
JOURNAL OF SEISMIC EXPLORATION 30, 455-479            455 
 
 
 

DESERT SEISMIC DATA DENOISING AND EFFECTIVE 
SIGNAL RECOVERY BY USING IMPROVED SHEARLET 
TRANSFORM BASED ON THE DEEP-LEARNING 
COEFFICIENT SELECTION  
 
 
 
 
XINTONG DONG1, YUE LI2* and BAOJUN YANG3 

 
1Jilin University, College of Instrumentation and Electrical Engineering, Jilin,  
P.R. China. 18186829038@163.com 
2Jilin University, College of Communication Engineering, Jilin, P.R. China. 
liyue@jlu.edu.cn 
3Jilin University, College of Geo-exploration Science and Technology, Jilin, P.R. China. 
yangbaojun@jlu.edu.cn 
 
(Received August 18, 2020; revised version accepted June 10, 2021) 
 
 
ABSTRACT 
 
Dong, X., Li, Y. and Yang, B., 2021. Desert seismic data denoising and effective signal 
recovery by using improved shearlet transform based on the deep-learning coefficient 
selection. Journal of Seismic Exploration, 30: 455-479. 
   
 Contamination of seismic data by background noise causes difficulties for imaging, 
reservoir fluid prediction, and stratigraphic interpretation. Desert seismic data poses a 
particular problem mainly due to two reasons: (1) low signal-to-noise ratio (SNR); (2) 
serious frequency spectrum overlapping between the effective signals and low-frequency 
noise (mainly including random noise and surface waves). Therefore, when apply 
sparse-transform-based methods to denoise desert seismic data, conventional threshold 
functions fail to distinguish the effective signal coefficients and low-frequency noise 
coefficients, which is likely to result in residual noise and signal leakage. To solve this 
problem, we utilize the convolutional neural network (CNN) to act as a threshold 
function, thereby establishing an optimal non-linear relationship between noisy 
coefficients and effective signal coefficients. In addition, in order to achieve multi-scale 
and multi-direction accurate noise suppression, we construct a corresponding training 
dataset for each sub-band, so as to obtain a CNN-based coefficient selection model 
suitable for this sub-band. In this paper, we take shearlet transform as an example to 
verify the effectiveness of the proposed CNN-based threshold function. Synthetic and 
real examples demonstrate that our method can effectively suppress the desert 
low-frequency noise and completely recover the effective signals reflected by layers. 
 
KEY WORDS: desert seismic data, shearlet transform, noise suppression, 
     convolutional neural network, low signal-to-noise ratio, 
     spectrum overlapping. 
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INTRODUCTION 
 
 Modern seismic exploration requires that seismic data fulfills the 
requirements of high signal-to-noise ratio (SNR), high resolution, and high 
fidelity; in general, high SNR is the basis of the latter two (Dong et al., 
2019a; Ma et al., 2020a). Suppressing seismic background noise and 
recovering effective signals is one of the most effective and direct way to 
increase the SNR of seismic data (Fomel and Liu, 2010; Bonar and Sacchi, 
2012; Beckouche and Ma, 2014). Recently, experts have proposed 
numerous methods to complete this task (Bekara and van der Baan, 2007; 
Chen et al., 2019; Dong et al., 2020a). Frequency filtering methods, such as 
band-pass filter (Stein and Bartley, 1983), F-X prediction filter (Harris and 
White, 1997; Wang, 1999; Gülünay, 2017), time frequency peak filtering 
(Tian et al., 2014; Xiong et al., 2014) and polarization filter (Kulesh et al., 
2007; Akram, 2018), can retain certain frequency and suppress unwanted 
frequency. Mode-decomposition-based methods including empirical mode 
decomposition (EMD; Bekara and van der Baan, 2009; Han and van der 
Baan, 2013), variational modal decomposition (VMD; Li et al., 2017; Ma et 
al., 2020b), and some variations of the two can decompose noisy seismic 
data into multiple modes, and then we can preserve the modes containing 
effective signal components and abandon the modes associated with noise. 
Rank-reduction-based methods including principle component analysis 
(Wang et al., 2016) and robust principle component analysis (Dong et al., 
2020a) assume that the ideal clean seismic data is a low-rank structure, and 
noise interference will increase its rank. These approaches usually realize 
the noise suppression by rank reduction. Some other representative methods 
include dictionary learning (Beckouche and Ma, 2014; Nazari Siahsar, 
2017), median filtering (Duncan and Beresford, 1995; Wang et al., 2020), 
singular value decomposition (Bekara and van der Baan, 2007; Liang et al., 
2018), etc. Although these methods have been successfully applied to 
numerous real-world problems, these methods still have some limitations 
(Dong et al., 2019a; Ma et al., 2020a). For example, frequency filtering 
methods do not work well when effective signals and noise share similar 
bandwidths (Chen et al., 2019; Dong et al., 2020b); due to mode aliasing, 
some mode-decomposition- based methods degrade when processing low 
SNR seismic data (Dong et al., 2020a; Ma et al., 2020b); some 
rank-reduction-based methods have little effect on random noise 
suppression (Dong et al., 2020a). 
  
   In desert seismic data, reflected effective signals are often contaminated 
by a large amount of low frequency noise mainly including random noise 
and surface waves (Zhong et al., 2015a; Li et al., 2017; Dong et al., 2019a); 
this causes lots of difficulties to the imaging, inversion, and interpretation of 
the data. The desert seismic data is characterized by two distinct features: 
low SNR and significant spectrum overlapping between effective signals 
and low-frequency noise (Zhong et al., 2015a). The low SNR is mainly 
caused by three reasons. Firstly, sand can absorb partial energy of the 
reflected effective signals (Dong et al., 2020a) and the target layer is usually 
deep in desert regions; this two points lead to the weak energy of reflected 



	 457 

effective signals. Secondly, due to the large space between sand grains and 
low adhesion, the sand dunes tend to produce a large number of surface 
waves with strong energy. Thirdly, the relative emptiness of desert regions 
lead to the strong intensity of wind, so the energy of random noise is strong. 
In desert regions, the dominant frequency of effective signals, random noise 
and surface waves is mainly distributed in 10-25 Hz, 5-20 Hz, 0-15 Hz, 
respectively (Li et al., 2017; Zhong et al., 2015a). Therefore, there exists 
significantly spectrum overlapping between the effective signals and the 
low-frequency, and how to recover the effective signals from shared 
frequency bands is a relatively challenging task. Moreover, some related 
study shows the random noise in desert regions is characterized by 
non-stationary and non-linear (Zhong et al., 2015a,b). Therefore, how to 
suppress desert low-frequency noise and recover effective signals is a 
challenging problem that needs to be solved. 
 
   In recent years, sparse transform is developing rapidly, such as wavelet 
transform (Goudarzi and Riahi, 2012; Yang et al., 2020), curvelet transform 
(Neelamani et al., 2008), Radon transform (Gholami and Zand, 2017), 
seislet transform (Fomel and Liu, 2010), shearlet transform (Liang et al., 
2018; Dong et al., 2019a), etc. Due to the multi-scale, multi-direction, and 
good sparse representation, these sparse transforms have been widely used 
in imaging processing and seismic data denoising (Fomel and Liu, 2010; 
Goudarzi and Riahi, 2012; Dong et al., 2019b). Sparse-transform-based 
denoising methods mainly include three steps: sparse representation 
(forward transform), effective signal coefficient selection, and coefficient 
reconstruction (or called inverse transform). Obviously, the second step 
directly determines the denoising performance of spare-transform-based 
denoising methods. In general, we often use some threshold functions to 
accomplish the second step, such as hard threshold function, soft threshold 
function, semi-hard and semi-soft threshold functions, and some improved 
threshold function based on statistics (Tang et al., 2018; Dong et al., 2019b). 
We have tried to utilize numerous threshold functions to select the effective 
signal coefficients of desert seismic data. However, the denoising results are 
not satisfactory; some false selections by threshold functions lead to residual 
low-frequency noise in denoising results and obvious signal-leakage energy 
in the removed noise. This phenomenon is mainly because of two reasons: 
(1) after scale decomposition, each scale coefficient still contains some 
noise components due to the serious spectrum overlapping of desert seismic 
data; (2) partial random noise has roughly the same direction as the effective 
signals, so it is difficult to realize the separation of effective signal 
coefficients and noise coefficients by directional decomposition. 
Furthermore, we often need to set the thresholds manually in the 
sparse-transform-based denoising methods. Therefore, how to realize the 
accurate and automatic selection of effective signal coefficients becomes the 
key to the denoising of desert seismic data. 
 
   Convolutional neural network (CNN) is a classical artificial neural 
network, which can combine the low-dimension features to form more 
abstract high-dimension features (Zhang et al., 2017; Dong et al., 2019a). 
Due to its excellent characteristics of local perception and weight sharing, 
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CNN has been successfully used in image denoising (Remez et al., 2018; 
Zhang et al., 2017), image super-resolution (Tirer and Giryes, 2019), and 
pattern recognition, etc. Meanwhile, it is also gradually applied in some 
areas of seismic exploration, such as waveform classification (Yuan et al. 
2018), arrival time picking (Yuan et al. 2018), inversion (Wu and 
McMechan, 2019; Jin et al., 2017) and seismic data denoising (Dong et al., 
2019a; Wang et al., 2019), etc. By extracting inner features of dataset, CNN 
can establish an end-to-end non-linear mapping relationship between input 
and output (Zhang et al., 2017; Dong et al., 2020b). In this work, we 
propose to utilize CNN to establish an optimal relationship between the 
noisy coefficients and the effective signal coefficients. Specifically, some 
artificial seismic wavelets and real desert low-frequency noise are used to 
construct the training dataset, and then we can obtain the optimal 
CNN-based coefficient selection model by the guidance of training dataset 
and the minimization of the corresponding mean square error (MSE) loss 
function. 
 
   In this paper, we adopt the shearlet transform and utilize multiple trained 
CNN-based coefficient selection models to predict the effective signal 
coefficients in shearlet domain, so as to propose a novel denoising method 
called improved shearlet transform based on the CNN-based coefficient 
selection (IST-CNNCS). Firstly, the desert seismic data is decomposed into 
four sub-bands through the multi-scale and multi-direction decomposition of 
shearlet transform; at the same time, we construct four training datasets to 
guide the network training, so as to obtain four CNN-based coefficient 
selection models for the four sub-bands. Secondly, these models are used to 
predict effective signal coefficients from noisy coefficients. Finally, we can 
obtain the denoised desert seismic data by coefficient reconstruction. 
Synthetic and real examples are included to demonstrate the effectiveness of 
our method. The denoised results illustrate that IST-CNNCS is superior to 
traditional seismic denoising methods and some classical 
deep-learning-based denoising applications. 
 
   There are three distinct advantages of the proposed IST-CNNCS. (1) 
Compared with the traditional sparse-transform-based denoising methods, 
IST-CNNCS does not need to set the thresholds manually, and the 
CNN-based coefficient selection models can automatically and accurately 
select the effective signal coefficients. (2) Compared with the direct use of 
CNN in seismic data denoising, IST-CNNCS makes full use of the good 
sparse representation of shearlet transform; this enables CNN to more easily 
and accurately extract the internal characteristics of data and thus avoids the 
appearance of false events. (3) since we construct different CNN-based 
coefficient selection models for different sub-bands, IST-CNNCS is an 
accurate multi-scale and multi-direction denoising method (this is similar to 
setting different thresholds for different sub-bands). 
 
 
 
 
 



	 459 

METHOD 
 
Denoising principle of IST-CNNCS 
 
 As shown in eq. (1), desert seismic data can be regarded as a linear 
superposition of effective signals and low-frequency noise (Beckouche and 
Ma, 2014; Ma et al., 2020a). 

 
，nxy +=                            (1) 

 
where nxy ,,  represent desert seismic data, effective signals, and 
low-frequency noise, respectively. The desert seismic data is decomposed 
into a low-frequency scale and a high-frequency scale by the scale 
decomposition of shearlet transform, and then we utilize the direction 
decomposition of shearlet transform to decompose the high-frequency scale 
into three direction components. The low-frequency scale and the three 
direction components decomposed from the high-frequency scale are the 
same size as the desert seismic data. For the convenience of expression, the 
four components are named sub-band 1,2,3,4, respectively. 
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where ( ) ( ) ( ) ( )yCyCyCyC 4321 ,,,  represent the noisy coefficients of 
sub-bands 1, 2, 3, 4, respectively; ( ) ( ) ( ) ( )xCxCxCxC 4321 ,,,  represent the 
effective signal coefficients of sub-bands 1, 2, 3, 4, respectively; 
( ) ( ) ( ) ( )nCnCnCnC 4321 ,,, represent the low-frequency noise coefficients of 

sub-bands 1, 2, 3, 4, respectively. Obviously,  how to separate effective 
signal coefficients from noisy coefficients directly determine the quality of 
denoising result. Next, we take the sub-band 1 (i.e., low-frequency scale) as 
an example to illustrate the extraction process of effective signal 
coefficients in detail. 
  
   In IST-CNNCS, we adopt the basic architecture of feed-forward 
denoising convolutional neural network (DnCNNs; Zhang et al., 2017; 
Dong et al., 2019a) whose basic structure is described in Appendix B. It is 
worth mentioning that the residual learning is adopted in DnCNNs, i.e, the 
noise coefficients are taken as the learning target of DnCNNs by introducing 
a bypass connection between the input and output. This kind of residual 
learning not only solves the problem that the deep network model is difficult 
to train, but also overcomes the network degradation problem caused by the 
increasing of network depth (Yang et al., 2017; Mou et al., 2018). The basic 
strategy of CNN-based coefficient selection is to establish an nonlinear 
mapping relationship between noisy coefficients and low-frequency noise 
coefficients through residual learning, and then obtain the corresponding 
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effective signal coefficients through subtraction. The specific process is 
shown in eqs. (3) and (4):  
 

( ) ( )[ ],;ˆ
11 θyCMnC =                        (3) 

( ) ( ) ( )，nCyCxC 111
ˆˆ −=                       (4) 

 
where M  represents the mapping relationship between noisy coefficients 
and low-frequency noise coefficients established by CNN; θ  is the 
network parameter including weight and bias, and its optimization is 
realized by the supervised learning of training dataset and loss function; 
( )nC1ˆ represents the predicted low-frequency noise coefficients, and ( )xC1ˆ  is 

the corresponding effective signal coefficients. In order to optimize the 
network parameters and thus obtain an optimal CNN-based coefficient 
selection model for sub-band 1, we utilize the mean square error (MSE) loss 
function in eq. (5) to optimize the network. 
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where stands for Frobenious function; I is the batch size; ( ) ( )[ ]xCyC ii

11 ,  
represents the training dataset for sub-band 1. Training dataset directly 
determines the denoising effect of IST-CNNCS on desert seismic data, and 
its specific construction will be introduced in the next part. The smaller the 
loss function ( )θMSEL , the better the optimization of network parameters θ . 
In similar way, we can obtain three CNN-based coefficient selection models 
for the three remaining sub-bands, and then utilize the three CNN-based 
models to predict effective signal coefficients of the sub-bands 2, 3, 4, 
respectively. Finally, the denoised desert seismic data can be obtained by 
coefficient reconstruction. 
 

                   ( ) ( ) ( ) ( )[ ],ˆ,ˆ,ˆ,ˆ
3221 xCxCxCxCCRxdenoised =        (6) 

 
where CR  represents the coefficient reconstruction, i.e., inverse transform; 
denoisedx  is the denoised desert seismic data; ( ) ( ) ( )xCxCxC 432

ˆ,ˆ,ˆ  denotes 
the predicted effective signal coefficients of sub-bands 2, 3, 4, respectively. 
To be more intuitive, the workflow of IST-CNNCS is shown in Fig. 1. 
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Fig. 1. The summary of IST-CNNCS. (a) The workflow of IST-CNNCS. (b) An enlarged 
view of the data in Fig. 1(a). In Fig 1(b), the figures numbered by 1 and 2 (first row) are 
the noisy record and denoised record in Fig. 1(a); the figures numbered by 3,4,5,6 
(second row) are the noisy coefficients of the four sub-bands in Fig. 1(a); the figures 
numbered by 7,8,9,10 (third row) are the predicted coefficients of the four sub-bands in 
Fig. 1(a). 
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The construction of CNN-based coefficient selection models 
 
Training dataset 
 
 It can be discovered from the loss function in eq. (5) that CNN needs a 
training dataset containing sufficient and representative data, so as to 
achieve the optimization of network parameters. The differences between 
the CNN-based coefficient selection model in IST-CNNCS and the CNN 
model in image processing mainly includes two aspects: (1) the CNN model 
in image processing is mainly used to process time-domain signals, while 
IST-CNNCS aims at frequency-domain coefficients; (2) the CNN model in 
image processing is mainly used to suppress the White Gaussian noise 
(WGN), so its training set consists of WGN whose characteristics are 
largely different from the desert low-frequency noise. Therefore, we should 
construct suitable training dataset to guide the network training of 
IST-CNNCS. In this paper, we utilize the coefficients of Ricker wavelet, 
zero-phase wavelet, mixed-phase wavelet and real desert low-frequency 
noise to construct the training dataset for IST-CNNCS. Furthermore, the 
coefficient features in different sub-bands are still variable, so we build four 
different training datasets for sub-bands 1 to 4, respectively. Taking the 
training set of sub-band 1 as an example, the construction process is 
described in detail below. 
 
   The training dataset consists of an effective signal dataset and a noise 
dataset, and we firstly introduce the former. In seismic exploration, it is 
difficult to acquire real effective signals due to the continuous existence of 
background noise. In order to obtain sufficient data of the effective signals 
which is similar to real effective signals in desert regions, we select three 
commonly-used seismic wavelets (Ricker wavelet, zero-phase wavelet and 
mixed-phase wavelet) to simulate the real effective signals in desert regions. 
To be more close to real conditions, the parameters of the adopted seismic 
wavelets are variable. The concrete expression and parameter ranges of the 
three seismic wavelets are shown in eqs. (7) to (9) and Table 1, respectively. 
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 In eqs. (7) to (9), V represents amplitude; df is on behalf of dominant 
frequency; 1r  and 2r  denote the waveform parameters of zero-phase 
wavelet and mixed-phase wavelet, respectively. 
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Table 1. The parameter setting for the three seismic wavelets. 
 
Name   dominant frequency(Hz)     velocity (m/s)    trace interval(m)     waveform 
parameter     
Ricker         5-30              200-4500          10-20               
zero-phase      5-30              200-4500          10-20               1-8 
mixed phase    5-30              200-4500          10-20               1-8 
 
 
 
   Firstly, these seismic wavelets with different parameters are leveraged to 
construct 20 synthetic clean seismic data with size of 1024×256 (sampling 
point×trace number), and the 20 clean data contains a variety of events 
mainly including broken, crossed, hyperbolic events, etc. Secondly, through 
the decomposition of shearlet transform, we can obtain the corresponding 20 
effective signal coefficient data of sub-band 1 with size of 1024×256. 
Thirdly, a sliding window with size of 60×60 is utilized to randomly 
intercept 12000 effective signal coefficient patches from the 20 effective 
signal coefficient data of sub-band 1. Finally, these effective signal 
coefficient patches after amplitude normalization together form the effective 
signal dataset for sub-band 1. 
 
   The noise set directly determines the denoising target and capability of 
IST-CNNCS. Thus, the noise set of IST-CNNCS should be composed of 
random noise and surface waves. For the former, we select a pure desert 
random noise record acquired from the Tarim Basin of China (mainly desert 
regions), and this record is obtained under the condition of no source; for 
the latter, we extract some surface waves from some real desert seismic data. 
Similarly, after the decomposition of shearlet transform and retention of 
low-frequency scale, 12000 noise coefficient patches of sub-band 1 can be 
obtained through the interception of the 60×60 sliding window; 7000 of 
these noise coefficient patches are from the random noise record, and the 
remaining 5000 patches are from the extracted surface waves. After the 
amplitude normalization, we can obtain the noise dataset for sub-band 1. 
 
 
Training process 
 
 Due to the large size of training dataset, the small-batch gradient descent 
is adopted for the network training. In each iteration, only a small part of 
samples are used to calculate the gradient. In this way, the global gradient is 
replaced by local gradient, which not only improves the computational 
efficiency but also reduces the complexity of network. Furthermore, to 
enhance the generalization ability of IST-CNNCS to different noise levels, 
we use a variable factor matrix to adjust the energy ratio of the effective 
signal coefficient patch and the noise coefficient patch. In summary, the 
training process is as follows: 
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(1) We randomly select 64 (batch size) effective signal coefficient patches 
{ }64321 .......,,, eeee  and 64 noise coefficient patches { }64321 ........,,, ssss from 
the training dataset of sub-band 1. 
 
(2) To simulate different noise levels, the { }64321 ........,,, ssss  is multiplied 
by a variable factor matrix [ ]64321 .......,,, vvvv  where 6421 .......,, vvv  are random 
numbers between 1 to 20. 
  
(3) { }646464222111 ,......,, vsevsevse ×+×+×+  and { }64642211 ,.......,, vsvsvs ×××  
are utilized as the input and the label of CNN, respectively. Then, CNN is 
optimized by minimizing the MSE loss function in eq. (5). 
 
(4) Repeat the steps (1) to (3). As the loss function decreases and finally 
tends to be stable, we can obtain the CNN-based coefficient selection model 
for sub-band 1 after 60 epochs. 
 
(5) All network training and the subsequent denoising experiments are 
completed in MATLAB environment running on a server with an E5-2600 
v4 processor, Windows 10 system, and two NVIDA GeForce GTX 1080 
GPUs. Also, the network parameters of IST-CNNCS are listed in Table 2. 
 
Table 2. The network parameters of IST-CNNCS. 

 
Parameters                       Specification     

Network depth (the number of convolution layers)      17 
Learning rate                          

Batch size                           64                               
Convolution kernel size                   3×3 
The number of filters                      128 
The number of epoch                       60 

Patch size                          60×60 
 
 
SYNTHETIC EXAMPLE 
 
 Fig. 2(a) shows a theoretical pure seismic record generated by acoustic 
equation with source function given by Ricker wavelet (Dong et al., 2019a) 
with dominant frequency 15 Hz, and its sampling interval, trace interval and 
receiver number are 0.002 s, 20 m, and 100, respectively. Then, we add the 
real desert low-frequency noise shown in Fig. 2(b) to Fig. 2(a), so as to 
obtain the synthetic noisy desert seismic record shown in Fig. 2(c). As 
shown in Fig. 2(c), most effective signals are completely submerged by 
desert low-frequency noise and hard to be recognized, especially the weak 

[ ]5-3- 10,10
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effective signals in deep part (1.2 s-1.5 s). The SNR and root mean square 
error (RMSE) of this noisy seismic record are -3.6861 dB and 3.5774, 
respectively. In this paper, we utilize SNR and RMSE to measure the 
quality of denoising results. The definitions of the two measurements are as 
follows: 
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where ( )1nx  and ( )1nxd  represent the pure record and denoised record, 
respectively; 1N is the number of sampling points. Larger SNR suggests 
more thorough suppression for noise, and smaller RMSE indicates more 
complete recovery for effective signals. 
 

 
Fig. 2. The synthetic example. (a) The synthetic theoretical pure record. (b) The real 
desert low-frequency random noise . (c) The synthetic noisy desert seismic record. 
 
 
   In this section, we use IST-CNNCS, shearlet transform with hard 
threshold function, and two widely-used seismic denoising methods: F-X 
deconvolution and EMD to process the noisy record in Fig. 2(c). The 
parameter settings of the three comparative examples are described in the 
caption of Fig. 3, the denoised results of the four methods are displayed in 
Figs. 3(a)-(d), and the corresponding removed noise is shown in Figs. 
3(e)-(h). As shown in the denoised result after applying IST-CNNCS, the 
SNR enhancement is visible and most effective signals including the deep 
weak effective signals become clear and continuous. Also, we can hardly 
observe signal-leakage energy in the removed noise by IST-CNNCS (Fig. 
3e); this demonstrates that the removed noise is extremely close to the pure 
noise and that IST-CNNCS does little to damage the effective signals. In the 
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denoised result of shearlet transform with hard threshold function (Fig. 3b), 
there is obvious residual noise and the effective signals are still too fuzzy to 
be observed. Also, some false coefficient selections by the hard threshold 
function lead to the noticeable signal-leakage energy in the removed noise 
by the shearlet transform with hard threshold function (Fig. 3f ). As shown 
in Figs. 3(c) and 3(d), F-X deconvolution and EMD can suppress a large 
amount of noise and recover the effective signals to some extent. However, 
these two approaches have two drawbacks: (1) they have limited ability to 
recover the weak effective signals in the deeper part, where some residual 
noise still makes these effective signals unclear and unrecognized. (2) the 
processing frequency range and the mode abandonment respectively cause 
some signal-leakage energy in the removed noise by F-X deconvolution and 
EMD. 
 

 
 
Fig. 3. The comparison of synthetic denoised results. (a)-(d) are denoised results after 
applying IST-CNNCS, shearlet transform with hard threshold function, F-X 
deconvolution, and EMD, successively. (e)-(h) are the removed noise by IST-CNNCS, 
shearlet transform with hard threshold, F-X deconvolution, and EMD, successively. In 
this synthetic example, for shearlet transform with hard threshold, the scale number is 4, 
the direction numbers of these 4 scales are 1, 6, 6, 10, respectively and the thresholds of 
these 4 scales are 2, 1, 1, 10, respectively; for F-X deconvolution, the length of operator 
is 50, the minimum and maximum frequency is 12 Hz and 200 Hz; for EMD, it 
decomposes the noisy record into 5 modes, and the sum of 2th, 3th, 4th modes is 
regarded as the denoised result, i.e., Fig. 3(d). 
 
 
   Next, as shown in Fig. 4, we plot the f-k spectrum of the theoretical pure 
record in Fig. 2(a), the synthetic noisy record in Fig. 2(c), and the four 
denoising results in Figs. 3(a)-(d). As can be observed from Figs. 4a and 4b, 
the effective signals and real desert low-frequency noise share some 
low-frequency bands (0-10 Hz); this spectrum overlapping brings 
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difficulties to the separation of noise and effective signals. From Fig. 4(c), 
we can discover that IST-CNNCS can suppress most desert low-frequency 
noise. Also, among the f-k spectrum of the four denoising results (Figs. 
4c-f), Fig. 4(c) is the most similar to Fig. 4(a), which demonstrates that 
IST-CNNCS can achieve a good trade-off between noise suppression and 
effective signal preservation. On the contrary, Figs. 4(d) and 4(e) illustrate 
that the signal-leakage energy caused by shearlet transform with hard 
threshold functions and F-X deconvolution; Fig. 4(e) demonstrates the 
incomplete noise suppression by using EMD. 
 

 
 
Fig. 4. The comparison of f-k spectrum. (a) The spectrum of the theoretical pure record 
in Fig. 2(a). (b) The spectrum of the noisy record in Fig. 2(c). (c)-(f) The spectrum of the 
four denoising results in Figs. 3(a)-(d). 
 
 
  To quantify the denoising performance, we calculate the corresponding 
SNRs and RMSEs of the four denoised results in Fig. 3 (the bold numbers 
in Table 3). Also, to demonstrate the reliability to different SNRs, we utilize 
the above four denoising methods to process four more synthetic noisy 
records with different SNRs, and the SNRs and RMSEs after denoising are 
listed in Table 3. It is shown in Table 3 that IST-CNNCS always 
corresponds to the largest SNR and smallest RMSE. 
 
Table 3. The comparison of denoising measurement parameters (SNR(dB)/RMSE). 
 

Noisy record       IST-CNNCS       Shearlet transform      F-X           EMD              

-3.6861/3.5774   11.5453/0.6194      2.7787/1.6995      4.0095/1.4750   2.6476/1.7254 
-6.1264/4.8214    9.9045/0.8273       0.2631/2.4024      2.0029/1.9073   0.1482/2.5016 
-4.2086/3.8129    10.8725/0.6491      2.0425/1.6243      3.7912/1.4074   1.9527/1.7723 
-2.0623/3.1724    12.9013/0.4037      4.1489/1.3791      4.4912/1.2841   4.0128/1.4191 
-0.1523/2.7357    14.0726/0.3153      5.9012/1.2162      5.8024/1.2539   4.7385/1.3271     
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REAL EXAMPLE 
 
 In this section, we select some real desert seismic records to testify the 
effectiveness of IST-CNNCS, and compare our method with the above three 
traditional methods (shearlet transform with hard threshold function, F-X 
deconvolution, EMD) and two deep-learning-based methods: DnCNNs and 
trainable nonlinear reaction diffusion (TNRD). 
 
  
Example 1 
 
 To verify the practical application value of IST-CNNCS, we select a real 
desert common-shot-point record (Fig. 5a) with sampling interval 0.002 s, 
receiver number 180 and trace interval 20 m. This record is extracted from a 
3D desert seismic dataset and received by a certain receiver-line. As shown 
in Fig. 5(a), the reflected hyperbolic events are simultaneously contaminated 
by both low-frequency random noise and surface waves, which seriously 
destroys the continuity of events. We utilize IST-CNNCS and the three 
comparative methods adopted in the above synthetic example to process this 
real common-shot-point record, and the corresponding denoised records are 
shown in Figs. 5(b)-(e), successively. In this section, we compare the four 
methods from multiple aspects of random noise suppression, surface wave 
suppression, preservation ability for effective signals, denoising time. 
 
 
Random noise suppression 
 
 As shown in the red rectangles of Fig. 5(a), the contamination by 
random noise leads to the poor continuity of events. In the red rectangles of 
Fig. 5(b), IST-CNNCS can suppress most of the random noise and 
significantly enhance the continuity of events. On the contrary, in the red 
rectangles of Figs. 5(c) and 5(d), shearlet transform with hard threshold 
function and F-X deconvolution can only suppress partial random noise, and 
the hyperbolic events are still difficult to be recognized; in the red 
rectangles of Fig. 5(e), EMD can effectively suppress most of the random 
noise, whereas the events are discontinuous. 
 
 
Surface wave suppression  
 
 As shown in the yellow rectangle of Fig. 5(a), the effective signals are 
seriously damaged by the strong energy surface waves. In the yellow 
rectangle of Fig. 5(b), IST-CNNCS can suppress almost all surface waves 
and recover the events to a great extent, even the deeper events which are 
completely damaged by the strong surface waves (i.e., 2000 ms to 2200 ms 
of the yellow rectangle in Fig. 5b). Conversely, the shearlet transform can 
hardly suppress the surface waves which still interfere the effective signals; 
in the yellow rectangles of Figs. 5(d) and 5(e), although F-X deconvolution 
and EMD can remove partial surface waves, they can not fully recover the 
effective signals and the deep events are still discontinuous. 
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Fig. 5. The real desert common-shot-point record and its denoised results. (a) The real 
desert common-shot-point record. (b)-(e) are the denoised results of Fig. 5(a) by using 
IST-CNNCS, shearlet transform with hard threshold function, F-X deconvolution, and 
EMD, successively. In this real example, for shearlet transform with hard threshold 
function, the scale number is 5, the direction numbers of these 5 scales are 1, 6, 6, 10, 10, 
respectively, and the thresholds of these 5 scales are 2, 1, 1, 1, 15, respectively; for F-X 
deconvolution, the length of operator is 80, the minimum and maximum frequency is 12 
Hz and 200 Hz; for EMD, it decomposes the noisy record into 5 modes, and the sum of 
2th, 3th modes is regarded as the denoised result, i.e., Fig. 5(e).  
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Preservation ability for effective signals 
 
 To compare the preservation ability for effective signals, we display the 
difference record of the four methods (Fig. 5a minus Figs. 5b-e, respectively) 
in Fig. 6. It can be discovered from Figs. 5(c) and 5(d) that there is lots of 
obvious signal-leakage energy in the difference records of F-X 
deconvolution and EMD; this phenomenon demonstrates that F-X 
deconvolution and EMD damage partial effective signals when suppressing 
the random noise and the surface waves. In the difference record of shearlet 
transform with hard threshold function (Fig. 5b), we can barely observe the 
effective signals; this does not mean that shearlet transform with hard 
threshold has good preservation ability for effective signals, but suggests its 
poor suppression for low-frequency noise. On the contrary, the different 
record of IST-CNNCS (Fig. 5a) consists almost entirely of low-frequency 
noise and we can barely observe signal-leakage energy in this difference 
record, which proves the superior preservation ability for effective signals of 
IST-CNNCS. 
 

 
 
Fig. 6. The comparison of difference records. (a) The difference record of IST-CNNCS 
(Fig. 5a minus Fig. 5b). (b) The difference record of shearlet transform with hard 
threshold function (Fig. 5a minus Fig. 5c). (c) The difference record of F-X 
deconvolution (Fig. 5a minus Fig. 5d). (d) The difference record of EMD (Fig. 5a minus 
Fig. 5e). 



	 471 

Denoising time 
 
 The denoising time-cost of IST-CNNCS mainly includes two parts: 
training time and denoising time. The former refers to the training time of 
the four CNN-based coefficient selection models, and the latter refers to the 
time-cost of multi-scale and multi-direction decomposition by shearlet 
transform, coefficient prediction by the trained CNN-based models, and 
coefficient construction. In this paper, the training time of the four 
CNN-based coefficient selection models is 5.92 hr, 6.13 hr, 6.51 hr, 6.41 hr, 
respectively, a total of 24.97 hr. However, for the similar desert seismic 
records, we only need to train the four CNN-based models once; in other 
words, after completing the network training, the time cost of IST-CNNCS 
is denoising time rather than the sum of denoising time and training time. 
Therefore, we just compare the denoising time of the four methods, and not 
consider the training time of IST-CNNCS. 
 
   We utilize IST-CNNCS, shearlet transform with hard threshold, F-X 
deconvolution, and EMD to process some desert seismic records with 
different sizes, and the concrete denoising time is listed in Table 4. It can be 
discovered that, in terms of denoising time, IST-CNNCS is obviously 
inferior to F-X deconvolution, slightly inferior to shearlet transform with 
hard threshold function, and superior to EMD. However, considering the 
denoising performance, compared with the three traditional methods, 
IST-CNNCS is still more suitable for the denoising of desert seismic 
records. 
 
 
 
Table 4. The comparison of denoising time (s). 

 
Record size        IST-CNNCS       Shearlet transform      F-X           EMD              

600×100           4.1324             3.9015           1.2439          37.1073  
1000×100          7.9125             7.7139           1.8627          69.1542 
1200×200          14.3612            13.9327          2.3614          136.1495 
1800×250          22.1592            21.0593          2.8761          241.9372                
 
  
   
  In general, deep-learning-based algorithms need lots of time to train the 
network. Decreasing the training time is mainly based on the hardware 
enhancement and network structure adjustment. The former is not part of 
our research field, so our next goal is to shorten the training time of CNN by 
the network structure adjustment. Specifically, we plan to carry out 
super-parameter optimization and dense-skip connection for CNN, which 
can significantly reduce the complexity of the network and accelerate the 
training speed of network. 
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Fig. 7. The denoised results of a shot gather by using deep-learning methods. (a) The 
shot gather from the desert region. (b) The denoised result by using IST-CNNCS. (c) The 
denoised result by using DnCNNs. (d) The denoised result by using TNRD. The network 
parameters of DnCNNs are the same as that of IST-CNNCS. In TNRD, the network 
depth, filter number in each layer, patch size, and filter size are 8, 24, 100×100 and 5×
5. Moreover, we use the 20 synthetic clean seismic data and the real desert 
low-frequency noise which together make up the training dataset of IST-CNNCS to train 
DnCNNs and TNRD.  
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Example 2 
 
 The proposed IST-CNNCS is a deep-learning-based denoising method, 
so we compare it with two classical deep-learning-based methods: DnCNNs 
and TNRD; the network parameters and training dataset of these two 
deep-learning based methods are introduced in the caption of Fig. 7. Fig. 7(a) 
shows a shot gather including three common-shot-point records, and its 
sampling interval, trace interval, and receiver number are 0.002 s, 20 m, and 
616, respectively. Figs. 7(b), (c), and (d) are the denoised results by using 
IST-CNNCS, DnCNNs, and TNRD, respectively. 
  
   In the denoised result by using TNRD (Fig. 7d), there are still lots of 
residual random noise and surface waves; the events recovered by TNRD 
are unclear and hard to be recognized. Comparatively speaking, the 
denoising performance of TNRD is obviously inferior to that of the other 
two CNN-based denoising methods. In the denoised results by using 
IST-CNNCS and DnCNNs (Figs. 7b and 7c), the two CNN-based methods 
can suppress most of the random noise and surface waves. However, there 
are some false events in the denoised result by using DnCNNs (Fig. 7c). 
This phenomenon is mainly due to two reasons: (1) the effective signal 
dataset is composed of synthetic data which is inevitable different from real 
data, even if we adopt multiple seismic wavelets and change their 
parameters; (2) CNN adopts the paired training. On the contrary, as shown 
in Fig. 7(b), by making use of the good sparse representation of shearlet 
transform, IST-CNNCS can effectively avoid the appearance of false events. 
After the processing of IST-CNNCS, most of the random noise and surface 
waves are reduced and the events become clear and continuous. 
 
 
CONCLUSION 
 
 Lots of traditional seismic denoising methods are constrained by the low 
SNR and serious spectrum overlapping of the desert seismic data. The 
denoised results often troubled from two problems: residual low-frequency 
noise and effective signal attenuation. To solve this problem, we combine 
shearlet transform and CNN to propose a novel denoising algorithm called 
IST-CNNCS. In IST-CNNCS, the desert seismic data is decomposed into 
four sub-bands, and we construct four CNN-based coefficient selection 
models to achieve multi-scale and multi-direction precise denoising. After 
the coefficient predictions by the constructed CNN-based models and then 
coefficient reconstruction, we can obtain the denoised desert seismic data. 
Both synthetic and real examples demonstrate that IST-CNNCS is superior 
to the traditional seismic denoising methods and that it can suppress the 
desert low-frequency noise thoroughly and recover the reflected effective 
signals completely. 
 
   In summary, the proposed IST-CNNCS has three significant advantages. 
(1) IST-CNNCS is a multi-scale and multi-direction precising denoising 
algorithm, this is similar to setting different thresholds to different 
sub-bands according to the coefficient features. (2) we use the trained 
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CNN-based models to achieve the automatic and accurate coefficient 
selections, which avoids to set the threshold manually. Therefore, 
IST-CNNCS can be called intelligent denoising algorithm. (3) through the 
good sparse representation of shearlet transform, IST-CNNCS can 
effectively avoid the appearance of false events and significantly enhance 
the continuity of events. It can be concluded from (2) and (3) that 
IST-CNNCS is not a simple combination of CNN and shearlet transform, 
but complement each other. 
  
   Currently, almost all deep-learning-based algorithms need clean 
effective signal data to complete the network training. This greatly limits 
their application in seismic data denoising due to the unavailability of real 
seismic effective signals and the inevitable difference between real seismic 
effective signals and synthetic seismic effective signals. In future studies, 
we plan to leverage the forward modelling method to minimize this 
difference, but this strategy cannot solve this problem fundamentally. 
Therefore, we also plan to adjust the training way and network architecture 
to realize the unpaired training between the noisy seismic data and the pure 
noise data. In this way, we can complete the network training only using 
real data rather than the mixture of real and synthetic data. 
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APPENDIX A   
 
THE BASIC THEORY OF SHEARLET TRANSFORM 
 
 Shearlet transform proposed by Guo and Labate (2007) is constructed by 
an affine system with composite dilations (i.e., the expansion, shear and 
translation of basic function). Compared with some conventional multi-scale 
geometric analysis methods including wavelet transform, curvelet transform, 
and contourlet transform, it has a simpler mathematical structure and 
requires fewer coefficients when approximating a curve (Liang et al., 2018; 
Tang et al., 2018; Dong et al., 2019b). Furthermore, shearlet transform has 
many advantages including anisotropy, sensitive directivity and optimal 
sparse representation (Guo and Labate, 2007; Lim, 2010), so it can well 
capture the geometric characteristics of multidimensional signals and 
provide the optimal sparse representation for signals (Dong et al., 2019b). 
  

 For 2D space, the affine systems with composite dilations can be 
expressed as follows (Kutyniok and Lim, 2011): 
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where ( )22 RL∈ψ , I represents input signal, BA,  are 22×  invertible 
matrices and 1det =B . Dilation matrices jA control the scale transformations,

klj 、、  are the scale, location and direction parameters, respectively, and 
matrices jB are	 associated with geometrical transformations including 
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 The elements of above affine systems with composite dilations are 
called complex wavelet. Shearlet is a special form of the composite wavelet. 
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where ( )22 RL∈ψ  is the band-limited function; A0 is anisotropic dilation 
matrix whose function is scale transformation; B0 is the shear matrix related 
to direction transformation. It can be clearly seen from eq. (A-3) that 
shearlet is obtained by proper dilation, shear and translation of the basis 
function. 
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APPENDIX B 
   
THE BASIC ARCHITECTURE OF DnCNNs 
 
 In IST-CNNCS, we adopt the basic architecture of DnCNNs which is a 
classical network for noise suppression. As shown in Fig. B-1, the DnCNNs 
consists of convolution layers (Conv) , batch normalization layers (BN) and 
rectified linear units (ReLU). The Conv contains numerous convolutional 
kernels which can extract the data features by the convolution operation 
(Yuan et al., 2018; Dong et al., 2020b), and the concrete expression of its 
function is displayed in eq. (B-1). 
 
        ,bIwC +∗=                         (B-1) 
 
where C  and I  are the output and input of Conv, w  and b  represent 
weight and bias. BN is mainly used to control the mean value and variance 
of the input data in each layer to be approximately 0 and 1, respectively 
(Loffe and Szegedy, 2015; Wu et al., 2019). The basic function of BN is 
shown in the eqs. (B-2) to (B-5): 
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where B represents batch size; ai and bi are the input and output of BN; ξ  
denotes a constant which can guarantee numerical stability; γ  and β  are 
learnable parameters optimized by network training. Some related research 
demonstrates that BN can effectively avoid the phenomenon of gradient 
dispersion and significantly accelerate the convergence speed of network 
(Loffe and Szegedy, 2015; Dong et al., 2020a). 
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Fig. B-1. The architecture of DnCNNs. 

 
 
 ReLU is a widely-used activation function, whose function can be 
expressed as . Compared with traditional activation functions 
including Sigmoid and tanh, ReLU can significantly increase the speed of 
gradient descent and reduce the operation cost (Zhang et al., 2017).  
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