection surfaces in depth are assumed to be independent. 

 
 

Stage 1.2: synthetic offset traveltimes obtained by bottom-up offset ray 
tracing 
  

Each pick in depth defines a local reflection surface described by its 
position (𝑋,𝑌,𝑍) and normal vector 𝑁. A fan of reflected rays emerging 
from the reflection surface is traced towards the acquisition surface. Each 
reflected ray consists of two segments satisfying Snell's law at the 
reflection's surface (see Fig. 2b). We trace multiple rays from depth by 
incrementally varying the reflection angles and azimuths. The reflected rays 
arrive at the acquisition surface at two locations that can be considered 
"virtual" source and receiver. These terminations points of each reflected ray 
at the acquisition surface may be uniquely defined by the midpoint 
coordinate 𝑋!"#, 𝑌!"#, absolute offset h (distance between the source and 
receiver), and azimuth 𝛼. Traveltime along each reflected ray is computed in 
the initial model. Traveltimes 𝑇!"#! = 𝑇!"#!(𝑋!"# ,𝑌!"# , ℎ,𝛼)  are 
calculated along the reflected rays emerging from the same elementary 
reflection surface and forming a common reflection-point  traveltime surface  
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Fig. 2. Localization of the picks in depth using normal ray tracing (a) and generating 
synthetic offset traveltimes using bottom-up offset ray tracing (b). 
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in the data space. Note that in the true model, two segments of each reflected 
ray will be centered around the corresponding zero-offset ray, with a surface 
CMP location being at the center of the offset vector. However, this would 
not be the case in the erroneous model. The CMP location may be shifted 
away from the offset vector shown in Fig. 2b. Computed traveltimes 𝑇!"#!   
along with the associated coordinates of source and receiver, and zero-offset 
traveltimes allow us to form a tomography matrix 𝑀. The velocity model is 
parametrized by a 3D regular grid with constant speed inside each voxel. 𝑀!" 
denotes a length of 𝑖-th reflected ray within 𝑗-th voxel. So we arrive at a 
classical "grid" tomography problem (Jones, 2014). Each pick corresponds 
to a block of rows in the matrix 𝑀. The size of 𝑀 in the isotropic case is 
𝑁!"#$ ∙ 𝑁! ∙ 𝑁! ∙ 𝑁!, where 𝑁!"#$ is a number of successfully constructed 
reflected rays, whereas 𝑁! ∙ 𝑁! ∙ 𝑁! is total count of points in the subsurface 
velocity grid. In a typical case, the number of rows significantly exceeds the 
number of columns.  

 
 

Stage 2: estimation of observed traveltimes  
 
In this stage, we approximate observed experimental traveltimes using 

conventional hyperbolic approximation: 
 
𝑇!"#(𝑋! ,𝑌! ,𝑋!∗,𝑌!∗) = 𝑇!"#(𝑋! ,𝑌! ,𝑋!∗,𝑌!∗),                                       (1) 

 
where 𝑇!"#  describes normal moveout defined by NMO velocities 
estimated after prestack enhancement with NLBF: 
 

𝑇!"# = 𝑇!! + ℎ!/𝑉!"#! .                                                        (2) 
 
Here 𝑇!  is zero-offset two-way traveltime of the pick, 
h= (𝑋! − 𝑋!∗)! + (𝑌!∗ − 𝑋!)! is an offset of the point where "observed" 
common-reflection-point traveltime is estimated, whereas 𝑉!"# =
𝑉!"#(𝑋!"# ,𝑌!"# ,𝑇!) is NMO velocity used for moveout corrections at the 
current midpoint. 
  
 More sophisticated approximations may be used here (for example, 
4th order approximation described by Al-Chalabi (1973) and Alkhalifah 
(1997)). Note that NMO velocity may be additionally azimuthally dependent 
(Yilmaz, 2001). 
  

Proper CMP attributes (𝑉!"# and 𝑇!) need to be identified for given 
reflected rays according to eq. (2). Let us consider the picked point in the 
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stack volume with coordinates 𝑋!"#(𝐴), 𝑌!"#(𝐴) at the surface (Fig. 3). 
The normal ray traced in the current velocity model provides the reflection 
point A and the corresponding local reflection surface associated with it. 
Reflected rays emerging from this point arrive back to the acquisition 
surface with midpoint coordinates 𝑋!"#(𝐵), 𝑌!"#(𝐵). If this midpoint is 
located within the same bin as the original midpoint 𝑋!"# 𝐴 ,𝑌!"#(𝐴), then 
the corresponding CMP attributes are used. Otherwise, we use the local 
slope (and curvature, if available) calculated during the zero-offset picking 
to construct the local zero-offset traveltime surface associated with this 
coherent event. Projection of point 𝑋!"#(𝐵), 𝑌!"#(𝐵) onto this surface 
provides corrected normal two-way traveltime 𝑇!(𝐵)  and corresponding 
NMO velocity. When the two midpoints are far away from each other, the 
pick is dropped from the inversion during the current iteration. 

 
 

 

Fig. 3. Proper identification of CMP attributes for reflected ray.  

While such approximated traveltimes may not perfectly describe 
actual moveout, they represent a fit-for-purpose and stable approximation 
for challenging data that is critical in tomographic inversion. Data-domain 
tomography requires estimation of prestack reflection traveltimes that is hard 
to achieve on noisy land data. Using NMO hyperbolas estimated on 
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enhanced data to approximate the observed traveltimes is equivalent to 
regularization of traveltimes. Such regularization leads us to a stable solution 
for the macro-velocity model at the cost of losing some details at smaller 
scales. We believe such regularization is an acceptable compromise for the 
initial velocity model building. The more refined representation can be 
achieved by other methods such as common-image point tomography, 
migration velocity analysis, or full-waveform inversion. To better estimate 
the actual reflection traveltimes at exit points of calculated reflected rays, it 
is also possible to use wavefront attributes obtained during the data 
enhancement stage with NLBF. 

 
  

Stage 3: traveltime inversion – solution of the linearized inverse problem 
 

Now that we obtained both observed (𝑇!"#) and modeled  (𝑇!"#!) 
reflection travel-times, we can form traveltime residuals for each emergence 
point of reflected rays: 

  
𝑑𝑇(𝑋!"# ,𝑌!"# , ℎ,𝛼) = 𝑇!"#(𝑋!"# ,𝑌!"# , ℎ,𝛼) − 𝑇!"#!(𝑋!"# ,𝑌!"# , ℎ,𝛼).  

 (3) 
 
 These residuals serve as input for a conventional 3D reflection grid 
tomography algorithm, for example, similar to the one described by 
Woodward et al. (2008). However, we note that our approach may be used 
with any other 3D inversion tomography engine. From tomographic 
inversion, a newly updated initial velocity model is obtained. Ray tracing, 
event localization, and linear inversion stages are iteratively repeated until 
an acceptable misfit between the calculated and actual traveltimes is 
reached. 
  

To solve a linearized inverse kinematic problem, a tomographic 
system of linear algebraic equations (SLAE) is constructed during the ray 
tracing stage. Tomographic SLAE forms a linear relationship between 
traveltime residuals 𝑑𝑇 and desired model update vector Δv 

 
𝑀𝛥𝑣 =  𝑑𝑇  .                                         (4) 

 
Here M is a tomographic matrix with the elements representing derivatives 
of reflection traveltimes with respect to model parameters described above. 
  

Below we follow an approach proposed by Woodward et al. (2008). 
Instead of the original linear system (4), a pre-conditioned system is solved: 

 
        𝐿𝑀𝑆𝑅𝛥𝑣! = 𝐿𝑑𝑇    ,               (5) 
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where L is a diagonal weighting matrix of rows, R is a diagonal weighting 
matrix of columns, S  is a spatial smoother (which acts as a 3D convolution 
with a triangle function). 
  

Pre-conditioned system (5) is solved using the Iterative Reweighted 
Least-Squares (IRLS) method (Scales et al. 1988) with norm 𝐿!.! 
(Woodward et al., 2008). In this case, the cost function which is minimized 
during the solution of the inverse problem may be expressed as 

 

𝐹 = 𝐿𝑀𝑆𝑅𝛥𝑣! − 𝐿𝑑𝑇 !.!
!.! + 𝜆! 𝛥𝑣! !

! = 𝐴𝑥 − 𝑏
!.!

!.!
+ 𝜆! 𝑥 !

!.    (6) 

Where notations 𝐴 = 𝐿𝑀𝑆𝑅, 𝑥 = 𝛥𝑣!,  𝑏 = 𝐿𝑑𝑇 are used. 
 
 The inverse problem comes down to solving the set of typical least-
squares problems with a recursively updated matrix of weights 
  

𝐴!𝑊!!!𝐴𝑥! = 𝐴!𝑊!!!𝑏 .   (7) 
 
Here diagonal weighting matrix 𝑊!  at k-th IRLS iteration is determined as 
𝑊! = 𝑑𝑖𝑎𝑔 𝑟! !!.!, where 𝑟! = 𝐴!" − 𝑏! is a residual vector after (k-1)-th 
iteration. SLAE's (7) is solved using the LSQR method (Paige and Saunders, 
1982) typical for tomographic applications. The solution of the tomographic 
system (5) with the help of IRLS allows us to obtain solutions that are much 
more stable to abrupt "jumps" of input data (outliers). Outliers' impact on the 
final solution is a significant challenge in tomographic problems when 
solving them by the standard least-squares method. 
 

It is important to highlight key features of  SLAE's arising in seismic 
tomography that are important for the chosen realization of the code: 1) 
Huge dimensions of the system of equations  (> 106 equations with more 
than 108 unknowns); 2) Matrix is very sparse with a relatively small number 
of nonzero elements (~1-3 %); 3) Problem is ill-posed demanding usage of 
pre-conditioning and regularization procedures. For real-world applications, 
gigabytes of memory are needed to operate with such matrices (even 
considering their sparsity). Therefore, software implementation of 3D 
tomography should be initially focused on using high-performance 
computing systems with distributed memory (MPI - implementation). Our 
tomography implementation is based on using the functionality in the 
freeware library PETSc (http://www.mcs.anl.gov/petsc). The PETSc library 
is oriented explicitly for coding MPI-oriented programs that extensively use 
elements of linear algebra. PETSc has the following advantages: 1) It 
contains a set of MPI-oriented iterative algorithms for solving SLAE such as 
LSQR; 2) It is suitable for working with data arrays distributed over 
computing nodes (matrices, vectors) and performing any operations with 
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such objects; 3) It provides a convenient way to deal with sparse matrices 
distributed over nodes. 

   
Following Woodward et al. (2008), the model update's pre-

conditioning based on triangular smoothing has been implemented in the 
code. Smoothing is carried out as a 3D spatial convolution with triangular 
functions. There are two possible strategies for smoothing. 

  
The first strategy is "multiscale" smoothing. For each linearized 

inverse problem, we attempt to resolve many scales progressing from large 
to small using a fixed framework of a single linearized inverse problem.  
Then we apply similar "multiscale" smoothing inside all other linear 
iterations. Let's describe the main concept of the multiscale approach briefly. 
Initial problem (5) is represented as a series of the problems with "𝑘" 
smoother 𝑆 scales, 

  
[𝐿𝑀𝑆!𝑅]

!!
!!! 𝛥𝑣!!! = 𝑑 .     (8) 

 
 At the first "multiscale" iteration, 𝑘 = 1 , one fixes the biggest 
smoother apertures and solve the system using the IRLS method: 
 

𝐿𝑀𝑆!𝑅 𝛥𝑣! = 𝑑 .      (9) 
 
 When the "long-wavelength" solution 𝛥𝑣! is obtained, the smoother 
aperture is decreased, and the linearized system at the next scale is solved: 
 

𝐿𝑀𝑆!𝑅 𝛥𝑣! = 𝑑 − 𝐿𝑀𝑆!𝑅 𝛥𝑣! = 𝑑!.     (10) 
 
 This stage is repeated for each given smoother scale. Note that event 
positions remain fixed within the current velocity model, i.e., tomographic 
matrix 𝑀 is the same during all iterations with different smoother aperture: 
 

𝐿𝑀𝑆!𝑅 𝛥𝑣! = 𝑑 − 𝐿𝑀𝑆!𝑅 𝛥𝑣! = 𝑑!.                             (11) 
 
 This classical "multiscale" approach is proven efficient in MVA 
applications (Woodward et al. 2008). The remigration stage is very 
computationally expensive because 3D PSDM and RMO picking must be 
redone for each updated velocity model. 
 

The second strategy is "individual" smoothing for each linearized 
inverse problem. We resolve only a specific scale of velocity variation 
within one solution of a single linearized inverse problem. At the same time, 
the smoothing aperture can vary for other linear iterations. The second 
approach consists of solving the system (9) with a fixed "individual" 
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smoothing aperture at each linear iteration. In this case, matrix 𝑀  is 
recalculated once again after each iteration, and we apply a new smoother 
aperture. In this case number of smothers, apertures equal the number of 
nonlinear iterations. 

  
For our approach, where the remigration stage is relatively cheap, the 

second approach is the most efficient way to solve the problem. Of course, 
the multiscale approach may also be used. We implemented the multiscale 
approach and used it in all examples in this paper. 

 
 

CASE STUDIES 
 
Synthetic example: a realistic model with salt intrusion and field 
acquisition geometry 

 
The first example is synthetic data corresponding to a real 3D case 

study shown later. The field case inspires the depth velocity model with the 
salt body shown in Fig. 4. Likewise, the acquisition geometry used for finite-
difference simulation replicates the field case (Fig. 5). The total size of the 
depth model is 6,000 x 6,000 x 8,000 m. The model's discretization is 
241x241x676 (X, Y, Z) points with spacings hz = 12 m and hx = hy = 25 m, 
respectively. 

 
To check the reconstructed velocity model's reliability, we need to 

construct depth images and corresponding common-image gathers using 
Kirchhoff depth migration. CDP gathers corresponding to one CDP line 
have been extracted from the entire 3D dataset (Fig. 5). The whole ensemble 
of extracted CDP gathers has bins located along one inline direction, 
although individual traces in gathers are collected from different azimuths. 

 
To obtain inputs required for tomography, our 3D tool for picking 

coherent local events has been applied to a stack section shown in Fig. 6. 
The volumetric distribution of semblance maxima is displayed in Fig. 7. 
Semblance maxima follow main coherent events as expected. Figs. 8 and 9 
reveal corresponding inline (dip-x) and crossline (dip-y) dips of poststack 
local coherent events. We applied the semblance threshold of 0.6, passing 
only the most energetic reflection events to the inversion. 
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Fig. 4. The true 3D velocity model used for modeling the synthetic dataset.  

 

 

Fig. 5. (a) Acquisition geometry used for the synthetic case study: shots are marked by 
red dots, whereas blue dots denote receivers. The field case study inspires this geometry. 
(b) Typical CDP gather. 
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Fig 6. 3D view of the original stack section (left) used to pick local coherent events and 
time slice at t = 1.86 s (right). 
 
 
 

 
 

 

 
Fig. 7. 3D view with the volumetric distribution of semblance maxima (left) after picking 
coherent local events on the stack section and time slice at t = 1.86 s (right). 
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Fig. 8. Volumetric distribution of the inline dip (dip-x, left) estimated from the original 
stacked cube and time slice at t = 1.86 s (right). 
 
 
 

 

Fig. 9. Volumetric distribution of the crossline dip (dip-y, left) estimated from the 
original stacked cube and time slice at t = 1.86 s (right). 

 
 
Input parameters of inversion were as follows: inversion grid 

discretization is Zcube= 50 m, Xcube = Ycube= 200 m. One fixed smoother loop 
was used with apertures of X = Y = 2000 m, Z = 500 m. The number of 
LSQR iterations is 20, whereas the number of IRLS (outer) iterations is 
equal to 10. The results after five nonlinear global iterations are presented in 
Fig.10b. 
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Fig. 10. (a) 2D slice through the exact velocity model in the middle of the cube; (b) Same 
2D slice but after tomographic inversion. 

 
 

 

Fig. 11. Comparison of 1D velocity profiles extracted from the volume at X = 3000 km: 
true migration velocity profile (red), initial velocity model (blue), and inverted velocity 
model (black). 

 
 
The 1D velocity profile was chosen as the initial velocity model (Fig. 

11, black curve). It is a combination of two linear functions following the 
main velocity trends within a corresponding depth interval. 
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In this example, we could only migrate 3D data with Kirchhoff 
migration. So we limit maximum offsets used PSDM to a 4000 m maximum. 
Common-image gathers and depth images obtained after PSDM in the 
"true", initial and inverted models are presented in Figs. 12 and 13, 
respectively. Comparing the sections, we conclude that the image 
constructed with the recovered velocity model demonstrates a flattening of 
the reflected events on common-image gathers and more accurate 
positioning of the three primary reflectors of interest. For example, the 
deepest horizon located at the depth ~6000 m in the "true" image is 
mispositioned in the initial velocity model. In contrast, in the recovered 
model, it is more accurately placed.  

 
 

 

 
 

Fig. 12. Common-image gathers obtained with PSDM using: (a) the exact velocity 
model; (b) the 1D initial velocity model; (c) the recovered velocity model obtained by 
tomography. A maximum offset of 4000 m was used in migration.  
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Fig. 13. Depth image obtained with PSDM using: (a) the exact velocity model; (b) the 1D 
initial velocity model; (c) the recovered velocity model obtained by tomography. A 
maximum offset of 4000 m was used in migration.  

 
 
 

Field data example: ocean-bottom-cable data 
 
We demonstrate this workflow using ocean-bottom-cable (OBC) 

seismic data. A zero-offset stack section is presented in Fig. 15a. CDP bin 
sampling in the stack is 25 m. The total number of CDPs in the line is 1,650, 
and the full size of the model in the inline direction is about 41 km. Fig. 14b 
shows the semblance maxima distribution obtained during slope estimation 
for each point in the stack section. 

  
An initial velocity model was obtained by Dix conversion of stacking 

velocity volume subject to some spatial smoothing (Fig. 15a). The depth 
model dimensions are 41,250 x 5,000 m resulting in 1,650 x 500 grid points 
(X, Z) with a vertical sampling of 10 m and a horizontal sampling of 25 m. 
The input parameters of the tomographic inversion are as follows. Model 
grid discretization is Z = 100 m, X = 500 m. One fixed smoother loop has 
been used with window apertures equal to X = 12,000 m and Z = 3,000 m. 
The number of LSQR iterations is 20, whereas the number of IRLS (outer) 
iterations is 10. The results after ten nonlinear global iterations are presented 
in Fig. 15b. The difference between initial and estimated models is shown in 
Fig. 15c. 
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Fig. 14. (a) Stack section (narrow-azimuth data) used for the picking of local coherent 
events. (b) Maximum semblance distribution after picking local events in the stack 
section. The spatial aperture used for computing the semblance is 600 m.  
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Fig. 15. Initial velocity model (a), estimated model after ten nonlinear iterations (b), and 
the difference between the two models (c) highlighting main areas of the tomographic 
update. 

 
 
 
In Fig. 16, we compare depth images obtained using full-azimuth 

data. Clearly, the depth image with the tomographically recovered velocity 
model shows higher vertical resolution with more continuous events 
throughout the entire section compared to events imaged using the initial 
model (Fig. 16). Some events completely blurred on the original image 
become visible (red arrows in Fig. 16). The corresponding common-image 
gathers (CIGs) in Fig. 17 show flatter events with significantly reduced 
residual moveout when migrated with the final velocity model as opposed to 
the initial one, validating that tomography has successfully achieved its 
objectives. 
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Fig. 16. Kirchhoff depth migration image obtained with the initial velocity model (a) and 
final recovered velocity model from tomography (b).   
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Fig. 17. Prestack common-image gathers obtained with Kirchhoff depth migration using 
the initial velocity model (a) and recovered velocity model from tomography (b). 
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CONCLUSION AND DISCUSSION 
 

We developed a data-domain tomographic workflow coupled with a 
data-driven prestack data enhancement approach to robustly retrieve a 
reliable velocity depth model during an early stage of seismic processing. 
Such a model could serve as an initial velocity model for standard common-
image-point tomography, MVA, or FWI. Besides, it may be the only model 
available for advanced iterative processing required to condition such data 
for subsequent velocity model building and imaging. The advantages of the 
proposed algorithm are the following: 1) there is no need for preliminary 
manual interpretation of seismic volumes since the algorithm is fully 
automatic and based on grid reflection tomography, 2) there is no need for 
computationally expensive two-point or dynamic raytracing, and 3) it is 
much cheaper computationally than standard common-image point 
tomography in the image domain. 

  
Conventional MVA hinges on improved SNR of migrated gathers to 

perform robust picking of residual moveout. Also, in the image domain, the 
kinematics of primary reflected events differs from other events' kinematic, 
including multiples. Our data-domain approach improved data quality 
(prestack and poststack) by robust data enhancement with nonlinear 
beamforming. NLBF provides acceptable SNR for robust picking of the 
events in the poststack domain of our tomographic workflow. We may also 
appropriately tune the data enhancement approach's parameters to enhance 
only primarily reflected events required for the robust image as well as 
picking of poststack events and reliable prestack NMO velocities. Other 
events are suppressed, and the algorithm does not pick them. Also, instead of 
picking prestack traveltimes of reflected events for each offset, we utilize 
hyperbolic NMO approximation directly in the data domain; therefore, 
multiples and other events are further excluded or de-emphasized. However, 
for the data where multiples have a strong influence, the de-multiple 
procedures may be required. 

          
The proposed data-domain approach can be effectively applied to 

recover an initial depth velocity model using challenging land and marine 
data with a low signal-to-noise ratio during the early stages of seismic 
processing.  Such a technique enables iterative depth processing often 
required for such data. Real data examples confirm that depth images using 
an updated velocity model are more focused, and the flattening of the 
corresponding common-image gathers is improved.  
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