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ABSTRACT 
 
Khan Mohammadi, A., Mohebian, R. and Moradzadeh, A, 2021. High-resolution seismic 
impedance inversion using improved CEEMD with adaptive noise. Journal of Seismic 
Exploration, 30: 481-504. 

	
   Seismic impedance inversion is an inevitable step in reservoir characterization 
required in both exploration and field works. It provides layer-based acoustic impedance 
property of rocks by imaging subsurface through the integration of data derived from 
seismic and well logging investigations. Recent studies providing subsurface rocks’ 
properties have highlighted the need to resolve seismic data’s nature, which is the limited 
frequency bandwidth. Although a significant amount of work has been done in the 
previous years by geophysicists, this problem continues. In this study, by implementing a 
powerful and robust time-frequency signal processing method, namely improved 
complementary ensemble empirical mode decomposition with adaptive noise 
(ICEEMDAN), we propose a seismic inversion algorithm in order to overcome the 
mentioned problem. In other words, we propose an algorithm that improves the seismic 
impedance inversion in order to obtain subsurface images with higher resolution than 
other common impedance inversion methods. For a dataset, the proposed method resulted 
in a 98.44(%) correlation coefficient with 164.82 RMS error between the original log and 
inverted log while the commercial Band-limited, hard and soft constrained Model-based 
inversion methods resulted in a 91.29(%), 91.12(%) and 93.05(%) with 345.33, 322.39 
and 295.48 RMS errors, respectively. Results demonstrate the resolution enhancement in 
impedance inversion by our proposed method in comparison to previous approaches. 

 
KEY WORDS: seismic inversion, acoustic impedance, empirical mode decomposition, 
     improved CEEMD, F3 block. 
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INTRODUCTION 
 
  Seismic inversion provides subsurface physical models with rocks’ 
and fluids’ characteristics. This tool frequently employs seismic data to 
integrate with information derived from well log to calculate the physical 
properties of subsurface layers (Pendrel, 2006). The physical parameters are 
the P-impedance, S-impedance, velocity, density, and porosity. Interpreting 
seismic data solely is a predicament, so inversion-based attributes are 
utilized to enhance the interpretation (Chen and Sidney, 1997). The seismic 
impedance inversion methods became prevalent when extraction of phase 
spectra for wavelets as well as their amplitude through computation became 
available (Lindseth, 1979). Seismic inversion aims to engender high-
resolution subsurface images to enhance the interpretation of seismic data 
and essentially reduce the drilling risk and cost (Pendrel, 2006). Seismic 
acoustic impedance inversion has several restraints: 
 

• A conventional seismic frequency band is often constrained to a usable 
bandwidth of 8-80 Hz in marine environments. On the other hand, in 
broadband seismic acquisition systems, the usable frequency 
bandwidth ranges from 2.5 Hz up to 200 Hz or more for shallow 
targets. But, in most cases, below 8 Hz, and over 80 Hz frequencies are 
barely available in marine cases (Amundsen and Landrø, 2013). 

• Some obstacles are preventing seismic inversion from producing its 
intended goal. These obstacles are multiples, reflections, 
transformation losses, acquisition patterns, and frequency-dependent 
retention due to acquiring appropriate seismic gathers for 
interpretations and inversion (Carrazzone et al., 1996). 

• Non-uniqueness of the seismic inversion results cause numerous 
conceivable geologic models consistent with observations (Latimer et 
al., 2000). 

 
 To alleviate these unreliable factors in the inversion procedure, 
additional information is required. These can be derived from well logging 
that includes the low and high frequency components within a range of 0 to 
approximately 200 Hz and even more (depending on the sampling frequency 
of the well log). These crucial frequency components are usually employed 
to restrict the divergency in the initial model estimation procedure (Ferguson 
and Margrave, 1996; Russell, 1988). The final inversion results in a 
subsurface model depending on the seismic data quality, while its initial 
model or its low frequency information comes from the data derived from 
well logging techniques and the ill pose problem caused by the lack of high 
and low frequency components in the data is solved (Gholami, 2016; Liu et 
al., 2015; Lloyd, 2013). However, the inversion algorithm itself is another 
factor that plays an important role in affecting the resolution of the intended 
output (Maurya and Singh, 2019; Maurya et al., 2020; Schuster, 2017). 
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 This research aims to consider a robust method in order to acquire 
high-resolution subsurface images by using the most available frequency 
components in the data, and reducing the frequency losses in the seismic 
impedance inversion procedure. Stochastic seismic inversion has been 
proposed to obtain subsurface information, especially in the case of the thin 
layer investigations (Grant et al., 2017; Li et al., 2019; Zhang et al., 2012). 
Further, (Ray and Chopra, 2016) proposed multi-attribute regression analysis 
with cross validation. Multiple multi-attribute impedance inversion methods 
have been proposed (Alvarez et al., 2015; Fnegqi et al., 2014; Haris et al., 
2017; Zahmatkesh et al., 2018) for seismic impedance inversion to acquire 
high resolution and more robust acoustic impedance models. Also, (Zhou et 
al., 2019) proposed a multi-trace basis-pursuit seismic inversion method to 
improve the outcome resolution for seismic investigations. Inversion and 
imaging have been well studied using computer science, and geophysics and 
multiple powerful algorithms have been proposed to obtain high-resolution 
images for interpretation (Maurya et al., 2020; Schuster, 2017; Wang, 2016). 
Some recent scholars have improved seismic inversion methods by 
implementing newer autonomous techniques (Das et al., 2018; Kushwaha et 
al., 2020; Yang and Ma, 2019). 

 
 In this paper, we use a powerful and recently developed time-

frequency signal processing method based on empirical mode decomposition 
(EMD) that decomposes any time series into its intrinsic mode functions 
(IMF). Each IMF represents different frequency elements of the initial 
signal. We use the improved complementary ensemble EMD with adaptive 
noise (ICEEMDAN) time-frequency analysis (TFA) method (Colominas et 
al., 2014; Han and van der Baan, 2013; Shangyue et al., 2015). The first IMF 
contains the highest frequencies available in the initial signal, and the last 
IMF or the residual contains the lowest frequency components in the mother 
signal while it gives the linear trend of it (Jicheng et al., 2020; Xue et al., 
2019; Zhang et al., 2018; Zhang and Li, 2020). By implementing the 
ICEEMDAN in the seismic impedance inversion, we separate the frequency 
components of the well log signal precisely and extract the necessary 
components for the inversion procedure. 

 
 In other words, our seismic inversion algorithm uses ICEEMDAN in 

order to compute the acoustic impedance with more accuracy. Our method 
results in a higher resolution impedance model in comparison to the 
commercial band-limited and model-based inversion approaches. Finally, we 
compared our results with other commercial impedance inversion methods 
to illustrate the resulting accuracy, and multiple cross plots are provided in 
order to demonstrate the advantages of our approach. 
 
THEORY AND METHODOLOGY 
 
  As our proposed algorithm uses the improved CEEMDAN, a brief 
review of its concepts is given here. 
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EMD 
 
  EMD decomposes the initial signal into several signals called IMFs or 
intrinsic mode functions and a residual signal in an iterative procedure. Each 
of them describes the oscillations inside the primary signal. With a simple 
summation, they can rebuild the initial signal regardless of a mixing 
problem. These IMFs must have two following characteristics: 
 

• The number of extrema and zero crossings have to either be equal or 
differ by one (maximum) in the entry signal to the decomposition 
procedure. 

• At any random point in the mother signal (initial signal), the mean 
value of the envelope constrained to the local maxima and minima 
must be zero. 

 
These conditions are vital to assure that every IMF has a localized frequency 
content by avoiding frequency spreading due to asymmetric waveforms 
(Bekara and van der Baan, 2009; Han and van der Baan, 2011; Huang and 
Wu, 2008). 
 

 EMD is a fully data-driven signal decomposition tool. It decomposes 
the entry signal into a series of functions with fast and slow oscillations or 
high and low frequencies, respectively. These IMFs are computed 
recursively of which the first of them is the most oscillatory or the highest 
frequency contained component. The algorithm proposes a cubic spline 
interpolation method to calculate the local maxima to construct the upper 
bound once the maxima of the initial signal have been defined. The same 
process is used for local minimum amplitudes to acquire the lower bound. 
These bounds are called envelopes. In the next step, the algorithm proposes 
subtracting the mean of the upper and lower envelopes to extract the first 
IMF inside the initial signal. This interpolation is proceeded on the leftover 
portion and called the Sifting procedure, which concludes when the average 
envelope is roughly zero everywhere. The resulting signal is denoted as 
IMF1. This function is also known as the first oscillatory component of the 
original signal which is derived by the EMD method (Han and van der Baan, 
2013; Huang et al., 1998; Huang and Wu, 2008). The algorithm for EMD is 
written below, which is necessary for ICEEMDAN. 

 
 The first IMF is subtracted from the mother signal in order to consider 

the residual signal as a new input, and the same Sifting procedure must be 
applied to it to acquire the subsequent IMF. This process is stopped once the 
final IMF has a roughly zero amplitude or becomes monotonic, which only 
contains the signal’s linear trend (Han and van der Baan, 2011, 2013; Huang 
and Wu, 2008; Mhamdi et al., 2010). 
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 The frequency mixing problem which is also known as the mode 
mixing problem, is an obstacle to decompose the initial signal to diverse 
signals with independent frequency content. Mode mixing is characterized as 
a single IMF including signals with broadly dissimilar scales or a signal of a 
comparable scale residing completely various IMF components. In other 
words, a single IMF contains other IMF’s components, which is the 
definition of the mode mixing problem (Huang and Wu, 2008). 

 
 In order to solve the mode mixing problem, several approaches have 

been established. One of them is ensemble empirical mode decomposition 
(EEMD). According to the filter bank structure of the EMD and to address 
the mentioned issue, a noise-assisted method has been proposed, which 
stabilizes the Sifting process and its performance by adding Gaussian noise 
to the original signal (Flandrin et al., 2004; Wu and Huang, 2009). To 
implement this method, a series of steps have been defined in Fig. 1. 
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Fig. 1. Ensemble empirical mode decomposition workflow. 

   
  The introduced Gaussian white noise sequences in the algorithm are 
zero mean with a constant flat-frequency spectrum. Their participation in 
this way counteracts and does not produce the signal components that are not 
existed in the mother signal. Subsequently, the ensemble-averaged EMD 
components preserve their inherent dyadic characteristics and eliminate the 
chance of the frequency mixing efficiently. Consequently, EEMD 
compensates for EMD’s weakness and improves its performance. However, 
a question should be answered: does this method decompose the original 
signal properly? In other words, does the summation of all extracted IMFs 
will reconstruct the initial signal precisely? Due to the algorithm’s 
architecture, each noise-assisted EMD application can extract a various 
number of IMFs. The result of the summation of extracted IMFs is not the 
original signal precisely, while the error of rebuilding increases, which 
depends on the number of implicated noise realizations with an increment in 
computation time. 
 
 
CEEMDAN 
 
  Complete ensemble EMD using adaptive noise (CEEMDAN) is also a 
noise-assisted method which process contains three steps (Han and van der 
Baan, 2011, 2013; Torres et al., 2011; Xue et al., 2016, 2019; Yeh et al., 
2010; Zhang et al., 2018): 
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• The primary step is to include a fixed-rate Gaussian white noise onto 

the original signal. Then it will calculate IMF1 from the data blended 
with noise. According to eq. (1), after repeating the decomposition 
cycle i times with various noise realizations, the original signal’s first 
mode (IMF1) will be obtained. 

 

        𝐼𝑀𝐹! =
1
𝐼

𝐸! 𝑥 + 𝜖𝑤!

!

!!!

.          (1) 

 
where IMF1 is the first EMD component of the initial signal x, Wi is 
zero means Gaussian white noise with unite variance, ε is a fixed 
coefficient, E [ ] extracts the i-th IMF component, and I is the number 
of realizations in eq. (1). 
 

• In the next step, the first signal residue r1 is calculated by eq. (2), 
 
 𝑟! = 𝑥 − 𝐼𝑀𝐹!. 

(2) 

  
• In the last step, decompose realizations r1 + ε E1[wi], i = 1,2,...,I, until 

they reach their first IMF conditions and calculate the ensemble 
average as the second IMF2 according to eq. (3) 
 

  𝐼𝑀𝐹! =
1
𝐼

𝐸! 𝑟! + 𝜖𝐸!𝑤!

!

!!!

. (3) 

 
   For j = 2,3,...,J, same as all previous steps for first and second IMFs, 
the first component of k + 1’s IMF will be calculated with eq. (5) in an 
iterative manner. Before that, the J-th residue must be calculated with eq.(4), 
according to rj + ε Ej[wi], i = 1,2,...,I. 
 
 

 𝑟! = 𝑟!!! − 𝐼𝑀𝐹! ,  (4) 

𝐼𝑀𝐹!!! =
1
𝐼

𝐸! 𝑟! + ϵ𝐸!𝑤!

!

!!!

. (5) 

  The Sifting process iterates till the last residue does not have more 
than two extrema, producing eq. (7) considering eq. (6) 
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𝑅 = 𝑥 − 𝐼𝑀𝐹!

!

!!!

, (6) 

𝑥 = 𝐼𝑀𝐹!

!

!!!

+ 𝑅. (7) 

in which R is the final IMF (residual) and J is the total number of the 
intrinsic mode functions. Eq. (7) is the factor that makes the CEEMDAN a 
complete decomposition (Han and van der Baan, 2013; Torres et al., 2011; 
Xue et al., 2016; Yeh et al., 2010; Zhang et al., 2018). CEEMDAN has two 
advantages analogous to EMD and EEMD: 
 

• Solves the difficult to overcome mode mixing problem properly. 
• Reduces the error derived from reconstructing the original signal from 

extracted IMFs to almost zero due to its exactness. 
 
 The previous studies showed that the CEEMDAN method has 

advantages over both EEMD and EMD. However, two technical problems 
that still go on with this method, are: (1) the accuracy in reconstructing the 
initial signal and (2) the true number of IMFs. These errors can be decreased 
to a certain degree but need more calculations (Colominas et al., 2014). 

 
 

IMPROVED CEEMDAN 
 
  Improved CEEMDAN is a method to solve the mode mixing problem 
with the highest accuracy. This method realizes the coherence in frequency 
between adjoining scales by including a certain percent of white noise which 
follows the weakening in mode mixing problem and uncertainty in the 
number of intrinsic mode functions (Colominas et al., 2014; Zhang et al., 
2018). Improved CEEMD with adaptive noise, has a simple algorithm based 
on EMD written below. 
  
   In order to demonstrate the eminence of improved CEEMD with 
adaptive noise, we compare the error of the CEEMDAN and the 
ICEEMDAN for the signal shown in Fig. 2. 
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     (a) 

 

      (b) 

Fig. 2. Synthetic signal with background 15 Hz Cosine wave (a) ICEEMDAN and 
CEEMDAN errors for the synthetic signal (b). 
 
 
PROPOSED METHOD FOR INVERSION 
 
  Seismic impedance inversion is a conventional method to obtain 
quantitative description of subsurface rocks’ properties using seismic and 
well log data (Fu, 2004; Madiba and McMechan, 2003; Pendrel, 2006; 
Riedel et al., 2009). The purpose of well log data in impedance inversion is 
that the initial impedance model comes from low frequency P-wave and 
porosity logs. Well log data is containing frequencies within zero to more 
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than 200 Hz. There are various suggested workflows for band-limited 
impedance inversion (Liu et al., 2015; Lloyd, 2013; Maurya and Singh, 
2015). The mathematical steps for this method begin with: 
 

𝑅! =
!!!!!!!
!!!!!!!

    . (8) 
 
 Eq. (8) defines the first step of the workflow to obtain acoustic 

impedance from seismic trace with impedance estimation where Ri is the 
reflectivity coefficient series, and Zi is the acoustic impedance of the i-th 
subsurface layer. 

 
 In order to solve eq. (8) to get a series of impedance for the n-th layer 

model, eq. (8) can be changed to: 
 

𝑍!!! = 𝑍! 1 +
2𝑅!
1 − 𝑅𝑖

= 𝑍!
1 + 𝑅!
1 − 𝑅!

. 
(9) 

Eq. (9) calculates acoustic impedance for the next layer 

𝑍  

= 𝑍!
1 + 𝑅!
1 − 𝑅!

1 + 𝑅!
1 − 𝑅!

…
1 + 𝑅!!!
1 − 𝑅!!!

    .                                       (10)                                                                               

In the next step, acoustic impedance for the n-th layer can be calculated 
through eq. (10) 

𝑍!!! = 𝑍!
1 + 𝑅!
1 − 𝑅!

!

!!!

.                                                                         

(11) 

  Eq. (11) is another representation of eq. (10). The presented solution 
in eq. (11) is dependent on knowing the first layer’s impedance in the model. 
Suppose eq. (11) is divided by the first layer’s impedance, and a natural 
logarithm had been taken of it. In that case, the relationship between seismic 
trace and acoustic impedance can be obtained through eq. (12) 
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ln
𝑍!!!
𝑍!

= ln
1 + 𝑅!
1 − 𝑅!

!

!!!

≈ 2 𝑅!

!

!!!

. 

                                                                        

(12) 

𝑍!!! = 𝐼! exp 2 𝑅!

!

!!!

.                                                                         

(13) 

 In the last step, an approximation for the natural logarithm term in 
eq.(12) is needed which is valid for small R. By solving eq. (12) for 𝑍!!!, 
eq.(13) results. 

 

𝑍!!! = 𝐼! exp 𝛾 𝑆!

!

!!!

.                                                                         

(14) 

  To make the seismic trace as a scaled reflectivity model, eq. (14) is 
resulting regarding Sk = !!!

!
  which depends on γ that it is a scaling factor 

defined by numerical estimates. 
 

 Eq. (14) is the body of the band-limited inversion, which combines 
the seismic traces and exponentiates the result to calculate an impedance 
trace same as the prior proposed calculation (Maurya et al., 2020; Schuster, 
2017) but with a few modifications in the preconditioning phase. A 
considerable restriction of the Band-limited inversion is that the seismic data 
must be in zero phase; otherwise, it can be transformed to it with known 
methods. Due to the nature of oil and gas and reservoir rocks’ properties, 
usually potential hydrocarbon reservoirs can be found in low impedance 
zones (Maurya et al., 2020; Schuster, 2017; Wang, 2016). 

 
 According to Fig. 3, the proposed method uses the residual mode 

function as the linear trend that contains the lowest frequencies in the initial 
signal (Jicheng et al., 2020; Xue et al., 2019; Zhang et al., 2018). However, 
the previous methods are using the least-squares approach to fit a line to the 
impedance log (Maurya et al., 2020). 
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Fig. 3. Workflow for the proposed impedance inversion method. 

 
 
  
 The linear trend estimated by the ICEEMDAN has merit in 

comparison to the least-squares linear regression method, and will result in a 
more precise linear trend. The residual function won’t contain any mid to 
high-frequency components, and it will provide a more robust approximation 
for the log’s impedance linear trend. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 4. Step-by-step Preconditioning phase for inversion: Well impedance (a), 
ICEEMDAN (b) on AI, Removing linear trend (c). 

 



	 495 

 
RESULTS and DISCUSSION 

	

  In this section, we compare the inverted impedance by the represented 
method in this research with hard and soft constrained Model-based as well 
as the Band-limited seismic inversion methods for real seismic data. 
 

 For impedance inversion, we used the well F02-01 and seismic inline 
362 from open access F3 Netherlands Block V6 dataset published in 2016. 
According to the suggested workflow, the outcomes of the proposed 
impedance inversion method steps are shown in Fig. 4, which illustrates the 
Preconditioning phase for target well. 
 

 

Fig. 5. Seismic trace at well location. 
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 Fig. 6 shows the results of the proposed approach and other 
commercial inversion methods for calculating acoustic impedance from the 
seismic trace at well location is shown in Fig. 5 with more accurate low-
frequency data derived from impedance log by using the improved CEEMD 
with adaptive noise method. 

 
 

 

 
Fig. 6. Acoustic Impedance calculated by proposed approach (a), band-limited inversion 
(b), hard constrained model-based (c), and soft constrained model-based (d) inversion 
methods at well location in comparison with the impedance log. 
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 In order to ascertain the eminence and validate the proposed method 
in this study, the inverted log derived from the proposed method and the 
Band-limited impedance as well as both hard and soft constrained Model-
based inversion methods have been compared with the original impedance 
log in Fig. 6. The correlation coefficient for the proposed algorithm is 
98.44%, and the RMS error is 164.82. 

 
 By and large, the examination of Fig. 7, which shows the cross plots 

between the original and inverted impedance logs and Table 1 verifies that 
the proposed algorithm has improved the acoustic impedance estimation, and 
it has a considerable accuracy in comparison to other common methods. This 
method is also insensitive to the overall scale of the seismic data like 
previous methods. 

 

 

 
Fig. 7. Cross plots between original and inverted impedance for proposed method (a), 
bandlimited inversion (b), hard constrained model-based (c), and soft constrained model-
based (d) inversion methods. 
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Table 1. Comparison of the proposed method with common methods for Well F02-01. 
 

Method Correlation Coefficient(%) RMS Error 

Band-limited inversion 91.29 345.33 

Model-based inversion 
(Hard) 

91.12 322.39 

Model-based inversion (Soft) 93.05 295.48 

Proposed method 98.44 164.82 

 

For the seismic section (inline 362) shown in Fig. 8, which has 
complex geological features, acoustic impedance was calculated by the 
proposed method as well as other common inversion methods used in 
geophysical reservoir characterization. 

 

 

Fig. 8. Seismic section (inline 362), blue color illustrates low amplitude and red shows 
high amplitude values. 
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 Fig. 9 shows the inversion results for the seismic section shown in 
Fig. 8 using the Band-limited, hard, and soft constrained Model-based 
inversion methods, respectively. The proposed method has better resolution 
than the other methods. Simultaneously, the low impedance layers in inline 
362 are potential hydrocarbon existent zones and the black arrows in Fig. 9 
are showing the potential reservoir units in this seismic inline. 

 
 

 

 
 
Fig. 9. Inverted seismic sections by proposed method (a), band-limited (b), hard 
constrained model-based (c), and soft constrained model-based (d) inversion methods for 
the seismic image shown in Fig. 8, red and purple colors illustrating low and high 
impedance values. 
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 The correlation coefficients and RMS errors are shown in Table 2 for 
other available wells in the data. 

 
 

Table 2. Results of the proposed method for other available wells in data. 
 

Well Correlation Coefficient(%) RMS Error 

F 03-
02 

98.78 305.24 

F 03-
04 

95.63 132.16 

F 06-
01 

97.74 173.65 

 

In order to obtain the best impedance image from the seismic section 
shown in Fig. 8, through numerous experiments, we used the presented 
parameters in Table 3 in our proposed algorithm. Based on our numerical 
experiments, we suggest to set the number of noise realization parameter 
between 100 and 1000 which affects the accuracy in calculating the IMFs. 

 
                                      
Table 3. Parameters for signal decomposition. 
 

Parameter Value 

Noise standard deviation 0.2 

Number of noise 
realizations 

150 

Maximum iteration 100 

 

Since improved CEEMD with adaptive noise is a fully data-driven 
signal decomposition method, selecting the best values for inversion 
parameters in our proposed method is a critical job. The quality of seismic 
data and well logging are essential factors. The dominant lithology in the 
target area is also an important property in any seismic inversion algorithm. 
Since the processing time is another factor in our proposed algorithm, based 
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on our numerical experiments, increasing the number of noise realization 
and maximum iteration parameters adversely affects the processing time for 
seismic data, leading us to a time-consuming operation. 

 
 

CONCLUSION 
 
  We combined the improved CEEMDAN and the band-limited 
impedance inversion algorithm to acquire more accurate subsurface layer-
based information. This gives more precise information which is required to 
obtain accurate petrophysical parameters for any geophysical studies in 
reservoir characterization. In other words, our Impedance inversion method 
has demonstrated an improved inversion procedure in comparison to the 
previous methods by an implementation of a spectral decomposition method 
called ICEEMDAN in seismic post-stack inversion procedure. The proposed 
method amends the common approaches to analyze the frequency content of 
the impedance log or estimation by extracting the trend of it with higher 
accuracy. Unlike the previous ones, this method does not use the least-
squares linear regression and leads us to engender subsurface images with 
higher resolution by producing a more robust low-frequency model. It has an 
impressive advantage over other commercial post-stack inversion methods 
used in seismic exploration, interpretation, and reservoir characterization. 
These mentioned tools have a significant role in geophysics, petroleum, and 
geothermal industries. 
 

 The most crucial circumstance about our work is that the proposed 
algorithm depends on a few additional parameters compared to the other 
common post-stack inversion methods. This is due to the ICEEMDAN 
signal decomposition tool. These parameters are; (1) the number of noise 
realizations, (2) the value of noise in the deviation procedure which authors 
suggest that 0.20 would be appropriate, and (3) the maximum number of 
iterations. Each of these parameters can influence the final result, 
consequently, the resolution of the subsurface impedance images. To 
facilitate this post-stack inversion method, the authors suggest testing and 
classifying the mentioned parameters for various lithologies in any area to 
acquire the subsurface impedance images with the highest resolution 
possible. For Well F 02-01 in the F3 block Netherlands V6 dataset published 
in 2016, our method resulted in a 98.44(%) correlation coefficient with 
164.82 RMS error between the original log and inverted log while the 
commercial Band-limited, hard and soft constrained Model-based inversion 
methods resulted 91.29(%) and 91.12(%) and 93.05(%) with 345.33, 322.39 
and 295.48 RMS errors respectively. 
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