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ABSTRACT  
 
Shahrabi, M.A. and Hashemi, H., 2021. Analysis of GPR hyperbola targets using image 
processing techniques. Journal of Seismic Exploration, 30: 561-575. 
 
 The Canny edge detection method is an image processing technique that can be 
used to distinguish the edges of an image. This edge detection operator is mostly used for 
the analysis of object boundaries of images such as edge-based face recognition, edge-
based obstacle detection, edge-based target recognition, image compression, etc. Ground 
Penetrating Radar (GPR) is a non-destructive geophysical method that is most often 
applied to detect underground features such as subsurface facilities, geological structures, 
changes in material properties, and voids and cracks. Small underground targets such as 
pipes and cables are expressed into radargrams as hyperbolic-shaped signatures depends 
on the orientation of the acquisition direction concerning the position of the object. 
Taking into account the large quantity of acquired GPR data during a field operation, the 
manual detection and localization of hyperbolas in radargrams can be time -consuming 
and impracticable in large-scale surveys. 
  
 In this work, the applicability of the Canny edge detection operator is investigated 
in the GPR processing procedure. In particular, Canny edge detection is used as a 
processing step for the detection of hyperbolic reflections in GPR images. The open-
source finite-difference time-domain (FDTD) simulator GPRMax was used to generate 
synthetic radargrams. 
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INTRODUCTION 
 
 As a non-destructive geophysical method, Ground Penetrating Radar 
(GPR) is applied for investigation of the near-surface and has been widely 
exploited in detecting and mapping underground utilities such as pipes and 
cables (Daniels, 2004). Hyperbolic curves and linear segments are two 
typical pattern shapes in the GPR radargram (Bruschini et al., 1998). If the 
cross-section size of an object is comparable to the radar pulse wavelength, a 
hyperbolic curve will form in the output section. Interfaces in the form of a 
plane between layers with different electrical impedance create a linear 
segment. Automatically extraction of hyperbolae from GPR data is 
a complicated work because GPR images are usually noisy.  
 
 The source of noise in GPR sections is consisting of system noise, the 
heterogeneity of the medium, and mutual wave interactions (Dou et al., 
2016). Researchers have exploited extensive research in this area and have 
applied many different strategies to handle this topic (Xue et al., 2019; Kim 
et al., 2007; Bi et al., 2018). Furthermore, by fitting a hyperbola to a 
hyperbolic curve and obtaining the coefficients of the hyperbola’s equation, 
the location and size of the object can be achieved by using the coefficients, 
which lead to calculating the average velocity of the propagated 
electromagnetic wave in the medium (Shihab and Al-Nuaimy, 1998). 
Different procedures have been applied to detect hyperbola and its features 
in GPR images. Windsor et al. proposed generalized Hough transform 
algorithms which were time-consuming in the detection of hyperbola 
parameters, and the accuracy depends on how much the parameters are 
discretized. The more discretized the parameters, the more time is required 
to proceed computation process (Windsor et al., 2013). 
  
 The application of machine learning methods is another way to find 
the hyperbola parameters. Chen and Anthony (2010) suggest a probabilistic 
model which is based on a classification using expectation-maximization 
(EM) algorithm to extract multiple hyperbolas from a GPR image. 
Orthogonal hyperbola fitting algorithms are more sensitive to the 
configuration of the given points, and their computation is expensive. The 
EM algorithm initiates with a general primary portion of the given points, 
which it is difficult to guarantee the convergence of the hyperbola 
fitting algorithm. In each step, the EM algorithm calls the hyperbola fitting 
algorithm multiple times (Chen and Anthony, 2010). Al-Nuaimy et al. 
(2000) extracted regions including hyperbolae with a neural network and 
then employed an edge detector to detect edges in the extracted regions. The 
parameters of hyperbolae are extracted through a generalized 
Hough transform. Application of EM based on Gaussian Clustering of 
seismic data is previously discussed by Shahrabi et al. (2015). 
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 The use of image processing techniques on adaptive radon transform 
of seismic data are recently published by Zarei and Hashemi (2021). 
Mertens et al. (2015) applied an edge detector to extract edges from GPR 
images. Even though the neural network extraction method applies to 
complex GPR sections only the apexes of the hyperbolae are detected and 
other parameters of the related hyperbolae are missed. The reason is that 
there is no direct fitting method to apply to the identified edge points. This in 
turn leads to missing identification of other properties of the utilities such as 
the size and even the materials of them. 
  
 In this proposed manner, the general idea is to apply the synthetic 
model of GPR radargram consists of different kinds of simulated buried 
objects to obtain their characteristics. In this way, proposing a Canny edge 
detection algorithm and edge linking algorithms are practical to detect the 
edges of simulated buried objects in the GPR radargram. The propagated 
velocity, as well as geometrical parameters of each simulated buried object, 
have been calculated exploiting hyperbola curve fitting and proven formulas. 
The motivation for using the proposed method is its simplified and 
automatic approach in finding the edges of hyperbolas, while in GPR 
commercial softwares the user shall pick them manually to find a fitted 
velocity. 
 
 
 
GPR MODELLING  
 
 Ground-penetrating radar is ordinarily used for the non-destructive 
testing (NDT) of structures and transport systems (Bungey et al., 1997; 
Forde and McCavitt, 1993). Exploiting of GPR for NDT is just one of the 
many different applications of radar as a practical tool to determine the 
presence or absence as well as the kind of key underground features 
(Daniels, 1996). Fast data acquisition capability, high ability to sort out, and 
its good response to metallic and nonmetallic targets equally, are the main 
benefits of GPR. However, its main dilemma is the complexity of the nature 
of data and obstacles to its interpretation. 
 
 GPR interpretation is usually confined to specifying general areas of 
interest or just locating anomalies instead of accurate determination of the 
type of targets and size and exact position of them. Analytical and numerical 
Modelling of GPR responses plays an essential role in improving our 
knowledge of GPR and providing new data processing techniques and 
interpretation software. 
  



	 564 

 
 Most of the proposed modeling approaches (Gianopoullis, 1997; 
Bergmann et al., 1998; Bourgeois, 1996) are based on the finite-difference 
time-domain (FDTD) method. The main reasons for such widespread use of 
the FDTD method are its ease of implementation in a computer program – at 
least at a simple introductory level and its good scalability when compared 
with other popular electromagnetic modeling methods such as the finite-
element and integral techniques (Millard, 1998). 
  
 The FDTD technique has two main drawbacks which are: first, 
requiring to discretize the volume of the problem space which could lead to 
excessive computer memory requirements, and second, the staircase 
representation of curved interfaces. Taflove (1995) has provided a 
supreme introduction to the technique of the FDTD method and details of 
the FDTD method development have been discussed. It is a very difficult 
and almost impossible task, even for experienced scientists and engineers, to 
analytically address the GPR forward problems. Maxwell’s 
equations describe any electromagnetic phenomena which are on a 
macroscopic scale. The first order partial differential Maxwell’s equations 
represent mathematical relations between the fundamental electromagnetic 
field quantities and their dependence on their sources (Balanis, 1989). The 
GPR forward modeling problems are classified as an open 
boundary problem. Therefore, there are two issues to find a solution for GPR 
problems; the first one is defining an initial condition which means the 
excitation of the GPR transmitting antenna, and the second issue is the 
propagation of the resulting fields through space and reaching a zero value 
at infinity. The first issue is relatively easy to incorporate by ignoring the 
exact details of the GPR antenna. However, the second issue (i.e., the 
formalization of the model) cannot be easily addressed by using a finite 
computational space. The FDTD approach is applied to discretize both space 
and time continuity. It is based on the numerical solution of Maxwell’s 
equations. It is very important to reduce the spatial and temporal 
discretization steps to reach a much more realistic FDTD model of the 
problem. The building block of the discretized FDTD grid is the Yee cell, 
its 3D cell structure is illustrated in  Fig. 1.  GPRMax is a computer program  
that implements the FDTD method for GPR modeling in 2D and 3D which 
has an easy-to-use command interface. Different dispersive materials and 
complex shaped targets can be modeled by GPRMax. Another feature of it is 
simulating unbounded space using powerful absorbing boundary 
conditions (Giannopoulos, 2005). 
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Fig. 1. The 3D Yee cell (Giannopoulos, 2005).  
 
 
 
CANNY EDGE DETECTION THEORY  
 
 Edge detection has many different applications in image processing 
such as image morphing, pattern recognition, image segmentation, image 
extraction which make it one of the most prominent parts of the image 
processing concepts. Edge detection contributes to much 
important information. Edge detection algorithms represent the image with 
contours which make it a recognizable object with its detected edges. One of 
the most important features of the edge detection methods is the detection of 
the exact edges accompanying the good object orientation in the image 
(Kabade et al., 2016; Canny, 1986). 
 
 Many edge detection algorithms are mainly classified into two types 
that are Gradient-Based algorithms and Laplacian Based algorithms. This 
classification is based on the order of applied derivation. The canny edge 
detector is a standard edge detection algorithm. Obtaining image information 
is the essential purpose of image processing. An image consists of 
different information on a scene such as the size, color, orientation of 
different objects present in that scene (Kabade et al., 2016; Canny, 1986). 
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 An interesting point is that first the object is separated from the 
background then all the edges have to be detected to get the outline of the 
object. This is the reason why edge detection becomes important in 
computer vision and image processing. In the Canny Edge Detection 
Algorithm, only two thresholds for all the images are used to get a better 
edge map. The canny edge detector is exploited to each block of an image. 
However, in some smooth regions of the image detection of false edges is 
inevitable and the algorithm fails to detect some of the true edges. To 
conquest this, a block-level canny edge detector is proposed which could 
give better performance at each block of the image. The three main 
characteristics of the canny edge detection are as follows: 1. Low error rate; 
which means detecting edge accruing in images and there should be no 
response for non-edge. 2. Good Localization; which means minimizing the 
distance between the detected edge pixels and the actual edge. 3. Single 
Response; there should be one response to a single edge. 
 
 The algorithm mainly has five steps in it: 
 

 
 
 
Fig. 2. Flow chart of the Canny edge detection algorithm.  
 
 
Step one: Noise Reduction: Mathematics processing of the canny method is 
mostly based on derivation methods, so image noise highly affected the edge 
detection results. Applying Gaussian blur to smooth the image is a good way 
to shake off the noise on it. The image convolution technique with a 
Gaussian Kernel is applied to reduce the noise effects (Maini et al., 2009). 
  



	 567 

Step two: Gradient Calculation: In this step, the edge intensity and direction 
is detected by calculating the gradient of the image using edge detection 
operators. Edges correlated with a change in intensity of pixels. The easiest 
way to detect this is to apply filters that highlight this intensity change 
horizontally and vertically. 
 
Step three: Non-Maximum Suppression: Ideally, the final image should have 
thin edges. Thus, we must perform non-maximum suppression to thin out 
the edges. The algorithm finds the pixels with the maximum value in the 
edge directions by going through all the points on the gradient intensity 
matrix (Haralick, 1984). 
 
Step four: Double threshold: It means identifying three kinds of pixels 
(strong, weak, and nonrelevant). Pixels with a high-intensity value that 
surely contributes to the final edge are named strong pixels. Pixels with an 
intensity value neither enough to be considered as strong, nor small enough 
to be considered as non-relevant for the edge detection are weak pixels. 
Other pixels are named non-relevant for the edge. Pixels with intensity 
higher than the high threshold are identified as the strong pixels, and those 
with intensity lower than the low threshold are identified as the non-relevant 
pixels. All other pixels which have intensity value between both thresholds 
are flagged as weak and will be categorized by the Hysteresis mechanism 
(next step) to be considered as strong or non-relevant (Kitti et al., 2012).  
 
Step five: Edge Tracking by Hysteresis: The hysteresis threshold method is 
employed to reach the proper edge map result. This method links between 
the weak and strong pixels. if and only if at least one of the pixels around the 
one being processed is a strong one, the hysteresis transforms weak pixels 
into strong ones, otherwise, they are eliminated from the map.  
 
 
 
METHODOLOGY  
 
 The flexibility of the GPRMax2D module allows us to create models 
in complicated scenarios. The GPR synthetic model is created by a flexible 
GPRMax2D module. The simulated GPR scan is performed by exploiting a 
predefined GSSI antenna model 5100. A Ricker (or Mexican Hat) waveform 
which is the negative, normalized second derivative of a Gaussian waveform 
with a center frequency of 1.5 GHz was used to excite the antenna, which 
was fed by a transmission line with a characteristic impedance of 50 Ohms 
in the GPRMax module. The features of the antenna model are similar to the 
commercial GPR antennas (Gianopolous, 2005). The dimensions of the 
antenna are 170×108×45 mm with a resolution of 1.2 mm. The step size of 
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the antenna movement has been chosen as 2 mm. The GSSI 1.5-GHz (Model 
5100) antenna is a high-frequency, high-resolution GPR antenna that is 
primarily used for the evaluation of structural features in concrete: the 
location of rebar, conduits, and post-tensioned cables, as well as the 
estimation of material thickness on bridge decks and pavements. (Warren et 
al., 2011). The synthetic model parameters are considered to be similar to 
those structural features to obtain the most appropriate result. 
 
 The geometry of the problem is a 1.5×0.235×0.15 m box. The upper 
part is a free space of air where the antenna is located to move. The lower 
part of the box is half-space of concrete which its electrical properties were 
assumed to be ϵr = 6 and µr = 0.01 H/m.  An illustration of the used model is 
presented in Fig. 3. It is assumed that the antenna moves through the X- 
direction of the box, sending and receiving signals in each cube of the box. 
 
   
 
 

 
 

 
Fig. 3. The schematic model of buried objects. 

 
 

 
 Different objects	consist of PVC pipe, PE pipe, metal pipe, and wood 
with different diameters are buried at different depths from the slab’s 
surface. The geometry of buried objects and their parameters are illustrated 
in Table 1. Neither the horizontal distance between objects nor their cover 
depth is not fixed. 
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Table 1. Object parameters resulted from fitting. 
 

Objects\Paramet
ers 

Radius Depth X 
location 

Relative 
permittivity (𝜖!) 

F/m 

Permeability 
(µr)H/m 

Object 1 3.5 cm 15.5 cm 32 cm 1.45 0.0035 
Object 2 2.5 cm 12 cm 60 cm 1.5 0.0035 
Object 3 2 cm 14.5 cm 85 cm 0 0.005 
Object 4 2.7 cm 12.5 cm 110 cm 3 0.001 

 
 
 In detail, applying the image processing toolbox of Matlab software, 
the GPR synthetic model image is first converted to grayscale by the 
weighted average method to reduce the intensity values of pixels. Then, 
using Canny Operator, edges of radar-gram find with applying different 
values for hysteresis thresholds and smoothing parameter of sigma. Edge 
pixels link together into lists of sequential edge points, one list for each edge 
contour. An edge contour which is named as edge list either starts or stops at 
an ending or a junction with another contour or edge list. contours less than 
10 pixels long are discarded. Applying the polynomial fitting method on the 
obtained edge list matrix, the equation coefficients of each hyperbola have 
achieved. Fig. 4 shows a typical synthetic GPR radar-gram created by the 
GPR modeling module with hyperbolic signatures resulted from four 
different objects.  
 
 

 
 

Fig. 4.  GPR simulated section created by GPRMax module. 
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 Horizontal lines and multiple hyperbolas in the model are due to the 
proximity of buried objects to the surface. Multiplying and ringing have 
been accrued when the wavelength of transmitted signals is longer than the 
distance of the underground anomaly to the surface (Daniel, 2004).  
 
 
 
Fitting Hyperbolas  
 
 Image processing techniques such as edge detection and edge linking 
are used to reduce the bulk of the image data to small sets of points and lines 
representing the edges of the reflected wavefronts from signatures that are 
supposed to be hyperbolic in shape. The fitting of hyperbolic equations to 
image data and obtaining hyperbolic coefficients is an important step in 
resulting underground object’s characteristics. By fitting a hyperbola to such 
edges, one can accurately characterize the shape of this hyperbola and hence 
extract meaningful target-specific information. One such model is the 
hyperbola, but despite the importance of this stage to the interpretation 
of ground-penetrating radar data, the literature shows little interest in 
developing fitters specific to this shape. 
  
 The fitting procedure is a polynomial curve fitting method to 
adequately characterize the hyperbola in terms of parameters a and b, and 
hence providing the necessary information for target identification. The 
polyfit curve fitting function is based on the direct least-square method and 
was specifically adopted for polynomial functions and curves. The 
parameter values of a and b are used to synthesize a hyperbola that is cross-
correlated with the detected edges to validate the fit. It can adequately deal 
with noisy data having missing points and is completely efficient. According 
to Al-Nuaimy et al. (2000) Both a and b are obtained as a result of the 
fitting process and its process and it becomes possible to calculate 
both v and R from: 
 
 R = b (a – t0 ) / a    .                                                                             (1) 
 
Radius Estimation for Cylindrical Objects and the velocity is 
 
  v = 2 b / a    .                                                                                      (2) 
 
 The values of R, v, and t0 are converted physically to dimensions 
using the GPR-scan header parameters, namely range, scans-per-meter, and 
samples-per-scan. 	The depth is found from: 

 
Depth = v t0 / 2    .                                                (3) 
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RESULTS  
 
 To make it possible to extract velocity information from the 
hyperbolic signatures detected in GPR radar grams, both the canny edge 
detection and the edge linking technique are applied. The resulting technique 
illustrates a new stage in GPR data processing and interpretation. The 
stage after this one involves a polynomial fitting procedure to calculate 
coefficients of the second-order hyperbola. This edge detection-linking 
process is quite essential since the more accurately a hyperbola is identified 
the better the result of the curve fitting procedure would be. 
   
 In this work, in order to distinguish the object of hyperbola through 
zeros and ones in the output of canny edge detecting filter in Matlab, the 
edge detection-linking technique is used for the detection and segmentation 
of hyperbolic signatures since it has proven to be highly accurate, consistent, 
and fast. Fig. 5 shows the Canny edge detection result and how accurately 
the hyperbolic signatures are identified.  The linking technique is then 
applied to the extracted points and the results can be seen in Fig. 6. 
  
 

 
 
 
Fig. 5. Resulted hyperbola from applying the canny edge detection technique. 
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Fig. 6. Resulted hyperbola from applying the edge linking technique. 

 
  
 The values of the coefficients in Table 2 are obtained from the curve 
fitting. According to the synthetic model, the most appropriate hyperbola is 
the one that has the highest amplitude in the model. Therefore, among many 
hyperbolas that are detected for each point after the edge-linking process, the 
one which is proportional to the hyperbola with the highest amplitude in the 
synthetic model figure (Fig. 4) has been chosen. Subsequently, related 
coefficients of that hyperbola are considered after the curve fitting process.   
 
 
Table 2. The coefficient value of hyperbola for different objects. 
 

 a b c (t0) 

Object 1 335.2663 4.76 0.01007 
Object 2 1992.2333 18.74 0.018691 
Object 3 3566.268 12.86 0.35602 
Object 4 6145.195 18.98 0.014994 

 
 
 For all hyperbolas, the polynomial fitter returns values for a, b, and t0. 
From these values, both R, and v are calculated as in eqs. (1) and (2). It can 
be seen in the Table 3 that the value of velocity, Radius, and Depth for 
buried objects are calculated. According to Table 3, obtained values for the 
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Radius of objects are generally far away from the real values. Although the 
error rate of depth for object number one is quite acceptable, other values are 
too big to consider. It can be seen from the obtained results that 
the differences in error between the primary values and the obtained values 
by the method are a clear indication in favor of the inapplicability of this 
technique for depth and radius calculation. On the other hand, according to 
Table 4 results and based on the values for an error rate of velocity, one can 
conclude that velocity calculation applying this technique is quite 
acceptable. Obtained values for the velocity of each object are near to the 
experimental value. Among them, the best result was obtained for object 3. 
 
 
 
Table 3. Object parameters resulted from fitting. 

 
Objects\Parameters Radius Depth Obtained 

 Radius 
Error rate 
of  Radius 

Obtained  
Depth 

Error rate  
Of Depth 

Object 1 35 mm 155 mm 4.7 mm 86.7 % 142 mm 8.3 % 
Object 2 25 mm 120 mm 18.8 mm 24.8 % 175 mm 45.8 % 
Object 3 20 mm 145 mm 12.8 mm 36 % 2 mm 98.6 % 
Object 4 27 mm 125 mm 18.9 mm 30 % 46 mm 63.2 % 

 
 
 
CONCLUSIONS  
 
 In this paper, a novel general model is presented for the calculating of 
hyperbolic signature velocities resulting from different buried objects with 
different radius and depth. The main purpose of the process is to identify the 
material of the target according to the velocity value of the hyperbola. The 
knowledge of v is quite crucial for accurately identifying buried cylindrical 
objects, particularly when accurate depth information is required. 
  
 Using the novel model in conjunction with our direct conic least-
square fitting technique has made it possible to extract important target 
parameters from single radar grams. According to obtained results from the 
applied method, and based on the obtained velocity values it could be found 
that the material of the objects is as followed in Table 4. 
 
 The application of this technique on synthetic data has shown 
reasonable results, and it remains to extend this model to allow for out-of-
plane effects where the material of the different objects in a scan area is 
unknown. Although the obtained values for radius and depth are not as 
accurate as is expected, the values for velocity can be considered as correct 
values. 
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Table 4. Pipe genders resulted from velocity values. 
 

Objects Obtained velocity Material Experimental velocity An error rate of 
velocity 

Object 1 0.0283 m/ns PVC pipe 0.0254 m/ns 11.4 % 
Object 2 0.0188 m/ns PE pipe 0.0224 m/ns 16 % 
Object 3 0.0000799 m/ns Metal pipe ~0  m/ns - 
Object 4 0.0118 m/ns Wood 0.017 m/ns 30 % 
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