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ABSTRACT 
 
Zhong, T., Chen, Y., Dong, X.T., Li, Y. and Wu, N., 2022. Statistical characteristics for 
the background noise in distributed acoustic sensing: analysis and application to 
suppression. Journal of Seismic Exploration, 31: 131-151. 
 
 Distributed acoustic sensing (DAS) is a novel technology that utilizes a fiber-optic 
cable instead of geophones, which has attracted increasing attention in seismic data 
acquisition. However, owing to the existence of background noise, the current quality of 
the DAS records requires improvement. In this study, the stationarity and spectral 
characteristics for DAS background noise are investigated. Additionally, the dataset used 
for the analysis is collected while satisfying the practical requirements of the exploration 
industry. The results demonstrate that the DAS background noise is a broadband 
interference with local stationarity. On this basis, an adaptive time-frequency peak 
filtering (TFPF) algorithm is proposed to attenuate the background noise. Unlike 
traditional TFPF algorithms, this improved method adaptively chooses appropriate 
filtering parameters instead of using a fixed parameter set to the whole seismic record to 
achieve better attenuation performance. Specifically, the signal and noise segments can 
be recognized by taking advantage of the differences in stationarity. Consequently, we 
can adaptively select different filtering parameters for signal and noise segments to get 
better performance in noise attenuation and signal restoration. Synthetic and field data 
experimental results indicate that the proposed adaptive TFPF algorithm can suppress the 
DAS background noise and accurately recover the reflection events, especially under low 
signal-to-noise ratio conditions. 
 
KEY WORDS: distributed acoustic sensing, background noise attenuation, 
      time-frequency peak filtering, seismic data processing. 
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NOMENCLATURE 

Acronyms 

DAS 
EMD 
FCL 
IF 
IMFs 
MT 

Distributed Acoustic Sensing  
Empirical Mode Decomposition 
Fractal Conservation Law Method 
Instantaneous Frequency 
Intrinsic Mode Functions 
Multitaper 

PWVD 
PSD 
RMSE 
SNR 
TFPF 
WL 

Pseudo Wigner–Ville Distribution 
Power Spectral Density 
Root Mean Squared Error 
Signal-to-noise Ratio (dB) 
Time-Frequency Peak Filtering 
Window Length 

 

INTRODUCTION 
 
 Distributed acoustic sensing (Mateeva et al., 2014; Parker et al., 2014; 
Spikes et al., 2019) is a novel acquisition technology that utilizes the optical 
scattering response of a laser pulse to record the strain changes caused by 
seismic waves (Hartog, 2018). Comparing to conventional point-receiver 
recording systems, DAS can simultaneously sense the entire length of the 
utilized optical fiber cable. It may have many applications from a data 
acquisition perspective (Binder et al., 2020; Rodrigue et al., 2020), 
especially in the oil and gas industry (Daley et al., 2016; Gotz et al., 2018). 
In addition, it is shown that the DAS array has a spatial resolution at meter 
scale and continuous temporal samplings (Verdon et al., 2020; Bellefleur et 
al., 2020). Hence, DAS is increasingly recognized as a viable alternative to 
geophone arrays owing to its advantages in deployment and spatial coverage 
(Poletto et al., 2016; Harris et al., 2017; Karrenbach et al., 2019). However, 
the background noise in DAS records usually contains many incoherent 
interferences, such as the broadband noise caused by the optical scattering 
process (Gang et al., 2018; Bellefleur et al., 2020), which results in a 
relatively low SNR for the DAS records, even lower than those obtained 
with geophones in some conditions (Correa et al., 2017). Additionally, some 
of these incoherent interferences are not issues in conventional seismic 
records, such as time-variant optical noise and fading noise. Specifically, all 
these types of incoherent interferences, brought by optical transmission 
process and recording instruments, have different representation fashions 
and statistical properties with conventional seismic random noise. It means 
that the attenuation methods applied in conventional seismic data processing 
may degenerate when dealing with complex DAS records. To improve the 
quality of the DAS data, efficient background-noise attenuation approaches 
have attracted increasing attention in geophysics. 
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  It is known that the denoising procedure is important for obtaining 

higher accuracy seismic data. In DAS data processing, the background noise 
is assumed to be zero-mean and broadband in nature (Riedel et al., 2018), 
and then a series of processing algorithms have been applied. The currently 
used denoising algorithms, such as weighted-mean stack (Gang et al., 2018; 
Kobayashi et al., 2020), linear filtering techniques (Soto et al., 2016), and 
2D rectangular band-pass filters (Matins et al., 2019), are relatively 
oversimplified. However, the performance of these methods may degenerate 
when dealing with complicated DAS records. Moreover, owing to the lack 
of accurate understanding of the noise properties, the application of modern 
noise reduction methods is unfeasible. Thus, an important step for resolving 
the problem is to further investigate the properties of the DAS background 
noise for selecting or designing efficient noise reduction methodologies. 

 
 Here, the statistical characteristics of the DAS background noise are 

analyzed, including stationarity, PSD, and an adaptive denoising algorithm 
is proposed by utilizing its corresponding features. Herein, stationarity 
refers to the wide-sense stationary, which only requires the first and second 
order of statistical moments to be time-invariant (Chatfield, 2003). 
Moreover, the PSD represents the amount of energy described by a time 
series when transformed into a spectral function (Zhong et al., 2015). In 
addition, the statistical properties of the DAS background noise have not 
been scientifically studied yet, and thus far, the corresponding published 
evidence is rare. However, we could obtain necessary references from 
similar research in the field of conventional seismic data processing. The 
inherent assumption is that the recorded noise should have similar properties 
due to the affinity of the acquisition environmental characteristics. Recently, 
some research has indicated that the background noise, acquired by 
conventional geophones, forms a non-stationary and non-Gaussian 
stochastic process, whereas its main energy concentrates in the 
low-frequency bands (Zhong et al., 2015; Li et al., 2017; Zhong et al., 
2019). Based on these findings, some denoising algorithms have been 
presented and successfully applied in seismic data processing (Jiang et al. 
2014; Zhang et al., 2015; Dong et al., 2018). However, the aforementioned 
findings cannot directly represent DAS noise characteristics because of the 
broad frequency band of DAS noise compared to conventional seismic data. 
Thus, we need to intensively analyze the actual properties of the DAS 
background noise by combining the existing results obtained from 
conventional seismic data. To the best of our knowledge, this work is one of 
the first attempts to investigate this problem. 

 
 In this study, the stationarity for DAS noise is investigated by applying a 

testing method based on time-frequency analysis (Souza et al., 2013), and 
the PSD is analyzed based on the MT spectral estimation algorithm 
(Thomson, 1982; Bayram and Baraniuk, 2000). The corresponding methods 
have already been successfully used in signal processing (Ardekani et al., 
2013) and seismic data analysis (Zhong et al., 2015). Moreover, the used 
dataset was collected under the actual course of seismic exploration. We 
also propose an adaptive denoising algorithm based on TFPF (Boashash and 
Mesbah, 2004; Wu et al., 2011), which is an efficient noise reduction 
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 method in conventional seismic data processing. In addition, a series of 

experiments were conducted to verify the effectiveness of the proposed 
method. We provide detailed descriptions of the dataset and analysis 
principles in the following section. 

  
 

METHOD AND THEORY 
 
 In this section, we provide a detailed description of the basic principles 
of the stationarity testing method and conventional TFPF algorithm used in 
this study. 
 
 
Frameworks of the stationarity testing method 
 
 It is established that the characteristics of a non-stationary series evolve 
in time, such as time-variable energy distributions or vibratory fashions. 
Thus, the stationarity can be evaluated by verifying the existence of a 
significant trend component in the time–frequency domain. The procedures 
of the stationarity testing method can be concluded as follows: 
 
1. Obtain the energy distributions of the test series 

 
 The energy distribution can be denoted as the time marginal, defined by 
the following equation: 
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where Sk(t,fm) is the time-frequency distributions for the analysed series x(t), 
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where the symbol hk(t) represents the k-th Hermite function, whose length is 
Th. 
 
 
2. Extracting the trend components of the energy distributions. 

 
On this basis, EMD is applied to divide the F(t) into IMFs Mi(t) and a 
residual. The trend c(t) can be represented by combining the IMFs and the 
residual ρI(t), which is shown as follows: 
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3. Here, the optimum index i* can be determined by the energy-ratio method 
(Moghtaderi et al., 2013). Measure the stationarity of the test series. 
 

The test statistic Φ, which is used to represent the stationarity, can be 
obtained by the ratio of the following variance: 
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 It is established that if there is no evident trend component, Φ should be 

close to 1 (Flandrin et al., 2004). Thus, in this study, we use 2 as the 
threshold for the stationarity testing algorithm. 

 
 

Principles of the TFPF algorithm 
 
 It is always assumes that the reflection signal x(t) is contaminated with 
additive noise n(t) in seismic data processing. Moreover, it is found that the 
signal x(t) can be represented as the summation of valid components xi(t) 
with overlapping frequency spectra. Thus, the observed noisy signal s(t) can 
be denoted as follows: 
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 The basic procedures for TFPF can be concluded as follows. First, the 
noisy signal is encoded to the IF of an analytic signal, and then the desired 
signal is recovered by IF estimations. In addition, the encoding procedure 
can be accomplished by employing the following equation: 
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where ZS(t) is an analytical signal and µ is a scaling parameter. In this study, 
µ was set to 0.75. Moreover, the time–frequency distribution for the given 
analytical signal is calculated through the PWVD. The results can be 
denoted as follows: 
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where h(τ) represents the window function. Based on this, by searching the 
peak value from the time–frequency plane, the filtered signal )(ˆ tx can be 
obtained as follows: 
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 Notably, the filtering performances for TFPF is related to the properties 

of the window function. The filtering result is sensitive to the WL of h(τ) 
and the dominant frequency of the analyzed signal. Evidently, a long WL 
generally indicates better noise reduction effects, but worse preservation in 
signal amplitudes. Fig. 1 shows the comparisons between the different 
filtering results. In the figure, a simulated signal (grey line) is contaminated 
by Gaussian noise with a SNR of 0 dB, whereas the filtering results with 
WL = 7 and WL = 21 are shown as the red line and black line, respectively. 
The figure indicates that the result obtained with WL = 21 can significantly 
reduce the noise with a significant loss in amplitude of the recovered signal, 
whereas the results for WL = 7 present the contrasting conclusions. Thus, 
we can conclude that the processing results for the TFPF algorithm might be 
balanced between noise reduction and signal preservation by amending the 
WL. 

 

 
 
Fig. 1. The comparisons between filtering results with different parameters. 
 

DAS NOISE CHARACTERISTICS ANALYSIS 

 
 In this section, we provide a brief description of the dataset, including 
detailed information for the acquisition conditions. On this basis, the 
stationarity and PSD properties of DAS noise are analyzed by applying the 
aforementioned stationarity testing algorithm and spectral estimation 
method. Additionally, we make a detailed comparison between the features 
of the signal and background noise, which would provide references for the 
designing of the noise reduction method in the following section. 
 
 
Description of the dataset 
 
 Recently, DAS has been proven to be feasible for acquiring seismic data 
at high temporal and spatial resolutions. In general, DAS systems are 
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 commonly based on the Rayleigh backscattering of laser pulses. During the 

recording procedure, the seismic wave may stretch or squeeze the optical 
fiber; then, the strain changes are recorded by the reflected photons. In this 
study, the field DAS acquisition was conducted under the operation of the 
exploration industry in September 2018. We collected the DAS records in 
an onshore well in Northeastern China by using wireline-conveyed fibers. 
The length of the optical fiber is 1100 m. Each record has 1000 channels, 
whereas the channel spacing is 1.02 m and the sampling frequency is 1000 
Hz. In addition, the acquisition system continuously records for 15 s every 
minute, and consequently, 50000 trace records are obtained. Table 1 gives 
the detailed parameters for the acquisition system. Because the acquisitions 
are performed in remote areas, the artificial background noise is relatively 
insignificant. Consequently, the quality of the DAS records can be 
guaranteed. Fig. 2 displays a 12 s-long field DAS noise record, and it can be 
observed that no evident coherent noise is visible in the figure. 
 
 
Table 1. Collection parameters for acquisition system. 

 
Parameters Specifications 

 
Sampling frequency 1000Hz 

Trace interval 1.02m 
Trace numbers for 
acquisition system 

1000 

Acquisition strategy Continuously collecting 15s for every 
minute 

Total trace records 50000 
 

 

 

 
 
Fig. 2. The field DAS background noise data (12s-long and 100 trace). 
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 Stationarity property analysis 

 
 In this study, the stationarity for DAS background noise is analyzed, and 
we also compare them with reflection signals. In geophysics, stationarity 
could reflect the stability of the acquiring environment. If the environment 
varies, it means that the noise properties might be modified and the 
stationarity may degrade. Thus, we can infer that the noise collected in a 
complicated environment may have strong non-stationarity. By applying the 
aforementioned testing method, typical background noise and field noise 
signal series are processed, and the stationarity analysis results are shown in 
Fig. 3. In Fig. 3(a), the waveform for a DAS noise series is provided, and 
we can observe that the noise series fluctuates in a nearly consistent fashion. 
By utilizing the testing statistic, the noise is classified as a stationary series. 
In contrast, the noise and signal series shown in Figs. 3(b) and 3(c) depict a 
time-variant fluctuation scope and severe changes in vibratory fashion, 
while conspicuous trend components are existed in PSD. Moreover, the 
stationarity statistics for them are 2.28 and 3.24, which are all greater than 
the threshold. Thus, the corresponding noise and signal series were tested to 
be non-stationary. By analyzing the dataset, numerous non-stationary noise 
series are obtained, indicating that the background noise is not strictly 
stationary. Furthermore, it is also intuitively observed that noisy signals 
have stronger non-stationary features. 
 

 On this basis, the stationarity of the dataset under different durations 
was investigated. This means that the stationarity evolution with time is 
studied, which can provide a specific reference for designing the denoising 
method. Herein, we mainly concentrate on the properties for short data, and 
the results for the background noise and noisy signals are shown in Fig. 4. 
Notably, the non-stationary proportions for the background noise under 
different durations are relatively low, with only 9.8% for a 0.5 s series. In 
contrast, the non-stationary proportions for the noisy signals are beyond 
84%. All these results indicate that the noise data are superior to the noisy 
signals in terms of stationarity. In other words, we can deduce that the noise 
series could be considered as local-stationary, and short noise series always 
has better stationarity. On this basis, it is also reasonable to assume that the 
presence of the effective signals breaks the stationarity of the noise data. 
More importantly, the differences in stationarity could be utilized to 
recognize the reflection signals, which provide foundations for the adaptive 
filtering parameter strategy. 
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 (a)                                  (b) 

 
    (c) 

 
Fig. 3. The stationarity testing results for the analyzed data. (a) and (b) Noise series with 
different stationarity. (c) A field noisy signal which is classified as non-stationary series. 
 

 
 
Fig. 4. The comparisons between the stationarity for noise and effective signal records in 
different time lengths (signal, line with blue spots; noise, line with red rhombus). 
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(a)                                (b) 
Fig. 5. The spectral cumulative distribution for the noise data and noisy signal. (a) The 
results for the noise data. (b) The results for the field noisy record. 
 
 
Spectral properties 
 
 Spectral properties were used to investigate the characteristics of the 
energy distributions in the frequency domain. Herein, we use the MT 
spectral estimation method to analyze the PSD, and the estimation results 
for a given series x(n) can be represented as follows (Thomson, 1982): 
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where dk(n) represents the window function, which is selected from the 
discrete prolate spheroidal sequences, and Km indicates the number of the 
analyzed window functions. Evidently, the MT method has advantages over 
traditional spectral estimation algorithms, such as the Welch algorithm, in 
spectral leakage, estimation variance, and frequency resolution. By applying 
the MT method, the normalized PSD is calculated, and the spectral 
cumulative distribution for the noise data and noisy signals are shown in 
Fig.5. Notably, DAS noise has a broader band with large amount of 
high-frequency disturbances than the noise acquired in traditional seismic 
arrays. Similarly, high-frequency components could still be observed in the 
PSD for noisy signals. In contrast, the main differences in the PSD results 
exist in the low-frequency bands where noisy signals have more 
components in the range of 0-70 Hz. Thus, we can deduce that the dominant 
frequency for the DAS signal should fall into the aforementioned scope. To 
verify the findings, a typical noisy signal, divided into a noise segment and 
two signal segments, is analyzed, and the results are shown in Fig. 6. It is 
observed that high-frequency harmonic components can also be found in the 
signal segments. Thus, we can determine that the DAS noise contains 
high-frequency disturbances, and the dominant frequency for the signal is 
relatively low. Based on these findings, it is suggested that low-frequency 
components should be preserved for recovering the reflection signals in the 
filtering procedure. 
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(a) 

 

(b)                                (c) 
Fig. 6. The comparisons between noise and effective signals. (a) The waveforms for a 
7-second-long field DAS record. (b) The waveforms for noise data and signal segments. 
(c) The corresponding PSD for the aforementioned data. 
 
 
ADAPTIVE TFPF METHOD AND PROCESSING RESULTS 
 
 In this section, we give the principle for the filtering algorithm and use a 
series of experiments to check the performance of the proposed method. 
 
 
Principle for the denoising algorithm 
 
 As aforementioned, it is shown that the DAS background noise, which is 
a broadband disturbances with high-frequency components, has different 
properties in stationarity by comparing with efficient signals, and it can be 
used to design the denoising algorithm. Particularly, the signal segments 
should be detected by utilizing the differences in stationarity between noise 
and signal. On this basis, different filtering parameters are chosen for the 
analyzed DAS records to attenuate the noise purposefully. The denoising 
procedures for the adaptive TFPF method could be concluded as the 
flowchart shown in Fig. 7. To check the feasibility, a synthetic trace record 
contaminated with field background noise is processed, and the 
corresponding results are shown in Fig. 8. 
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Fig. 7. Basic flow for the adaptive TFPF method proposed in this study. 
 

  
The noisy record is divided into segments, whose length is set to 40 

samples, and the stationarity for each segment is analyzed. Fig. 8(a) shows 
the waveforms, PSD, and stationarity testing results for a given noisy signal. 
It is shown that the background noise is represented as a high-frequency 
fluctuation, and the signal is severely influenced by the strong noise. By 
applying the testing method, the signal segments could be identified owing 
to their large testing statistics. As discussed in the Methods section, the 
performance for TFPF can be modified by controlling the window length to 
make a balance between noise reduction and signal restoration (Wu et al., 
2011). As the signal segments have already been recognized, we can use 
different filtering parameters in different areas to attenuate the noise. Herein, 
we propose an adaptive WL selection strategy as shown in the following 
equation: 

 
 
   nndsopt ffWL ξσγ ⋅+= /125.0 	 	 ,,,                        (10)	

 
 
where fd and fs denote the dominate frequency of the analyzed signal and 
sampling frequency of the DAS record, respectively. Moreover, nξ and nσ  
represent the mean and variance for the normalized data, while γ is a 
binarization function, whose value for the signal and noise segments is set to 
be 0 and 5. Thus, we can use short WL in signal segments to get better 
signal preservation, and apply long WL in noise segments to achieve 
thoroughly noise attenuation. For analyzing the efficiency of the proposed 
method, a synthetic record is processed, whereas the WL for signal and 
noise segments are 5 and 60, respectively. Additionally, we compare the 
processing results with the conventional TFPF algorithm. By observing the 
results shown in Fig. 8(b), adaptive TFPF has better performance than 
conventional TFPF (WL = 13) in terms of both noise reduction and signal 
preservation. Specifically, the corresponding results demonstrate that the 
proposed algorithm can suppress the noise by considering signal 
preservation is based on the fact that different filtering parameters are used 
in noise and signal segments. Therefore, we can determine that our proposed 
method can eliminate the background noise and restore the desired signals, 
even under strong noise conditions. 
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   (a)                                 (b) 

 
Fig. 8. The signal recognition and denoising results of the proposed method. (a) The 
signal recognition result. (b) The comparison between noisy signal and its denoising 
result. 
 
 
Synthetic DAS record processing results 
 
 Herein, we investigate the processing accuracy of the proposed method 
by comparing it with the common denoising algorithms used in seismic data 
processing. Specifically, the wavelet, FCL (Azerad et al., 2012; Meng et al., 
2015), and conventional TFPF algorithm are used as the competing 
algorithms. Moreover, the synthetic DAS record, shown in Fig. 9(a), is used 
as the analyzed dataset. The first arrival and four reflection events have the 
same dominant frequency of 50 Hz and different apparent velocities of 1300 
m/s and 1500 m/s, respectively. On this basis, field DAS background noise 
is added to the synthetic records and the reflection events are badly 
influenced by the severe background noise. By evaluating the stationarity, 
the reflection events are recognized well owing to their large stationarity 
statistics [shown in Fig. 9(b)], which provide a solid foundation for further 
denoising procedures. 
 

(a)                                (b) 
 
Fig. 9. The signal recognition results by analysing stationarity. (a) The noisy DAS record. 
(b) The recognition result. 
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  (a)                    (b)                    (c) 

 

 

 
 (d)                      (e) 

 
Fig. 10. Comparisons for denoising results and filtered noise. (a) Synthetic record (-5dB) 
and added noise acquired from field dataset. (b) Denoising results of WT (2.0dB). (c) 
Denoising results of FCL (0.71dB). (d) Denoising Results of TFPF (1.69dB) (e) 
Denoising results of adaptive TFPF (5.62dB). 

 
 For further analyzing, different noise attenuation algorithms are utilized 

to mitigate the strong background noise, and the corresponding denoising 
results are shown in Fig. 10. Herein, WT decomposition method with 5 
layers of db5 base function is applied. Additionally, the filtering parameter 
for FCL is set to be [0.0145, 0.0201, 1.9], and the WL for the conventional 
TFPF is 11. In contrast, the proposed adaptive TFPF method applies WL = 
5 for signal segments and WL = 40 for noise segments. The synthetic noisy 
DAS record (-5 dB) and the added field DAS background noise data are 
shown in Fig. 10(a). The results shown in Fig. 10(b) indicate that the WT 
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 could attenuate the noise well; however, the continuity of the reflection 

events is destroyed in some areas. Similarly, although the FCL and 
conventional TFPF can suppress the noise better with an SNR of 0.71 and 
1.69 dB, they have a large amount of residual signals remained in the 
filtered noise, as shown in Figs. 10(c) and 10(d). In contrast, the proposed 
adaptive TFPF can attenuate the noise appropriately, and no conspicuous 
signals remain in the filtered noise, as shown in Fig. 10(e). By observing the 
figures, we can infer that the adaptive TFPF suppresses the background 
noise more thoroughly and restores the effective signal more accurately. In 
addition, the quantitative comparisons in the improved SNR verify the 
efficiency of the proposed adaptive TFPF method, which has the largest 
SNR increment of over 10 dB. 

 

 

 
(a)                     (b)                    (c) 

 

 
(d)                      (e) 

 
Fig. 11. F-K domain analysis for the processing results. (a) F-K spectrum of synthetic 
record and field background noise. (b)-(e) F-K spectrum of denoising results for WT, 
FCL, conventional TFPF and adaptive TFPF, respectively. 
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  For further investigating the efficiency, the denoising results are 

analyzed in the frequency domain, and the F-K spectra for the 
corresponding results are shown in Fig. 11. Notably, the recovered signals 
obtained by the competing algorithms all have conspicuous amplitude losses 
or property changes, especially for the results of FCL. In contrast, as shown 
in Fig. 11(e), the results for adaptive TFPF have the most similar 
characteristics with the clean record in the f-k spectrum. Therefore, the 
results are consistent with the findings discussed above that the proposed 
adaptive TFPF can recover the effective events without obvious amplitude 
loss. All these results indicate that the adaptive TFPF has better 
performance than the competing algorithms. 
 

 On this basis, we also investigate the denoising capability for different 
algorithms under different conditions, and the improved SNR and RMSE, 
shown in eqs. (11) and (12), are calculated for detailed comparisons. 
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where u and u0 represent the clean records and denoising results, whereas M 
and N are the dimensions of the analyzed data. Moreover, the corresponding 
quantitative comparison results for SNR and RMSE are shown in Table 2. It 
is demonstrated that the adaptive TFPF has the largest improved SNR and 
the smallest RMSE, whereas an improvement of over 11 dB could be 
obtained even for -10 dB records. Thus, by combining the aforementioned 
results, we can suggest that adaptive TFPF, over a 6 dB increment than the 
competing algorithm, is efficient in eliminating the DAS background while 
considering signal preservation. 
 
 
Table 2. Averaged SNR and RMSE comparisons for different denoising results. 
 

Origin
al 

record 
(dB) 

WT FCL TFPF Adaptive 
TFPF 

SNR 
(dB) 

RMS
E 

SNR 
(dB) 

RMS
E 

SNR 
(dB) 

RMS
E 

SNR 
(dB) 

RMS
E 

-10 -3.41 0.209 -6.55 0.300 -4.22 0.230 1.48 0.119 
-5 2.17 0.110 0.86 0.128 1.73 0.116 5.81 0.072 
0 6.12 0.070 3.23 0.097 7.05 0.063 12.43 0.034 
5 8.98 0.050 7.14 0.062 9.93 0.045 13.57 0.030 
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 Field DAS record processing results 

 
 To analyze the efficiency of the proposed algorithm, we also applied it 
to a field DAS record. The field DAS data, shown in Fig. 12(a), were 
severely affected by the interference, and some of the reflection events were 
buried in the strong background noise. For comparison, WT, conventional 
TFPF, and adaptive TFPF were applied to the field DAS record, and the 
processing results are shown in Figs. 12(b) to (d), respectively. Apparently, 
the processing results for WT and conventional TFPF falls short of 
expectations, and noise reduction performance and continuity for the 
recovered signals still need to be further improved. In Fig. 12(d), the 
adaptive TFPF method can suppress the background noise more effectively, 
and the recovered events have better continuity and smoothness by 
comparing with competing methods. On this basis, the removed noise 
records for different algorithms are also analyzed in detail. The results are 
shown in Fig. 13. Notably, obvious residual signal components exist in the 
results for WT and conventional TFPF [shown in Figs. 13(a) and (b)]. On 
the contrary, there is almost no signal-leakage energy in Fig. 13(c), which 
demonstrates that the adaptive TFPF has few adverse effects on the 
recovered events during the denoising procedure. As discussed above, we 
found that adaptive TFPF has better performance in noise attenuation with 
consideration of signal preservation, even under low SNR conditions. 
 

 
  (a)                               (b) 

 
 (c)                               (d) 

 
Fig. 12. Denoising results of field DAS data. (a) The field DAS record. (b) Denoising 
results of WT. (c) Denoising results of conventional TFPF. (d) Denoising results of 
adaptive TFPF. 
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  (a)                               (b) 

 
  (c) 

 
Fig. 13. The comparisons of filtered noise. (a) Filtered noise for WT. (b) Filtered noise 
for conventional TFPF. (c) Filtered noise for adaptive TFPF. 
 
 
 
CONCLUSION 
 
 In this study, we analyzed the properties of the DAS background noise, 
mainly concentrated in stationarity and PSD. The dataset used is collected 
under the course of exploration industry. By analyzing DAS records, the 
results indicate that the background noise is local-stationary. It means that 
the stationarity for the noise series in the short period is high, and the 
non-stationary portions are all below 20%. Moreover, the experimental 
results indicate that DAS noise is broadband in nature, which is different 
from the traditional understanding in seismic data processing. Additionally, 
the stationarity and PSD properties for the reflection signals were also 
investigated. The corresponding results indicate that the reflection signal, 
whose energy was mainly concentrated in the range of 0–70 Hz, display a 
more significant non-stationary component. Based on these findings, we 
propose an improved TFPF filtering method that utilizes the stationarity and 
PSD analysis results to adaptively determine the filtering parameters. 
Specifically, we can separate the processing data as signal and noise 
segments by investigating the stationary features. Subsequently, filtering 
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 parameters are adaptively determined for each segment to get better 

performance in noise reduction and signal restoration. Different competing 
algorithms were applied to verify the efficiency of the proposed method, 
both on synthetic and field DAS records. It is shown that the adaptive TFPF 
algorithm outperforms the other competing methods, with an increment of 
over 10 dB in synthetic data processing. Furthermore, it is noticed that the 
recovered reflection events also have better properties in terms of continuity 
and smoothness after applying adaptive TFPF algorithm. In summary, we 
can get the point that the proposed adaptive TFPF method can effectively 
attenuate DAS background noise and improve the quality of the analyzed 
data, especially in complicated noise conditions. From this viewpoint, we 
can infer that the adaptive TFPF algorithm may have further application in 
the field of DAS data denoising and processing. 
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