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ABSTRACT 
 
Singh, S. and Tsvankin, I., 2022. Sensitivity analysis of elastic full-waveform inversion 
for orthorhombic media. Journal of Seismic Exploration, 31: 105-130. 
 
 Application of elastic full-waveform inversion (FWI) to orthorhombic models, 
which are typical for many subsurface formations, is highly challenging due to the large 
computational cost and parameter trade-offs. Analyzing radiation (scattering) patterns of 
the medium parameters s can yield valuable insights into potential trade-offs and the 
types of data required for reliable parameter estimation. These patterns can be obtained 
by computing the seismic wavefield due to parameter perturbations represented by the 
sensitivity kernels (the Fréchet derivatives). We study the sensitivity of FWI to the 
parameters of elastic orthorhombic media by examining the radiation patterns for a 
background VTI (transversely isotropic with a vertical axis of symmetry) model. The 
employed velocity-based parameterization, which represents an extension of previously 
published notations, can be efficiently incorporated into the FWI framework. In contrast 
to most existing publications, our analysis includes the radiation patterns for a 
perturbation in density. The results show that the vertical velocities of the S-waves and 
the symmetry-direction horizontal velocities of the P-waves can be obtained with high 
resolution from P- and PS-wave reflection data. The patterns for the S-wave vertical 
velocities, however, have some overlap with those for the P-wave normal-moveout 
(NMO) velocities. The P-wave vertical velocity can also be resolved from the pure P and 
converted PSV reflections but the estimation of the SH-wave symmetry-direction 
horizontal velocity requires the acquisition of pure shear data. The radiation-pattern 
analysis also shows that it may be possible to constrain density by inverting the pure-
mode P- and S-waves. To verify the conclusions of the sensitivity analysis, we perform 
FWI of the vertical displacement generated for two horizontal orthorhombic layers 
beneath a VTI overburden. 
 
KEY WORDS: full-waveform inversion, anisotropy, orthorhombic symmetry,  
    elastic media, multicomponent data, radiation patterns. 
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INTRODUCTION  
 
 Orthorhombic models are often required to properly image 
azimuthally anisotropic formations in such regions as the Gulf of Mexico (Li 
et al., 2012; Herrera et al., 2014; Xie et al., 2017) and to estimate the 
parameters of fractured reservoirs (Bakulin et al., 2000b; Tsvankin and 
Grechka, 2011; Maitra et al., 2018; Masmoudi and Alkhalifah, 2018). 
Therefore, it is becoming increasingly important to build robust 
orthorhombic velocity models from reflection seismic data. 
   

Full-waveform inversion (FWI) has been successfully used to 
reconstruct subsurface velocity fields with high spatial resolution. Elastic 
FWI, despite its large computational cost, is particularly promising for 
multiparameter anisotropic models because it can operate with 
multicomponent data and properly handle reflection amplitudes. A crucial 
step in FWI is efficient computation of the inversion gradient, which is 
typically carried out using the adjoint-state method rather than the first-order 
partial-derivative wavefields, also called the Fréchet derivatives (e.g., Liu 
and Tromp, 2006; Singh et al., 2018). An approximate Hessian matrix 
needed for Gauss-Newton optimization can be calculated from the second 
partial-derivative wavefields (e.g., Pratt et al., 1998).   
   

The Fréchet derivatives, however, can provide valuable information 
for sensitivity analysis in FWI because they can be interpreted as the 
wavefield responses produced by perturbations of the model parameters. The 
amplitude variation of the Fréchet derivatives with the scattering angle (so-
called radiation or sensitivity patterns) reveals a close relationship between 
AVO (amplitude-variation-with-offset) analysis and FWI (Oh and 
Alkhalifah, 2016). Studying the radiation patterns helps understand 
parameter trade-offs and guide model updates for multiparameter FWI. 

  
   Radiation-pattern analysis is particularly important for low-symmetry 
anisotropic models described by a large number of independent parameters, 
such as orthorhombic. The radiation patterns of different parameters often 
overlap, which helps identify parameter trade-offs (crosstalk) and devise 
strategies to mitigate them (Tarantola, 1986; Alkhalifah and Plessix, 2014). 
   
   The majority of existing studies for azimuthally anisotropic models 
focus on HTI (transversely isotropic with a horizontal axis of symmetry) 
media (e.g., Rüger, 1997; Bakulin et al., 2000a). The HTI model, which 
describes a single system of penny-shaped cracks embedded in a purely 
isotropic host rock, can be treated as a special case of the more realistic 
orthorhombic symmetry (Tsvankin, 1997). The forward-modeling problem 
for orthorhombic media is well studied in the literature (Schoenberg and 
Helbig, 1997; Tsvankin, 2012; Song and Alkhalifah, 2013; Ibanez-Jacome 
et. al., 2014). Parameter estimation, however, has been largely limited to 
piecewise-homogeneous orthorhombic models and based on moveout and 
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AVO inversion (Grechka and Tsvankin, 1999; Bakulin et al., 2000b; 
Vasconcelos and Tsvankin, 2006; Tsvankin and Grechka, 2011; Liu and 
Tsvankin, 2019). Although there are several publications on FWI for 
acoustic and elastic orthorhombic media (Wang and Tsvankin, 2018; Oh and 
Alkhalifah, 2019), development of efficient inversion algorithms for 
heterogeneous orthorhombic models remains challenging. 
   
   Here, we present explicit expressions for the Fréchet derivatives with 
respect to the parameters of orthorhombic media (including density) and 
study the corresponding radiation patterns. This sensitivity analysis should 
help in developing practical strategies for mitigating parameter trade-offs in 
elastic FWI for orthorhombic media. Previous studies of the radiation 
patterns for orthorhombic media are limited to a purely isotropic background 
(Pan et al., 2014; Moradi and Innanen, 2017, 2019; Kazei and Alkhalifah, 
2019). Here, we evaluate the sensitivity of FWI to the parameters of an 
elastic orthorhombic perturbation embedded in a background VTI medium. 
We employ a velocity-based parameterization, which is particularly efficient 
for anisotropic elastic FWI (Kamath and Tsvankin, 2016; Singh et al., 2020, 
2021). Furthermore, we analyze the radiation patterns for a perturbation in 
density - a parameter that is seldom updated in existing FWI algorithms. 
  
   We start by briefly discussing the general principles of elastic FWI 
including the gradient computation and parameter updating. Then we derive 
an approximation for the radiation patterns from an arbitrarily anisotropic 
perturbation by employing the concept of an equivalent body force 
(described by the moment tensor). The developed formalism is used to study 
the radiation patterns of the parameters of orthorhombic media and to 
evaluate the corresponding trade-offs. Finally, FWI of the vertical 
displacement records for a layered orthorhombic medium beneath a VTI 
overburden is carried out to assess the validity of the predictions based on 
the radiation patterns.  
 
 
FWI METHODOLOGY  
 

 Most FWI algorithms employ the 𝑙2-norm to minimize the least-

squares distance between the recorded (𝐮obs) and simulated (𝐮sim) 

wavefields:  

 

  𝐸(𝐦) = ∑ ‖𝐮obs −  𝐗𝐮sim(𝐦)‖ 
𝑛𝑠
𝑠=1 ,                              (1) 

 
where 𝐸(𝐦) is the objective function, 𝑛𝑠 is the number of sources, 𝐦 is the 
vector of model parameters, and 𝐗 is an operator that generates the data at 
the receiver locations. Typically, the objective function is iteratively 
minimized using gradient-based algorithms.  
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Multiparameter inversion generally increases the nonlinearity of the 
inverse problem, and the objective function 𝐸(𝐦) may have a number of 
local minima. If the initial model lies in the proximity of the global 
minimum of 𝐸 (basin of convergence), the inversion can be implemented via 
a local gradient-based approach: 
   

            𝐦(𝑖+1) = 𝐦(𝑖) + (𝑖) 𝐏(𝑖),                       (2)  

 

where 𝐦(𝑖+1) is the model-parameter vector at the i-th iteration, (𝑖) is the 

step length, and 𝐏(𝑖) specifies the direction of model updating: 

  

  𝐏 = 𝐇−1𝐠 .                               (3)  

 
Here, the vector 𝐠 (inversion gradient) and matrix 𝐇 (Hessian) contain 

the first- and second-order partial derivatives of the objective function with 
respect to the model parameters. According to the adjoint-state method, the 
inversion gradient can be constructed by convolving the first-order partial-
derivative wavefields with the complex conjugate of the data residuals 
(Tarantola, 1986): 

 

              𝐠 = [
𝜕𝐮sim

𝜕𝐦
]

𝑇

(𝐮obs  −  𝐗𝐮sim),                           (4) 

 
where 𝜕𝐮sim 𝜕𝐦⁄  is the Fréchet derivative and T denotes the transpose 
operator. The Hessian matrix 𝐇 (ignoring the quadratic and higher-order 
terms) can be approximated as follows (Virieux and Operto, 2009): 
  

    𝐇 = [
𝜕𝐮sim

𝜕𝐦
]

𝑇
𝜕𝐮sim

𝜕𝐦
 .                           (5) 

  
 

FRÉCHET DERIVATIVES FOR SCATTERING-PATTERN ANALYSIS  
 
 To model the displacement 𝐮 in heterogeneous orthorhombic media, 
we use the elastic wave equation: 
  

             𝜌
𝜕2𝑢𝑖

𝜕𝑡2 =
𝜕

𝜕𝑥𝑗
[𝑐𝑖𝑗𝑘𝑙

𝜕𝑢𝑘

𝜕𝑥𝑙
] + 𝐹𝑖  ,                    (6) 

 

where 𝜌 is the density, 𝐅 is the body force per unit volume, and 𝑐𝑖𝑗𝑘𝑙 (𝑖𝑗𝑘𝑙 =

1,2,3) are the stiffness coefficients; summation over repeated indices is 

implied. The solution of eq. (6) can be expressed in terms of the Green’s 

function in the frequency domain (e.g., Kamath and Tsvankin, 2016): 



 

 

109 

  

         𝑢𝑛(𝐱𝑟 , 𝜔) = ∫ ℎ𝑖(𝐱′ , 𝜔)𝐺𝑛𝑖(𝐱𝑟 , 𝐱′, 𝜔) 𝑑𝑉(𝐱′)
𝑉(𝐱′)

,                             (7) 

  
where ℎ𝑖(𝐱′, 𝜔) is the force density at location 𝐱′, 𝐺𝑛𝑖(𝐱𝑟 , 𝐱′, 𝜔) is the 
Green’s function for the source at 𝐱′ and receiver at 𝐱𝑟, and the volume 
𝑉(𝐱′) includes all sources. 
 
  Next, we obtain a general expression for the radiation patterns 
produced by a scatterer that represents a perturbation in one of the stiffness 
coefficients. To simplify the analysis, we consider the background medium 
to be VTI, even though the perturbation itself has orthorhombic symmetry. 
For instance, our model should be adequate for an orthorhombic reservoir 
overlaid by a VTI formation or for FWI performed with an initial VTI 
model. Note that most previous publications on sensitivity analysis assume 
the background to be purely isotropic (Pan et al., 2014; Alkhalifah and 
Plessix, 2014; Kamath and Tsvankin, 2016). 
  

Following Alkhalifah and Plessix (2014) and Kamath and Tsvankin 
(2016), we use the Born approximation to obtain the elastic wave equation 
for a source that represents a perturbation in the stiffness tensor or density: 
  

�̃�
𝜕2(𝛿𝑢𝑖)

𝜕𝑡2 =
𝜕2(𝛿𝑀𝑖𝑗)

𝜕𝑥𝑗

𝜕

𝜕𝑥𝑗
[�̃�𝑖𝑗𝑘𝑙

𝜕(𝛿𝑢𝑘)

𝜕𝑥𝑙
] − 𝛿𝜌

𝜕2(𝑢𝑖)

𝜕𝑡2  ,                  (8) 

 

where the tilde marks the unperturbed quantities, 𝛿𝜌 is the density 

perturbation, which is equal to difference between the densities in the 

perturbed (𝜌) and unperturbed (�̃�) media, 𝛿𝐮 is the perturbation in 

displacement, and 𝛿𝑀𝑖𝑗 = (𝜕�̃�𝑘 𝜕𝑥𝑙⁄ ) 𝛿𝑐𝑖𝑗𝑘𝑙 can be considered as the 

equivalent moment-tensor source that describes the stiffness perturbation 

𝛿𝑐𝑖𝑗𝑘𝑙  = 𝑐𝑖𝑗𝑘𝑙 − �̃�𝑖𝑗𝑘𝑙. It should be emphasized that eq. (8) takes into account 

the density perturbation, which is usually ignored in the literature (e.g., Pan 

et al., 2014, Alkhalifah and Plessix, 2014; Kamath and Tsvankin, 2016; 

Moradi and Innanen, 2017, 2019). Also, considering the background 

medium to be anisotropic makes our model more realistic. 
  
 Using eq. (7), eq. (8) can be solved in the frequency domain as: 
  

𝛿𝑢𝑛(𝐱𝑟 , 𝜔) = ∫ [(𝛿𝜌)�̃�𝑖  𝜔2�̃�𝑛𝑖]𝑑𝑉(𝐱′)
𝑉(𝐱′)

+ ∫ [
𝜕2(𝛿𝑀𝑖𝑗)

𝜕𝑥𝑗
′ �̃�𝑛𝑖]𝑑𝑉(𝐱′)

𝑉(𝐱′)
,      

                (9) 
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where �̃�𝑛𝑖 is the Green’s tensor in the unperturbed (background) medium 
due to the scattering source at location 𝐱′. Integration by parts in the far-field 
approximation yields the scattered wavefield: 
  

𝛿𝑢𝑛(𝐱𝑟 , 𝜔) ≈ ∫ [(𝛿𝐹𝑖)�̃�𝑛𝑖]𝑑𝑉(𝐱′)
𝑉(𝐱′)

− ∫ [(𝛿𝑀𝑖𝑗)�̃�𝑛𝑖,𝑗]𝑑𝑉(𝐱′)
𝑉(𝐱′)

,       (10) 

  

where 𝛿𝐹𝑖 = (𝛿𝜌)�̃�𝑖  𝜔2, and �̃�𝑛𝑖,𝑗 = 𝜕2�̃�𝑛𝑖 𝜕𝑥𝑗
′⁄ . By taking the partial 

derivatives of the scattered wavefield with respect to the variations of the 

model parameters (𝑚𝑘), we find the Fréchet derivatives for a general 

anisotropic medium: 

 
𝜕[𝛿𝑢𝑛(𝐱𝑟,𝜔)]

𝜕𝑚𝑘
≈ ∫ {[

𝜕(𝛿𝐹𝑖)

𝜕𝑚𝑘
] �̃�𝑛𝑖 − [

𝜕(𝛿𝑀𝑖𝑗)

𝜕𝑚𝑘
] �̃�𝑛𝑖,𝑗} 𝑑𝑉(𝐱′)

𝑉(𝐱′)
.        (11) 

 
Note that the Fréchet derivatives are widely used for model updating 

in linearized inversion algorithms, such as reflection tomography (e.g., 
Wang and Tsvankin, 2013a,b). Computation of the inversion gradient in 
FWI, however, is typically based on the more efficient adjoint-state method. 
 
 

SCATTERING PATTERNS AND EFFECTIVE MOMENT TENSOR    
 
 Scattering (radiation) patterns have been used to evaluate the 
sensitivity of FWI to the parameters of anisotropic media (Gholami et al., 
2013; Operto et al., 2013; Alkhalifah and Plessix, 2014; Kamath and 
Tsvankin, 2016). Most existing results, however, are limited to transversely 
isotropic (often acoustic) models and/or assume the background to be 
isotropic. Here, we use the Fréchet derivatives [eq. (11)] to study the 
radiation patterns for an elastic orthorhombic scatterer embedded in a VTI 
background (Singh and Tsvankin, 2020).  
  

An orthorhombic medium with fixed orientations of the symmetry 
planes is described by nine stiffness coefficients and density (Fig. 1). 
Henceforth, we assume that the symmetry planes coincide with the Cartesian 
coordinate planes. The equivalence between the symmetry planes of 
orthorhombic and TI media allowed Tsvankin (1997, 2012) to replace the 
stiffnesses with the following notation: 

 

𝑉𝑃0: the P-wave vertical velocity; 

𝑉𝑆0: the velocity of the vertically traveling S-wave polarized in the 𝑥1-

 direction; 

휀(1), 𝛿(1), and 𝛾(1): the VTI parameters in the [𝑥2, 𝑥3]-plane (the superscript 

 indicates the axis perpendicular to the corresponding plane);  
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휀(2), 𝛿(2), and 𝛾(2): the VTI parameters in the [𝑥1, 𝑥3]-plane; 

𝛿(3): the VTI parameter in the [𝑥1, 𝑥2]-plane (𝑥1 plays the role of the 

 symmetry axis). 

 
 
Fig. 1. Orthorhombic model formed by parallel vertical fractures embedded in a 
background VTI medium. One of the symmetry planes is horizontal,  and  the  other  two  
are parallel and perpendicular to the fractures (adapted from Tsvankin, 2012). 

 
 
This notation facilitates analysis of wave propagation and 

implementation of inversion and processing algorithms for orthorhombic 

media (Tsvankin, 2012). In particular, it reduces the number of independent 

parameters that control P-wave kinematics from nine to six (𝑉𝑃0, 휀(1,2), and 

𝛿(1,2,3)). It also provides a unified framework for treating orthorhombic, 

VTI, and HTI models in velocity analysis and imaging. 
  

  For application in FWI, we replace the anisotropy coefficients with 
the symmetry-direction and normal-moveout (NMO) velocities: 
  

𝑉𝑃1 = 𝑉𝑃0√1 + 2휀(1) ,     𝑉𝑃2 = 𝑉𝑃0√1 + 2휀(2) ,                             (12) 

 

𝑉nmo,1 = 𝑉𝑃0√1 + 2𝛿(1) ,  𝑉nmo,2 = 𝑉𝑃0√1 + 2𝛿(2)  ,      
 

𝑉nmo,3 = 𝑉𝑃0√1 + 2𝛿(3) ,                      (13) 

 

𝑉𝑆1 = 𝑉𝑆0√
1+2𝛾(1)

1+2𝛾(2) 
 ,     𝑉𝑆2 = 𝑉𝑆0√1 + 2𝛾(1) ,                                         (14) 

 
where 𝑉𝑃1 and 𝑉𝑃2 are the P-wave velocities in the 𝑥2- and 𝑥1-directions, 
respectively, 𝑉nmo,1 and 𝑉nmo,2 are the P-wave NMO velocities from a 
horizontal reflector in the [𝑥2, 𝑥3]- and [𝑥1, 𝑥3]-planes, respectively, 𝑉nmo,3 
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is a similarly defined parameter that absorbs the influence of the coefficient 
𝛿(3), 𝑉𝑆1 is the vertical velocity of the S-wave polarized in the 𝑥2-direction, 
and 𝑉𝑆2 is the horizontal velocity of the SH-waves in both vertical symmetry 
planes. Note that the SH-waves in the vertical symmetry planes represent 
two different shear modes (e.g., the fast wave 𝑆1 in the [𝑥1, 𝑥3]-plane and 
slow wave 𝑆2 in the [𝑥2, 𝑥3]-plane), as discussed by Tsvankin (1997, 2012). 
Kamath et al. (2017) discuss the advantages of this parameterization in 
reducing the trade-offs for VTI media. 

 
  Following Kazei and Alkhalifah (2019), we substitute a plane wave 
into eq. (11). Then the total displacement field due to the perturbations in 
both the density and stiffness coefficients can be concisely obtained for an 
arbitrarily anisotropic background medium as:  
 

𝛿𝐮(𝐱𝑟 , 𝜔) = 𝓑[𝐒(δ𝐅) + 𝐒(δ𝐌)𝐃],                         (15) 
 
where the vector 𝓑 incorporates the components of the Green’s tensors [see 
Shaw and Sen (2004), and Pan et al. (2014), for details], the term in the 
brackets is defined as the radiation (or scattering) pattern, and δ𝐅 is the 
virtual force due to the density perturbation: δ𝐅 = (𝛿𝜌)𝐈. The vectors 𝐈 and 
𝐒 correspond to the incident and scattered waves, respectively, and are 
defined as 𝐑 (for P-waves), 𝚯 (for SV-waves), or 𝚽 (for SH-waves) 
depending on the incident and scattered wave type: 
 

𝐑 = [
sin 𝜃 cos ∅
sin 𝜃 sin ∅

cos 𝜃
],         𝚯 = [

cos 𝜃 cos ∅
cos 𝜃 sin ∅

−sin 𝜃
],        𝚽 = [

− sin ∅
cos ∅

𝟎
], 

 
where 𝜃 is the incidence angle measured counter-clockwise from the 𝑥3-axis 
and ∅ is the azimuth measured counter-clockwise from the 𝑥1-axis. For 
example, for the PSV-wave the incident mode is P and the scattered one is 
SV, so 𝐈 = 𝐑 and 𝐒 = 𝚯. The vector 𝐃 in eq. (15) is equal to 𝐑, 
whereas  δ𝐌 represents the effective moment tensor that describes the 
stiffness perturbations: 
 

𝛿𝑀𝑖𝑗 =

[

𝛿𝑐11𝑒11 + 𝛿𝑐12𝑒22 + 𝛿𝑐13𝑒33 2 + 𝛿𝑐66𝑒12 2 + 𝛿𝑐55𝑒13

2 + 𝛿𝑐66𝑒12 𝛿𝑐12𝑒11 + 𝛿𝑐22𝑒22 + 𝛿𝑐23𝑒33 2 + 𝛿𝑐44𝑒13

2 + 𝛿𝑐55𝑒13 2 + 𝛿𝑐44𝑒13 𝛿𝑐13𝑒11 + 𝛿𝑐23𝑒22 + 𝛿𝑐33𝑒33

],   

                (16)             

 

where 𝑒𝑖𝑗  is the strain tensor. The exact tensors δ𝐌 for the velocity-based 
parameterization employed here are listed in the Appendix. Note that 
because δ𝐌 depends on the stiffnesses, in our notation it represents a 
function of the velocities and density. 
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Computation of radiation patterns 
 
 The acquisition geometry used to examine the radiation patterns is 
shown in Fig. 2. The patterns are computed for five different azimuths of the 
source-receiver line. The so-called “opening angles” between the incident 
and scattered waves vary (see below) from 0° to 360° to account for both 
reflected and transmitted modes. 
  

 
 

Fig. 2. Acquisition geometry for radiation pattern analysis: (a) and (b) the [𝑥1, 𝑥3]- plane, 

and (c) the [𝑥1, 𝑥2]- plane. The sources and receivers are distributed along five constant-

azimuth lines with the opening angles ranging from 0° to 360°. The vertical symmetry 

planes correspond to azimuths of 0° and 90°, and arrows point toward the increase in the 

opening angle. The parameters of the background VTI medium are:  𝑉𝑃0 = 2.0 km/s, 𝑉𝑆0 

= 1.43 km/s,  ≈ 0.28,   ≈ 0.05,  ≈ 0.09, and 𝜌 =2.2 𝑔/𝑐𝑚3. For typical values of the 

VTI parameters the radiation patterns are weakly dependent on the background 

properties. However, the critical angles for the S-to-P conversions depend on the 

𝑉𝑆0/𝑉𝑃0 −ratio and the coefficients  and . 
 

 
 The phase angles made by the incident (𝜃𝑖) and scattered (𝜃𝑠) waves 
with the vertical satisfy Snell's law:  
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sin 𝜃𝑖

𝑉𝑖(𝜃𝑖)
=

sin 𝜃𝑠

𝑉𝑠(𝜃𝑠)
 ,                         (17) 

  
where 𝑉𝑖 and 𝑉𝑠 are the phase velocities of the incident and scattered waves, 
respectively.  
  
 The exact phase velocities of P- and SV-waves in VTI media are 
given by (e.g., Tsvankin, 2012):  
  

2𝜌𝑉2(𝜃)  =  (𝑐11 + 𝑐55) sin2 𝜃 + (𝑐33 + 𝑐55) cos2 𝜃  ±

 √[(𝑐11 − 𝑐55) sin2 𝜃  −  (𝑐33 − 𝑐55) cos2 𝜃]2 + 4(𝑐13 + 𝑐55) sin2 𝜃 cos2 𝜃 ,         
              (18) 
  
where the plus sign in front of the radical corresponds to the P-wave, and the 
minus to the SV-wave. The SH-wave phase velocity can be found as:  
  

          𝑉𝑆𝐻(𝜃) =  √
𝑐66 sin2 𝜃+𝑐55 cos2 𝜃

𝜌
 ,                          (19) 

 

If the incident and scattered modes are of the same type (e.g., PP or 

SVSV), their velocities are equal (𝑉𝑖 = 𝑉𝑠), and the incidence and scattering 

angles coincide (𝜃𝑖 = 𝜃𝑠). Then the opening angle (𝜃0) between the incident 

and scattered rays is twice the incidence angle. For instance, the opening 

angle for PP-waves 𝜃0
𝑃𝑃 = 2𝜃𝑖

𝑃. 
 

  The scattering and incidence angles are different for mode-converted 

waves (e.g., PS). After solving eq. (20) for the scattering angle 𝜃𝑠 using 

eq.(18) [or eq. (19) for the SH-wave], we can find the opening angle for the 

PS-wave (PSV or PSH) as 𝜃0
𝑃𝑆 = 𝜃𝑖

𝑃 + 𝜃𝑠
𝑆. The opening angles for the SVP 

and SHP conversions are obtained in the same way. 
 

For S-to-P conversions, the incidence angle in our analysis is limited 
by the critical angle, for which the scattered P-wave travels horizontally. At 
postcritical S-wave incidence, the P-wave becomes inhomogeneous 
(evanescent) and its amplitude exponentially decays away from the scatterer.  

 
The opening angles for the SVSH or SHSV conversions are obtained 

in the same way as those for PS-waves. Depending on the relationship 
between the SH- and SV-wave velocities, it may be possible to encounter the 
critical angles for the SVSH- or SHSV-waves. However, the scattering 
amplitudes for these modes are relatively small and the conversions between 
the S-waves are not included in the discussion below. 
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The radiation patterns are computed as functions of the opening phase 

angles that can be recalculated into the corresponding group (ray) angles 
using the well-known group-velocity equations (e.g., Tsvankin, 2012). Note 
that the relationship between group and phase angles depends on the 
parameters of the VTI background medium. 
 
 
ANALYSIS OF RADIATION PATTERNS 
 
 Overlap of the radiation patterns for different parameters indicates 
possible trade-offs that would hinder parameter updates and reduce the 
accuracy and resolution of the inversion results. First, we evaluate the 
influence of the scattering angles and frequencies on the model updates. 
  

The scattering wavenumber vector (𝐤) depends on the opening angle 
𝜃 and angular frequency 𝜔 (Virieux and Operto, 2009): 

   

           𝐤 =  
𝜔

𝜗
cos

𝜃0

2
 𝒏 ,                                           (20) 

 
where 𝜗 is the medium velocity and 𝒏 is the unit vector normal to the 
reflector. In a multiscale inversion designed to improve the convergence of 
FWI, lower frequencies are used first in model updating. The obtained 
inversion results are used to build the initial model for the next (higher) 
frequency range, etc. Restricting the input data to low frequencies and 
relatively large opening angles 𝜃0 (long offsets) helps generate low-
wavenumber (long-wavelength) updates and reduce the nonlinearity of the 
inversion.  
 

Here, we analyze the radiation patterns for different parameter 
perturbations to gain insight into the corresponding updates and potential 
parameter trade-offs. The effective moment tensors for the perturbations of 
the P-wave horizontal velocities  𝑉𝑃1 and  𝑉𝑃2 are given in eqs. (A-3) and 
(A-4), respectively. Figs. 3-7a, b indicate that the low-wavenumber models 
of  𝑉𝑃1 and 𝑉𝑃2  can be reconstructed only if data at uncommonly large 
opening angles are available [eq. (20)]. Even for long-offset surveys, such 
wide opening angles can be achieved only in the shallow part of the model. 
The radiation patterns for the velocities 𝑉𝑃1 and 𝑉𝑃2 are well separated for 
all modes with the exception of the pure SH-waves, where there is a 
significant overlap (Figs. 7b, c). 

  
A perturbation in the P-wave vertical velocity 𝑉𝑃0 produces an 

intensive scattered PP-wave for narrow opening angles (Fig. 3a). Because 
the wavenumber is proportional to the cosine of the opening angle [eq. (20)], 
we can expect to obtain high-wavenumber updates in 𝑉𝑃0from conventional-
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spread PP reflection data (Fig. 3a). The converted PSV-waves should yield 
lower-wavenumber updates in 𝑉𝑃0 because the maximum of their radiation 
pattern corresponds to intermediate opening angles (Fig. 4a). Because the 
background medium is VTI and a perturbation of the velocity 𝑉𝑃0 is 
represented by a virtual explosive source [eq. (A-2)], the scattered SV-wave 
amplitudes are generally smaller than those of P-waves (Fig. 6a), whereas 
SH-waves should not be excited at all (Tsvankin, 2012).  

 

 
 
Fig. 3. Radiation patterns of the pure PP-waves computed as a function of the opening 
angle (shown along the perimeter). The colors correspond to the azimuths of the source-
receiver lines shown in Fig. 2: ∅ = [𝟎0, 𝟑𝟎0, 𝟒𝟓0, 𝟔𝟎0, 𝟗𝟎0]. The radiation pattern on 
plot (a) is azimuthally invariant. The dashed (green-red) lines on plot (g) mark the 
identical patterns corresponding to azimuths of 300 and 600. 

 

 
The effective moment-tensor sources that represent perturbations in 

the shear-wave vertical velocities 𝑉𝑆0 and 𝑉𝑆1 [eqs. (A-8) and (A-9)] radiate 
most energy in the vertical plane that includes the source and receiver. 
Figs.3-5 [g, h] suggest that if PP reflections or PSV/PSH conversions are 
acquired at intermediate opening angles, the parameters 𝑉𝑆0 and 𝑉𝑆1 can be 
estimated for a range of intermediate wavenumbers. Low-wavenumber 
model updates in 𝑉𝑆0 and 𝑉𝑆1 can be obtained from the pure SV- and SH-
waves at narrow opening angles (Figs. 6-7 [g, h]). The patterns of these two 
parameters are well separated for all wave types (except for the PSH-waves) 
and azimuths. In contrast, the patterns of the PP, PSH, and SVSV reflections 
due to the perturbations of 𝑉𝑆0 and 𝑉𝑆1 have a significant overlap with the 
corresponding patterns of 𝑉nmo,1 and 𝑉nmo,2 (Figs. 3,5,6[d-e]-[g-h]). The 
scattering amplitudes for 𝑉𝑆0 and 𝑉𝑆1, however, are much larger than those 
for 𝑉nmo,1 and 𝑉nmo,2. Therefore, errors in the S-wave vertical velocities 
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should degrade the updates of the NMO velocities, but less so the other way 
around. The trade-offs between the S-wave vertical velocities and the P-
wave NMO velocities can be mitigated by including the PSV conversions 
and/or pure SV- and SH-waves. 
 

 
 
Fig. 4. Radiation patterns of the PSV-waves. 

 

 

Reliable estimation of the S-wave horizontal velocity 𝑉𝑆2 requires 
acquisition of the pure SH-waves which are polarized horizontally in the 
VTI background (Fig. 7i). This conclusion agrees with the results of Oh and 
Alkhalifah (2019). The parameter 𝑉nmo,3 potentially can be updated using all 
wave types at wide opening angles and intermediate azimuths (Figs. 3-7f ). 
However, estimation of 𝑉nmo,3 from field data could be challenging because 
it requires high-quality wide-azimuth data recorded for large scattering 
angles (i.e., long offsets). 
 

Fig. 8 shows that the pure P-waves are more sensitive to density than 
the other modes and could be used for updating the high-wavenumber 
density model. The intermediate-wavenumber density field can also be 
reconstructed from PSV-waves acquired at intermediate opening angles. 
Although the contributions of the pure SV- and SH-waves to density 
inversion are expected to be smaller than those of the pure P-waves, these 
modes can potentially help in updating density with both low and high 
wavenumbers. 
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Fig. 5. Radiation patterns of the PSH-waves, which are generated only outside the 
vertical symmetry planes of the orthorhombic medium. 

 

 
 
Fig. 6. Radiation patterns of the pure SV-waves. 
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Fig. 7. Radiation patterns of the pure SH-waves. 

 

 
 
Fig. 8. Radiation patterns corresponding to the density perturbation. For a wide range of 

background anisotropy parameters, radiation patterns are found to be azimuthally 

invariant. 

 

 
It should be emphasized that the radiation patterns discussed above 

are computed for a homogeneous VTI overburden above an orthorhombic 
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layer (perturbation) and do not account for attenuation. However, despite the 
simplicity of this model, these patterns still provide important insights into 
parameter trade-offs and possible model-updating strategies for more 
realistic subsurface structures. 

 
 
Dependence of radiation patterns on background medium 
 
 The radiation patterns discussed above are generated for a 
homogeneous VTI background medium with the following parameters: 𝑉𝑃0 
= 2.0 km/s, 𝑉𝑆0 = 1.43 km/s,  ≈ 0.28,   ≈ 0.05,  ≈ 0.09, and 𝜌 = 2.2 
𝑔/𝑐𝑚3. Whereas these values fall within the typical range for such 
sedimentary rocks as shales, it is important to evaluate the influence of the 
background anisotropy on the radiation patterns. 
 

Below we discuss the radiation patterns of both pure and converted 
modes for the Thomsen background coefficients , , and  varying within 
the most plausible range (between 0 and 0.4 for  and , and between -0.1 
and 0.3 for ). It should be emphasized that, even though the shape of the 
radiation patterns for all parameters remains almost unchanged within these 
ranges of , , and  the amplitude of the patterns exhibits some dependence 
on the background anisotropy, and these changes vary with azimuth. 

  
 
Radiation patterns of pure modes (PP, SVSV, and SHSH) 
 
 As discussed above, if the incident and scattered modes are of the 
same type, the opening angle (𝜃0) is twice the incident angle, irrespective of 
the background medium. However, the corresponding moment tensors [eqs. 
(A-2)-(A-11)] depend on the background parameters, which could change 
the corresponding radiation patterns. 
 

The pure-mode radiation patterns for the P-wave vertical velocity 𝑉𝑃0 
[eq. (A-2)] are insensitive to  and . Furthermore, the radiation patterns of 
the PP- and SHSH-waves are practically independent of . However, the 
scattered amplitude of the SVSV-wave for a perturbation in 𝑉𝑃0 increases by 
up to 30% when  changes from -0.1 to 0.3. For the P-wave horizontal 
velocity 𝑉𝑃1, the pure-mode radiation patterns [eq. (A-3)] are independent of 
 and , but their amplitude varies (by up to 35%) with . Whereas the 
patterns for the P-wave NMO velocities  𝑉nmo,1 and  𝑉nmo,2  [eqs. (A-5) - 
(A-6)] are not sensitive to  and , the scattering amplitudes get larger with 
increasing . The radiation patterns for the S-wave vertical velocities 𝑉𝑆0 and 
𝑉𝑆1 are practically independent of the background anisotropy coefficients. 

 
The radiation patterns for density depend on all three background 

Thomsen coefficients [eq. (A-11)]. The scattering amplitudes for a 
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perturbation in density generally increase for relatively large positive values 
of  , , and . 
 
 
Radiation patterns of converted PSV- and PSH-waves 
 
 For converted modes, the opening angle (𝜃0) should be computed 
from eqs. (17)-(19), which include the background parameters. Note that the 
critical angles in this case also vary with the background vertical velocities 
and anisotropy coefficients. 
 

For a perturbation in 𝑉𝑃0, the PSV-wave amplitude changes by up to 
35% for  within the range [-0.1, 0.3]. In contrast,  has a weak influence on 
the PSH-wave scattered by a 𝑉𝑃0-perturbation. The converted-wave 
radiation patterns for 𝑉𝑃1, change by up to 35% with  varying from 0 to 0.4. 

 
The PSV- and PSH-wave radiation patterns for the other parameters 

of orthorhombic media have a similar dependence on the background 
medium as the corresponding patterns for the pure modes.  
 

  
EXAMPLE OF FWI FOR LAYERED ORTHORHOMBIC MEDIA 
 
 To verify the above results, we perform elastic FWI for a horizontally 
layered orthorhombic/VTI model, which generally conforms to the 
assumptions behind the radiation-pattern analysis. The elastic wave equation 
6 is solved using fourth-order finite-differences (Albertin et al., 2016) on a 
staggered grid with CPML (convolutional perfectly matched layers) 
boundary conditions on the sides and bottom of the model and a free surface 
on top. A more detailed description of the FWI algorithm can be found in a 
companion paper (Singh et al., 2021). As before, the medium is 
parameterized by the vertical velocities 𝑉𝑃0 and 𝑉𝑆0, density, and the 
velocities defined in eqs. (12)-(14). 

 
The model includes two horizontal orthorhombic layers embedded in 

a VTI background medium. The velocities from eqs. (12)-(14) are obtained 
by scaling the fields of 𝑉𝑃0 and 𝑉𝑆0. To simulate marine data, the section is 
overlaid by a 260 m-thick water layer (Fig. 10 a-j). We generate the 
displacement field that could be acquired on the sea floor. The wavefield is 
excited by 100 shots and recorded by 1296 receivers placed 40 m and 260 m, 
respectively, beneath the free surface and evenly distributed over the 
horizontal plane. The source represents a point explosion and produces a 
Ricker wavelet with a central frequency of 10 Hz. 

 
Frequencies below 2 Hz are assumed to be unavailable, which is 

usually the case in practice. To mitigate inversion nonlinearity, a multiscale 
FWI approach is employed in two frequency bands (2-10 Hz and 2-20 Hz). 
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The inversion gradients [eq. (4)] are preconditioned following the scheme 
described by Plessix and Mulder (2004), which is designed to make up for 
amplitude loss due to geometric spreading.  

 

 
Fig. 10. Parameters of the layered model used in the FWI test: (a) the P-wave vertical 

velocity (𝑉𝑃0), (b) the S-wave vertical velocity (𝑉𝑆0), (c) the P-wave NMO velocity in the 

[𝑥2, 𝑥3]-plane (𝑉nmo,1), and (d) the density (𝜌). The cross-sections correspond to the 

symmetry planes of the orthorhombic layers which coincide with the Cartesian 

coordinate planes. 

 
 

The initial model for FWI is obtained by smoothing the actual 
parameter distributions. Typically, such long-wavelength velocity models 
are built using reflection tomography or moveout inversion (Tsvankin and 
Grechka, 2011; Wang and Tsvankin 2013a,b; Ivanov and Stovas, 2017; Liu 
and Tsvankin, 2019). 

 
The radiation patterns discussed in the previous section represent the 

magnitude of the displacement field from a certain parameter perturbation. 
Because FWI typically operates with displacement components, here we 
verify the results of the sensitivity analysis by inverting just the vertical 
displacement. 

  
Fig. 11 displays vertical parameter profiles that illustrate the accuracy 

of the initial model and the inversion results. The inverted parameters 𝑉𝑃0, 
𝑉𝑆0, 𝑉nmo,1, and  are shown in Fig. 12. The accuracy of the updates in 𝑉𝑃0 
and 𝑉𝑆0 is illustrated in Fig. 13. Although the algorithm substantially reduces 
the objective function by 90%, the P-wave NMO velocities are not well 
resolved. 
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Fig. 11. Vertical parameter profiles at 𝑥 = 𝑦 = 110 km.  The actual, initial, and inverted 

parameters are marked by the blue, red, and yellow lines, respectively. 

 

 

 
 

Fig. 12. Inverted parameters: (a) 𝑉𝑃0, (b) 𝑉𝑆0, (c) 𝑉𝑛𝑚𝑜,1, and (d) 𝜌. 
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Fig. 13. Difference between the actual parameters (a) 𝑉𝑃0 and (b) 𝑉𝑆0 and their initial 

values. The difference between the parameters (c) 𝑉𝑃0 and (d) 𝑉𝑆0 estimated by FWI and 

their initial values. 

 
 
The P-wave horizontal velocities (𝑉𝑃1 and 𝑉𝑃2) are accurately 

estimated in the top orthorhombic layer but they are barely updated in the 
second layer. This is supported by the sensitivity analysis (Figs. 3b,c), which 
shows that low-wavenumber updates in 𝑉𝑃1 and 𝑉𝑃2 require large opening 
angles. For the offset range in our synthetic data set, such angles can be 
reached only for reflections from the bottom of the shallow layer. Because of 
the well-separated radiation patterns of the P-wave horizontal velocities 
(Fig. 3-6b, c), the trade-offs between 𝑉𝑃1 and 𝑉𝑃2 are insignificant. Due to 
the high sensitivity of the pure-mode P data to the P-wave vertical velocity 
(Fig. 3a), the inverted 𝑉𝑃0 closely matches the actual values for both 
orthorhombic layers.  

 
The radiation patterns in Figs. 3-5g,h indicate that the pure P-waves 

and converted PSV and PSH reflections make the largest contributions to 
intermediate-wavenumber updates in the S-wave vertical velocities 𝑉𝑆0 and 
𝑉𝑆1. The pure SV-waves (Figs. 6g,h) are sensitive to these parameters at both 
narrow and wide opening angles, which helps update the small- and large-
wavenumber components of 𝑉𝑆0 and 𝑉𝑆1.  

 
Note that explosive sources used in this test do not produce the 

horizontally polarized SH-waves in the VTI overburden, which are needed 
to update the S-wave horizontal velocity 𝑉𝑆2 (Fig. 7i). However, P-waves 
incident on the top of the orthorhombic medium outside the vertical 
symmetry planes generate P-to-SH conversions. These PSH reflections and 
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their multiples in the overburden help estimate 𝑉𝑆2 in a segment of the top 
orthorhombic layer. 

 
The radiation patterns also reveal significant trade-offs (Figs. 3,5,6 [d, 

e, g, h]) between the P-wave NMO velocities 𝑉nmo,1 and 𝑉nmo,2 and the S-
wave velocities 𝑉𝑆0 and 𝑉𝑆1. These trade-offs could explain the wrong sign 
of the updates in the NMO velocities near the top of the first orthorhombic 
layer. In general, the updates in 𝑉nmo,1 and 𝑉nmo,2 are small, which is in 
agreement with the relatively low magnitudes of their radiation patterns. 
Because FWI is weakly sensitive to the velocity 𝑉nmo,3 (Fig. 3f ), that 
parameter is poorly resolved and stays close to its initial values, even though 
the input data include relatively wide opening angles (the maximum opening 
angles for the first and second orthorhombic layers are about 144° and 130°, 
respectively). 

 
The density, which is often difficult to constrain from surface seismic 

data, can be accurately recovered down to the middle of the first 
orthorhombic layer (where it is overestimated). Beneath that depth, FWI 
fails to produce tangible updates in 𝜌. The sensitivity analysis (Fig. 8) shows 
that the high-wavenumber density model can be updated using narrow-angle 
(small-offset) PP reflections. Because the recorded amplitudes decrease with 
reflector depth, the upper part of the model is better illuminated by the 
reflected PP data. The radiation patterns also indicate that the resolution of 
the density model could be improved using the pure SV and SH reflections, 
whose amplitudes in this test are insignificant. 

 
It should be noted that sensitivity analysis is an approximate tool 

based on a relatively simple perturbation model, whose results cannot be 
exactly verified by performing actual FWI. In particular, the output of FWI 
may change depending on the employed objective function, gradient 
preconditioning, initial model, specific application of the multiscaling 
method, etc. 

 
 

CONCLUSIONS 
 
We implemented a formalism to compute the radiation (sensitivity) 

patterns for an orthorhombic perturbation overlaid by a homogeneous VTI 
medium. The perturbations in the velocities and density are described by the 
moment tensor of the effective source responsible for the scattered 
wavefield. In addition, the density perturbation is represented by a 
frequency-dependent effective force. Sensitivity analysis was performed 
using a convenient velocity-based parameterization that incorporates 
Tsvankin's anisotropy coefficients. 

  
The pure P-wave radiation patterns for different parameters show the 

least overlap compared to the other modes, which indicates fewest parameter 
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trade-offs. In particular, acquisition of the PP reflections for a wide range of 
opening angles helps resolve the P-wave velocities along the symmetry 
directions of orthorhombic media (𝑉𝑃0, 𝑉𝑃1, and 𝑉𝑃2). The S-wave vertical 
velocities (𝑉𝑆0 and 𝑉𝑆1) can also be estimated from the pure P-waves for a 
range of intermediate wavenumbers, although their recovery is somewhat 
hindered by trade-offs with the P-wave NMO velocities. The mode-
converted PSV-waves can contribute to the intermediate-wavenumber 
updates of the P- and S-wave symmetry-direction velocities 𝑉𝑃1, 𝑉𝑃2, 𝑉𝑆0 
and 𝑉𝑆1. 

  
The magnitudes of the radiation patterns of the PSH- and pure SV-

waves are too small for these modes to have a significant impact on FWI, 
with the possible exception of updating the S-wave vertical velocities. Also, 
there are trade-offs between 𝑉𝑆0 and 𝑉𝑆1 and the P-wave NMO velocities 
𝑉nmo,1 and 𝑉nmo,2  for the PP, PSV, PSH, and SVSV reflections. These 
trade-offs mostly degrade the estimates of the velocities 𝑉nmo,1 and 𝑉nmo,2, 
which produce low-amplitude radiation patterns. One option to improve the 
accuracy of 𝑉nmo,1 and 𝑉nmo,2 is to include the pure SH reflections in the 
inversion. If the SH-waves are acquired at wide opening angles, they also 
can help resolve the low-wavenumber components of the shear-wave 
horizontal velocity 𝑉𝑆2. Constraining the parameter 𝑉nmo,3 requires 
acquisition of high-quality wide-azimuth, long-offset data, which may be 
problematic in practice. 

  
The PP reflections can be used to reconstruct the high-wavenumber 

component of the density field, whereas the PSV data provide information 
for intermediate-wavenumber density updating. Acquisition of SV-to-P and 
SH-to-P conversions for FWI purposes may not be justified because their 
scattered amplitudes are small, and they are not expected to mitigate 
parameter trade-offs. 

  
We also discussed the influence of the background VTI parameters on 

the radiation patterns of the pure and converted waves and demonstrated that 
the background anisotropy should be taken into account in sensitivity 
analysis and, therefore, in FWI. The conclusions drawn from evaluating the 
radiation patterns are in broad agreement with FWI results for a model 
composed of two horizontal orthorhombic layers beneath a VTI medium. 
Further confirmation of our results is provided by Singh et al. (2021), who 
present synthetic tests for realistic orthorhombic models. 
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APPENDIX 
 

MOMENT TENSOR FOR ORTHORHOMBIC PARAMETER 
PERTURBATIONS 
 
 We consider an orthorhombic perturbation (layer) overlaid by a 
homogeneous VTI medium. The effective moment tensors corresponding to 
the stiffness perturbations (which depend on the velocities and density in our 
notation) can be computed as follows [see eq. (16)]: 
 

            𝛿𝐌𝐦  =  ∑
𝜕𝐶𝑖𝑗

𝜕𝐦𝑖,𝑗 𝛿𝑀𝑖𝑗 ,                                 (A-1) 

 

where 𝐶𝑖𝑗  are the stiffness coefficients in the two-index (Voigt) notation, and 

𝐦 is the parameter vector of orthorhombic media. 
  

Using eqs. (17) and (A-1), the moment tensors for the velocity-based 
parameterization [eqs. (12)-(14); the notation also includes the vertical 
velocities 𝑉𝑃0 and 𝑉𝑆0] can be found as:  
 

𝛿𝑀𝑉𝑃0
= 2𝜌𝑉𝑃0 [

0 0 0
0 0 0
0 0 𝑒33

]  +  𝑞1𝜌𝑉𝑃0 [
𝑒33 0 0
0 𝑒33 0
0 0 𝑒11 + 𝑒22

],          (A-2) 

 

𝛿𝑀𝑉𝑃1
= 2𝜌𝑉hor,P [

0 0 0
0 𝑒22 0
0 0 0

] ,                           (A-3) 

 

𝛿𝑀𝑉𝑃2
= 2𝜌𝑉hor,P [

𝑒11 0 0
0 0 0
0 0 0

]  +  𝑞2𝜌𝑉hor,P [
𝑒22 0 0
0 𝑒22 0
0 0 0

],               (A-4) 

 

𝛿𝑀𝑉nmo,1
=

𝜌𝑉nmo,P

𝑞1
[
0 0 0
0 𝑒33 0
0 0 𝑒22

] ,                          (A-5) 
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𝛿𝑀𝑉nmo,2
=

𝜌𝑉nmo,P

𝑞1
[
𝑒33 0 0
0 0 0
0 0 𝑒11

] ,                           (A-6) 

 

𝛿𝑀𝑉nmo,3
=

𝜌𝑉nmo,P

𝑞2
[
𝑒22 0 0
0 𝑒11 0
0 0 0

] ,                           (A-7) 

 

𝛿𝑀𝑉𝑆0
= 2𝜌𝑉S0 [

0 0 2𝑒13

0 0 0

2𝑒13 0 0
]  +  𝜌𝑉S0(𝑞

1
+  

1

𝑞1

+ 2) [
−𝑒33 0 0

0 0 0

0 0 −𝑒11

],            (A-8) 

 

𝛿𝑀𝑉𝑆1
= 2𝜌𝑉S0 [

0 0 0

0 0 2𝑒23

0 2𝑒23 0
]  +  𝜌𝑉S0(𝑞

1
+  

1

𝑞1

+  2) [
0 0 0

0 −𝑒33 0

0 0 −𝑒22

],             (A-9) 

 

𝛿𝑀𝑉𝑆2
= 2𝜌𝑉hor,SH [

0 2𝑒12 0

2𝑒12 0 0

0 0 0

]  +  𝜌𝑉hor,SH(𝑞
2

+  
1

𝑞2

+  2) [
−𝑒22 0 0

0 −𝑒11 0

0 0 0

],       (A-10) 

 

𝛿𝑀𝜌 = 𝑉𝑃0
2 [

0 0 0

0 0 0

0 0 𝑒33

]  + 𝑉hor,𝑃
2 [

𝑒11 0 0

0 𝑒22 0

0 0 0

] + 𝑟1 [
𝑒22 0 0

0 𝑒11 0

0 0 0

]  +

   𝑟2 [

𝑒33 0 0

0 𝑒33 0

0 0 𝑒11 + 𝑒22

] + 𝑉𝑆0
2 [

0 0 2𝑒13

0 0 2𝑒23

2𝑒13 2𝑒23 0
] +  𝑉hor,𝑆𝐻

2 [
0 2𝑒12 0

2𝑒12 0 0

0 0 0

],       (A-11) 

 

where 

 

𝑟1 = √(𝑉hor,𝑃
2 − 𝑉hor,𝑆𝐻

2 )(𝑉nmo,𝑃
2 − 𝑉hor,𝑆𝐻

2 )  −  𝑉hor,𝑆𝐻
2  , 

𝑟2 = √(𝑉𝑃0
2 − 𝑉𝑆0

2 )(𝑉nmo,𝑃
2 − 𝑉𝑆0

2 )  −  𝑉𝑆0
2  , 

𝑞1 = √
𝑉𝑃0

2 −𝑉𝑆0
2

𝑉nmo,𝑃
2 − 𝑉𝑆0

2  , and 𝑞2 = √
𝑉hor,𝑃

2 − 𝑉hor,𝑆𝐻
2

𝑉nmo,𝑃
2 − 𝑉hor,𝑆𝐻

2  . 

 

In the above equations, 𝑉hor,𝑃 = 𝑉𝑃0√1 + 2휀, 𝑉nmo,𝑃 = 𝑉𝑃0√1 + 2 ,  

and 𝑉hor,𝑆𝐻 = 𝑉𝑆0√1 + 2  are the P-wave horizontal and NMO velocities 

and the SH-wave horizontal velocity, respectively, in the background VTI 

medium. 


