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ABSTRACT 
  
He, X.J., Qui, C.J. and Sun, J.Q., 2022. Discontinuous Galerkin method for solving 2D 
dissipative seismic wave equations. Journal of Seismic Exploration, 31: 153-176. 
	
 Seismic dissipation widely exists in underground media. To develop a detailed 
understanding of wave propagation in dissipative media, in this study, we introduce a 
discontinuous Galerkin (DG) method for solving acoustic and elastic wave equations in 
D’Alembert media. This method uses the numerical flux-based DG formulations with the 
explicit 3rd-order total variation diminishing (TVD) time discretization. We first derive 
an empirical formula for numerical stability conditions, which shows that the relative 
error of the Courant-Friedrichs-Lewy (CFL) condition numbers between the actual the 
numerical cases does not exceed 3%. The analyses also show that both the dispersion and 
dissipation in D’Alembert media are frequency dependent, and have a strong correlation 
with the dissipation factor. Finally, we present some numerical experiments. The 
quantitative comparisons of the attenuation ratios of the waveforms show that they are 
close to the theoretical ones, verifying the findings of the analyses. In particular, for 
elastic waves, the relative errors between the numerical attenuation ratios and the 
theoretical ones do not exceed 4%. The simulation of dissipative elastic wave 
propagation in a model with surface topography indicates our method is capable of 
dealing with complex geometry. 
 
KEY WORDS: discontinuous Galerkin method, D’Alembert media, dispersion, 
     dissipation, numerical modelling. 
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INTRODUCTION 

 
The underground medium is not completely elastic, and often exhibits 

dissipation (Niu and Sun, 2007). Therefore, the study of seismic waves in 
dissipative media is of much value and helpful for understanding the earth. 
Dissipative properties are usually described by making some modifications 
to the displacement, stress or strain in seismic wave equations. There are 
many viscoelastic models such as the Maxwell model, the Kelvin model, the 
Boltzmann model and the D’Alembert model (Emmerich and Korn, 1987; 
Carcione and Cavallini, 1994; Aki and Richards, 2002; Moczo and Kristek, 
2005; Ba et al., 2017). Among these models, the Maxwell, Kelvin and 
Boltzmann models are obtained by modifying the stress–strain relations, but 
the D’Alembert model is obtained by directly adding viscous forces to the 
dynamic equilibrium equation to describe the influence of the friction.  

 
The D’Alembert model has many imperfections compared with other 

viscoelastic models. For instance, it has similar viscosity and attenuation 
properties of P wave and S wave, but these should have different behaviors 
in the dispersion and dissipation characteristics. Also, the physical meaning 
of the viscosity coefficient in the D’Alembert model is not clear. However, 
the D’Alembert model has many advantages. In terms of the complexity of 
the equations, the D’Alembert model is the simplest viscoelastic model, and 
it avoids the problems of complex device combinations that occur in other 
models such as the Maxwell and Kelvin models. The D’Alembert model is 
also practical and effective, and contains fewer petrophysical parameters 
that can macroscopically describe the strong attenuation mechanism in 
complex media. From the aspect of numerically solving the equations, this 
can save a lot of computation. Moreover, the other aforementioned 
viscoelastic models can be transformed into a first-order hyperbolic wave 
propagation system by adding a dissipative term, which are similar to the 
D’Alembert model. Therefore, the study of the D’Alembert model is helpful 
to understand the dispersion and dissipation properties of other viscoelastic 
models. In these regards, we use the D’Alembert model in this study.  

 
Numerous studies have been carried out to numerically solve the 

dissipative wave equations. A lot of numerical schemes have emerged, such 
as finite difference methods (Robertsson et al., 1994; Hestholm, 1999; 
Kristek and Moczo, 2003; Wang and Zhou, 2014; Wang et al., 2019), finite 
element methods (Yang and Du, 2003), pseudo-spectral methods (Carcione, 
1993), and spectral element methods (Cai et al., 2017). Recently, the 
discontinuous Galerkin (DG) method for solving wave equations has 
attracted great attention. Many variants of the DG method have been 
proposed and applied (e.g., Reed and Hill, 1973; Rivière et al., 2007; 
Ferroni et al., 2017). Particularly, Cockburn and Shu (1989) propose the 
Runge-Kutta discontinuous Galerkin (RKDG) method to solve hyperbolic 
conservation laws, and its variants have been widely used (e.g., Sármány et 
al., 2007; He et al., 2015). 
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Compared with traditional numerical methods, the DG method has 
many advantages in dealing with high-order accuracy, complex structures 
and boundary conditions. The method also has good parallelism and can 
effectively suppress the numerical dispersion. In computational geophysics, 
Käser and Dumbser (2006) proposed an arbitrary high-order derivatives DG 
(ADER-DG) method, which has been widely used in seismology (Käser et 
al., 2007; de la Puente et al., 2008). Since then, there has been significant 
progress in the DG method for solving seismic wave equations (e.g., de 
Basabe et al., 2008; Etienne et al., 2010; Wilcox et al., 2010; He et al., 2015; 
Yang et al., 2016; Zhang et al., 2018). Many researches have been devoted 
to solving the wave equations in viscoelastic media. Käser et al. (2007) 
employed the ADER-DG method to solve the heterogeneous anelastic 
seismic wave equations on 3D unstructured tetrahedral meshes, and they 
used the generalized Maxwell viscoelastic model. Rivière et al. (2007) 
proposed a symmetric or non-symmetric interior penalty DG method to 
solve the linear solid viscoelasticity problems. Lähivaara and Huttunen 
(2010) suggested a discontinuous Galerkin method with non-uniform basis 
order to solve the 3D dissipative acoustic wave equation. Lambrecht et al. 
(2018) proposed a nodal discontinuous Galerkin approach for the 
computation of viscoelastic wavefields.  

 
The dissipative wave equations can be viewed as a wave propagation 

system by adding a dissipative term. The hyperbolic wave propagation 
system is non-stiff, but it becomes a stiff system when the dissipative factor 
is large. These two systems can also be encountered in solving wave 
propagations in porous media. Among the numerical methods for solving 
viscoelastic or porous wave equations, many use the splitting method (e.g., 
Carcione and Quiroga-Goode, 1995; McLachlan and Quispel, 2002; Cai et 
al., 2017) or the so-called fractional-step method. The splitting method has 
many advantages, such as the use of large Courant-Friedrichs-Lewy (CFL) 
condition numbers and fast computational speed. However, as de la Puente 
et al. (2008) pointed out, this splitting method also has some limitations, for 
instance, it is difficult to improve the numerical accuracy.  

 
Based on these considerations, in this study we do not use the splitting 

method, but directly use the classic RKDG method to solve the dissipative 
wave equations. We use modal basis functions, the local Lax-Friedrichs 
(LLF) flux, and employs the explicit 3rd-order TVD Runge-Kutta method 
for time discretization. The novelty of this study lies in the introduction of 
the DG method to solve dissipative acoustic and elastic wave equations with 
detailed numerical stability, dispersion and dissipation analyses. These 
analyses are instructive for the understanding of dissipative seismic wave 
propagation. 

 
 

WAVE EQUATIONS IN D’ALEMBERT MEDIA 
 
Acoustic wave equation in D’Alembert media 

 
The vector wave-field in D’Alembert media can be decomposed into a 
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P wave and a P-SV wave fields, where the P wave equation in the 2D x-z 
plane has the following form: 

2

2ρ η µ µ
∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

u u u u
t t x x z z ,               (1) 

 
where u is the pressure field, ρ is the density, µ is the elastic constant. Here 
η is a viscous parameter that relates to the dissipative property. The term 
η∂u/∂t describes the damping force. To transform eq. (1) into a first-order 
system, we introduce two shear stresses σxy and σzy with σ µ= ∂ ∂xy u x and 
σ µ= ∂ ∂zy u z , then we have: 

( ) ( )
2

2ρ η σ σ
∂ ∂ ∂ ∂

+ = +
∂ ∂ ∂ ∂xy zy
u u
t t x z .	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	  (2) 

Let = ∂ ∂v u t  and η ρ=r , then we can rewrite eq. (2) as follows: 

( ) ( )1 1
σ σ

ρ ρ
σ

µ

σ
µ

∂ ∂ ∂⎧ + = +⎪ ∂ ∂ ∂
⎪

∂⎪ ∂
=⎨

∂ ∂⎪
∂⎪ ∂

=⎪ ∂ ∂⎩

xy zy

xy

zy

v rv
t x z

v
t x

v
t z

,                   (3) 

where r is called the dissipation factor. We have r = ωQ-1, where ω is the 
dominant frequency of the wavefield and Q is the quality factor of medium. 
Let: 

W σ

σ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥⎣ ⎦

xy

zy

v

, 1

0 1 0
0 0

0 0 0
A

ρ

µ

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

,	 2

0 0 1
0 0 0

0 0
A

ρ

µ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

0 0
0 0 0
0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

r
B , 

                     (4) 

then eq. (3) can be transformed into the following first-order system:  

1 2 0W W W BW∂ ∂ ∂
+ + + =

∂ ∂ ∂
A A

t x z   .     (5) 

The matrix B is related to the damping force in D’Alembert media.  
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Elastic wave equations in D’Alembert media 

The 2D source-free P-SV wave equations with velocity-stress form in 
D’Alembert media can be written as: 

 

1 ( ) 0

1 ( ) 0

( 2 ) 0

( ) 0

( 2 ) 0

σ σ
ρ

σ σ
ρ

σ
λ µ λ

σ
µ

σ
λ µ λ

∂ ∂∂⎧ − + + =⎪ ∂ ∂ ∂
⎪

∂ ∂∂⎪
− + + =⎪ ∂ ∂ ∂⎪

∂ ∂ ∂⎪
− + − =⎨

∂ ∂ ∂⎪
∂ ∂ ∂⎪

− + =⎪ ∂ ∂ ∂⎪
∂ ∂ ∂⎪ − + − =⎪ ∂ ∂ ∂⎩

xx xz

xz zz

xx

xz

zz

v rv
t x z
w rw
t x z

v w
t x z

w v
t x z

w v
t z x

,                (6) 

where v and w are its components in the x and z directions, respectively. λ 

and µ are elastic constants. r is called the dissipation factor. Following the 

deformation of the acoustic equation, we introduce the vector: 

( ), , , ,W σ σ σ=
T

xx xz zzv w , and define the matrices A1, A2, and B as follows: 

 

1

0 0 1 0 0
0 0 0 1 0

( 2 ) 0 0 0 0
0 0 0 0

0 0 0 0

A

ρ

ρ

λ µ

µ

λ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟= − +
⎜ ⎟

−⎜ ⎟
⎜ ⎟−⎝ ⎠

, 
2

0 0 0 1 0
0 0 0 0 1
0 0 0 0

0 0 0 0
0 ( 2 ) 0 0 0

A

ρ

ρ

λ

µ

λ µ

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟= −
⎜ ⎟
−⎜ ⎟
⎜ ⎟− +⎝ ⎠

, (7) 

0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

B

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

r
r

,                     (8) 

 

then eq. (6) can be written in the form of system (5).	 	
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DISCONTINUOUS GALERKIN METHOD 
	

Spatial discretization 
 
We now construct the DG method for solving eq. (5). Assuming that 
2Ω⊆R  is a bounded domain, which is divided into non-overlapping 

elements with Ω =∪Ωii
. We then define the approximation test function 

space as { }2 ( ) : ( )κ
Ω= ∈ Ω ∈ Ω
ih iV v L v P . Here, ( )iPκ Ω  denotes the space of 

polynomials of degree less than or equal to κ defined on iΩ . We need to 
determine a set of scalar basis functions for the space hV . There are nodal 
and modal basis functions, such as Legendre polynomials and Lagrange 
basis functions based on Gauss quadrature points. Here, for simplicty, we 
use the modal basis functions and take monomial functions 
{ }| 0α β κα β≤ + ≤x z  for both quadrilateral and triangular elements. Also, we 
assume that the coefficients matrices A1, A2, and B to be piecewise constant 
in each element. We define ( )1 2( )= ,F W AW AW  and ( , )x z∇ = ∂ ∂ , then eq. (5) 
can be written as:  

( ) 0∂
+∇⋅ + =

∂t
W F W BW   .              (9) 

Multiplying eq. (9) by a scalar test function v and integrating on Ωi , using 
Green’s formula, we obtain the following weak form: 
 

  ( ) ( ) 0
Ω ∂Ω

∂⎛ ⎞+ − ⋅∇ + ⋅ =⎜ ⎟∂⎝ ⎠∫ ∫
i i

v v v dV v dS
t
W BW F W F W n  ,         (10) 

 
where 1 2( , )= Tn nn  is the outward unit normal vector. Since the test function 
space is locally defined, it allows the approximate solution W to be 
discontinuous at the interior interface i∂Ω . We let intW and extW  denote the 
approximate solutions of W from the interior and exterior of i∂Ω , 
respectively, then we can use the numerical flux int extˆ ( , , )F W W n  to replace 
( )F W n⋅ . The compatibility and conservation conditions must be satisfied 

for the numerical flux between two adjacent elements. Here we use the 
simple and commonly used LLF flux (Cockburn and Shu, 1989), which is: 
 

 int ext int ext int ext1ˆ ( , , ) ( ) ( ) ( )
2 2

F W W n F W F W n - W Wυ
⎡ ⎤= + ⋅ −⎣ ⎦ ,  (11) 
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where υ is the numerical viscosity constant that can be evaluated as the 
largest eigenvalue (in absolute value) of int( ( ) )F W n W∂ ⋅ ∂  and 

ext( ( ) )F W n W∂ ⋅ ∂ . To load the free surface boundary conditions, we can 
take an exterior velocity that is identical to the interior one, and impose an 
opposite stress wavefield. As a result, we can keep a continuous velocity 
and a zero stress on the free surface (Etienne et al., 2010). For the absorbing 
boundary condition, we simply take ext =0W  (Käser and Dumbser, 2006). 

 

Next, we let { } 1
0

i l N
l lw = −

= denote the basis functions series, then we have 

the basis function expansions 
1

0
( )

i

N
i i
l l

l
t w

−

Ω
=

=∑W C , where { } 1

0
( )

Ni
l l
t

−

=
C  are the 

time-dependent coefficients. Substituting the expansions of W into eq. (10) 

and considering the numerical flux, we obtain the following equations for 

DG spatial discretization: 

 
∂C l

i (t )
∂t

wl
iwl '

i

Ωi

∫ dV
l =0

N −1

∑ + BC l
i (t ) wl

iwl '
i

Ωi

∫ dV
l =0

N −1

∑ − F C l
i (t )wl

i

l =0

N −1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟⋅

∂wl '
i

∂x
,
∂wl '

i

∂z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ωi

∫ dV

+ wl '
i F̂ C l

i (t )wl
i

l =0

N −1

∑ , C l
j (t )wl

j

l =0

N −1

∑ ,n
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟dS =

Ωi∩Ω j

∫
j
∑ 0 l ' = 0,…,N −1

, (12) 

where Ω j  is the adjacent element which shares a common edge with Ωi.  

 
Time discretization 

 
The next step is to solve the semi-discrete system (12). For simplicity 

of notations, we introduce a vector ( )tC  to represent all the coefficients in 
the domain, and we use a linear operator L to cover the spatial discretization 
in eq. (12), then we can write the ordinary differential equations (ODEs) as: 

 

 ( )∂
=

∂
L

t
C C   .  (13) 

 

 To simplify the discussions, we assume that the operator L does not 
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depend on t. There are numerous time integration methods to solve eq. (13), 
such as explicit Runge-Kutta methods, the arbitrary high-order derivatives 
(ADER) time stepping method (Dumbser and Käser, 2006) and a lot of 
implicit techniques. Here, we employ the explicit 3rd-order TVD 
Runge-Kutta method (Cockburn and Shu, 1989), which is: 
 

(0) ( )

(1) (0) (0)

(2) (0) (1) (1)

( 1) (0) (2) (2)

( )
3 1 1 ( )
4 4 4
1 2 2 ( )
3 3 3

+

⎧ =
⎪

= + Δ⎪
⎪
⎨ = + + Δ
⎪
⎪

= + + Δ⎪
⎩

n

n

tL

tL

tL

C C
C C C

C C C C

C C C C

    .	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (14) 

 
 
STABILITY, DISPERSION AND DISSIPATION ANALYSES 
	

In this section, we present the numerical analysis of the DG method for 
solving dissipative acoustic wave equations in D’Alembert media. We first 
assume that the domain is unbounded and source-free. These assumptions 
are commonly used (e.g., Hu et al., 1999; de Basabe et al., 2008; Ferroni et 
al., 2017). Then, the domain is discretized uniformly by quadrilateral 
elements (Fig. 1), in which the typical element is denoted by Enm. The 
spatial steps in the x and z directions are assumed to be h. Then, the DG 
spatial discretization in eq. (12) can be written as (Hu et al., 1999):  

1 1 1 1
0 1 1 0 1 1+ +

nm
nm n m n m nm nm nm nm

t
− + − +

− + − +

∂
+ +

∂
+ +CQ = N C N C N C M C M C M C HC , 

(15) 

where nmC  is the vector that contains all the coefficients in Enm. The 
explicit expressions of these matrices are shown in Hu et al. (1999) and He 
et al. (2015). To perform the analysis, we assume the solution is a plane 
wave exp[i( cos sin )]nm k nh k mhθ θ= +C C , where k is the wave number and 
θ is the propagation angle. Substituting it into eq. (15) gives: 

1 i cos i cos i sin i sin
0 1 1 0 1 1e e + e e +k h k h k h k h

t
θ θ θ θ− − −

− + − +

∂
⎡ ⎤= + +⎣ ⎦∂

+ +C Q N N N M M M H C .   

               (16) 

Then we can use the explicit 3rd-order TVD Runge-Kutta method introduced 
above to solve eq. (16) 
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Fig. 1. Illustration of the discretized rectangular elements. 
 
 
Stability conditions 

 
We now consider the stability for the numerical algorithm. To keep the 

scheme stable, the time step, spatial step and the acoustic wave speed are 
required to satisfy maxαΔ ≤ Pt h V , where maxα is the Courant-Friedrichs-Lewy 
(CFL) condition number or the so-called maximum Courant number and 

µ ρ=PV  is the acoustic velocity. Let Λ  be the maximal modulus of the 
eigenvalues of the growing matrix [the matrices on the right side of eq. (16)], 
then solving 1Λ ≤  for [0, ]kh π∈  and [0,2 ]θ π∈ , we can obtain the CFL 
condition numbers maxα  for the scheme. 

 
Instead of computing maxα  as indicated above, in what follows we 

will discuss an empirical formula to evaluate the CFL condition numbers. 
We first notice that the semi-discrete system (12) can be divided into two 
parts, one is hyperbolic without dissipation, and the other is dissipative. 
Therefore, accordingly, we can divide the ODE system (13) into two parts, 
which can be written as (Carcione and Quiroga-Goode, 1995): 

  

1 2( ) ( ) + ( )∂
= =

∂
L L L

t
C C C C .                   (17) 

 
 The operator L1 is related to the wave propagation without dissipation, 
and L2 is related to the dissipation. We want to find the maximal 
eigenvalues (in absolute value) of operators L1 and L2, denoted by λ1 and λ2, 
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respectively. For the hyperbolic system: 
 

1( )
∂

=
∂

L
t
C C ,                          (18) 

 
the CFL condition has been analyzed based on the plane-wave analysis 
method (He et al., 2015). For ithe DG method equipped with quadratic basis 
function (κ = 2), LLF flux and 3rd-order TVD Runge-Kutta time 
discretization, we have the following stability result for the quadrilateral 
elements in Fig. 1: 

max 0.164αΔ ≤ ≈
P P

h ht
V V .                    (19) 

 

 In addition, based on the numerical analysis theory of solving the ODE 

system by using the explicit 3rd-order Runge-Kutta method (Li et al., 2008), 

we have 12.51 λΔ ≤t . Then, λ1 can be evaluated as 1
2.51
0.164

λ ≈ PV
h

.   

 
For the dissipative system: 

2 ( )
∂

=
∂

L
t
C C   .                                    (20) 

 
Since L2 is only related to the matrix B, the largest eigenvalue (in 

absolute value) for the operator L2 is λ2 ≈ r, where r is the dissipation factor 
in eq. (3).  
 

Let λ be the largest eigenvalue (in absolute value) for the operator L, 
since L(C) = L1 (C)+ L2 (C), then we have λ ≤ λ1+ λ2. Using the explicit 
3rd-order Runge-Kutta time discretization, taking the time step 

1 22.51 ( ) 2.51λ λ λΔ ≤ + ≤t , we get a stable scheme. Thus, we obtain an 
empirical formula for the CFL condition: 

  
2.51

2.51
0.164

Δ ≤
+P

t V r
h

,   or   max
2.51

2.51
0.164

α
Δ

ʹ≤ ≈
+

P P

P

V t V
Vh hr

.              (21) 

 
In practical applications, we find that eq. (21) are reasonable estimates. 

Table 1 lists the comparisons between the actual CFL condition numbers 

maxα  and the numbers maxαʹ  obtained from the empirical equations for some 
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cases. From the table, we see that the difference between maxα  and maxαʹ  is 
small, and the relative error does not exceed 3%. It is also observed that as 
the dissipation factor r increases, the time step decreases. When the 
dissipation factor r is large enough, the system is stiff and the time step 
would be very small. 

 

Table 1. A comparison of the actual CFL condition numbers maxα  and the numbers maxαʹ . 

 
 

 
 
 
 
 
 
 
 
For a triangular mesh, we apply a heuristic stability criterion that works 

well from numerical tests (He et al., 2015): max minmin( ) / 2αʹΔ ≤ Pt h V , where 
hmin is the shortest edge of the triangular element. Note that the criterion is 
empirical and we currently have no theoretical deduction about it. 

 
 

Dispersion-dissipation analysis 
 
We now study the dispersion-dissipation properties of the scheme. The 

derivation follows studies by Hu et al. (1999), de Basabe et al. (2008) and 
He et al. (2015). We are not going to repeat the derivation step by step, but 
just show some key points. We assume that ( ) 0 ien n tω− Δ=C C , where ω is the 
angular frequency. We decompose ω with iω ω ω= −r i , where rω  and iω  
are related to the numerical dispersion and dissipation, respectively. The 
numerical acoustic wave speed is computed by ω=num rV k . We define the 
dispersion as ( )ω α= = Δnum P rR V V t kh , where the Courant number α is 
defined as c t hα = Δ .  

 
Figs. 2 and 3 show the dispersion. We set the parameters VP = 4 km/s, r 

= 10, h = 0.05 km, and 0.1α = Δ =c t h . Fig. 2a shows R as a function of the 
frequency. In our analysis, ω is a complex number, therefore, we use the 

VP = 1 km/s, h = 0.01 km VP = 1 km/s, r = 100 

r maxα  maxαʹ  h maxα  maxαʹ  

10 0.164 0.1629 0.1 0.099 0.0992 

100 0.156 0.1539 0.05 0.124 0.1236 

1000 0.099 0.0992 0.02 0.146 0.1450 

10000 0.021 0.0217 0.01 0.156 0.1539 
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modulus |ω| to represent the frequency. Fig. 2b is an enlarged view of Fig. 
2a. The blue line in Fig. 2 represents the exact dispersion curve which is 
calculated by (Niu and Sun, 2007): 

 

 
22 1 ( ) 1

ω

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

rR .                      (22) 

  
 The curves in other colors in Fig. 2 indicate different propagation 
directions, from which we see the obvious anisotropy of the numerical 
dispersion errors. It is also seen that at low frequencies, R is less than 1, 
which indicates that the existence of the viscous term causes the wave delay 
effect; as the frequency increases, R approaches to 1; as the frequency 
continues to increase, the deviation between the numerical wave velocity 
Vnum and Vp begins to increase again. Consequently, we conclude that the 
dispersion can be divided into two stages. The dispersion at low frequencies 
is mainly caused by the viscous term in D’Alembert media. As the 
frequency increases, the dispersion caused by the dissipation factor becomes 
smaller, and the numerical dispersion caused by the numerical algorithm 
dominates. In Fig. 3, we show the numerical dispersion with dissipation 
factors r = 0 and 10. It can be seen in Fig. 3 that as r increases, the 
dispersion caused by the dissipation factor becomes more serious, but the 
numerical dispersion caused by the numerical algorithm changes little. 
 

In Figs. 4 and 5, we show the dissipation  e ω− Δi t , which indicates the 
damping coefficient of the wave amplitude over a time step Δt. The 
parameters we use are the same as those in Fig. 2. 

The blue curve shows the exact dissipation calculated by 

22 1 ( ) 2
2e
t rω

ω

Δ
− + −

 (Niu and Sun, 2007).  
 
It is evident that 

 
22 1 ( ) 2

2 2e e when
t r r t

r
ω

ω
ω

Δ
Δ− + − −

≈ ， = .                   (23) 
 
 From Fig. 4 we notice that as |ω| increases, the limit of the dissipative 
curve approaches to 2e− Δ ≈r t  0.9938. The curves in other colors in Fig. 4 
indicate the numerical dissipation in different propagation directions. 
Similarly, the numerical dissipation anisotropy can be clearly identified. The 



	
	

165 
 

numerical dissipation curve can also be divided into two stages. At low 
frequencies, the dissipation caused by the existence of the viscous term in 
D’Alembert media is dominant. At high frequencies, in addition to a step 
jump decrease, the dissipation has a dominant component caused by the DG 
discretized method. In Fig. 5, we plot the numerical dissipation with kh for 
dissipation factors r = 0 and 10. It is evident that as the dissipation factor r 
increases, the dissipation becomes larger. 
 

Next, we show the dispersion and dissipation errors with respect to the 
sampling points per wavelength G in Fig. 6. G is computed as G = 2π/(kh). 
We define the dispersion error as ER = |R-1|, and the dissipation error as ES = 
| e ω− Δi t -1|. It is found that to satisfy the dispersion within the criterion ER < 
0.01, the points per wavelength would be G ≥ 2.3 for our method. To reduce 
the dispersion error to ER < 0.001, it is necessary that G ≥ 3.7. For the 
dissipation error, a criterion of ES < 0.01 requires that G ≥ 2.6; a smaller 
criterion of ES < 0.001 requires that G ≥ 3.9.  

 
   (a)                                  (b) 

 
Fig. 2. Dispersion versus frequency, in which (b) is an enlarged version of (a). The blue 
line shows the exact dispersion, and the other lines show the dispersion in different 
propagation directions.  

   
(a)                             (b) 

 
Fig. 3. Dispersion for dissipation factors (a) r = 0 and (b) r = 10. 
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Fig. 4. Dissipation versus frequency. The blue line shows the theoretical dissipation, and 
the other colored lines show the dissipation in different directions.  

 

 
(a)                             (b) 

 
Fig. 5. Dissipation for dissipation factors (a) r = 0 and (b) r = 10. 

 

	 	
(a)                                (b) 

 
Fig. 6. Points per wavelength G versus the (a) dispersion error ER and the (b) dissipation 
error ES. 
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WAVEFIELD SIMULATIONS 
	

 In this section, we present several numerical examples to verify the 
attenuation effect in D’Alembert media. The effect mainly refers to the 
decay of wave amplitude due to attenuation. The effectiveness of the DG 
method for solving dissipative wave propagations is also demonstrated. 
Since the CFL condition number of the DG method decreases significantly 
with the increase of the basis function, we only consider the quadratic 
spatial interpolations in this section. 

 
  

The convergence test  
 
 We first consider a model with analytical solutions to verify the 

convergence of the method. Consider eq. (3) with the following analytical 
solution: 

	 /2 0 0
0 0

2 2( , , ) cos cos sinπ π
θ θ− ⎛ ⎞= + −⎜ ⎟

⎝ ⎠
at

ex
f fv t x z e x z Kt
c c

,           (24) 

where 4c = km/s is the velocity, θ0 = π/4 is the incident angle at time t = 0, 

0f  is the frequency, and 2 2 2
04 / 4K f rπ= − . We take eq. (24) with t = 0 as the 

initial conditions and use the periodic boundary conditions. The 
computational region is 0 , 2≤ ≤x z  km with a homogeneous discretization 
of square elements in Fig. 1. The time step is 0.0001s, so that the numerical 
error caused by the time discretization can be ignored. The simulation lasted 
for 1000 time steps. We define the 2L  error as:  

( )22

1
2 2

Ω
= − = − Ω∫ex exLL

E v v v v d .                  (25) 

 
 The 2L  errors and convergence orders are listed in Table 2.	We see that 
the numerical error decreases with the reduction of the spatial step, 
indicating that the DG method is convergent. Since we use quadratic basis 
functions, the expected 3rd-order of accuracy is obtained. We also see that as 
the dissipation factor r increases, the magnitude of the error decreases, 
verifying the attenuation effect in D’Alembert media. 

 
In order to show the problem more clearly, we set a receiver at the 

center of the domain. Fig. 7 shows the waveforms recorded by the receiver 
for f0 = 8 Hz and 20 Hz. We observe the obvious decrease in the amplitude 
as the dissipation factor r increases. In addition, the movement of the trough 
can be clearly observed from Fig. 7a, but it is not obvious in Fig. 7b. This 
indicates that the dispersion in D’Alembert media decreases with increasing 
frequency. We also find that as the dissipation factor r increases, the 
dispersion in D’Alembert media increases. These observations are 
consistent with the dispersion and dissipation analyses. 
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Table 2. Convergence rates of v for the acoustic wave in D’Alembert media. 
 

h (km) L2 error order  L2 error order 

 r = 4   f0 = 8 Hz  r = 20   f0 = 8 Hz 

3.536E-02 4.717E-04 -  2.104E-04 - 

2.828E-02 2.415E-04 3.00  1.078E-04 3.00 

2.357E-02 1.408E-04 2.96  6.295E-05 2.95 

2.020E-02 9.057E-05 2.86  4.051E-05 2.86 

 r = 4   f0 = 20 Hz  r = 20   f0 = 20 Hz 

3.536E-02 9.278E-03 -  3.536E-02 - 

2.828E-02 4.250E-03 3.50  2.828E-02 3.50 

2.357E-02 2.330E-03 3.30  2.357E-02 3.30 

2.020E-02 1.426E-03 3.18  2.020E-02 3.18 

 
 

	 	 	
(a)	 	 	

	

	 	
(b) 

 
Fig. 7. Waveforms at the receiver with (a) f0 = 8 and (b) f0 = 20. 
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Acoustic wave model in D'Alembert media 
 
In the second example, we study the homogeneous acoustic wave 

propagation with a point source. We consider a square domain with 
0 , 10≤ ≤x z km. We discretize the domain with homogeneous square 
elements as in Fig. 1. VP = 4 km/s is used. The spatial step is h = 0.05 km, 
and r = 0, 4, 8, and 16. According to eq. (21), the maximum time step is 
obtained when r = 0 with Δt = 2.05 ms; the minimum time step is Δt = 2.02 
ms when r = 16. Since the difference between the time steps does not 
exceed 0.1 ms, for convenience, we use Δt = 2 ms for all dissipation factors. 
The source in this example is a Ricker wavelet with 

 
2

0 0 0( ) 9.6 (0.6 1)exp[ 8(0.6 1) ]= − − − −f t f f t f t .           (26) 
 
The central frequency f0 = 20 Hz is used. The source is located at (5, 5) km. 
A receiver to detect the waveforms is set at R1 (6.2, 6.2) km. 

 
The waveforms recorded at the receiver are shown in Fig. 8. The 

numerical solution has a good agreement with the analytical solution with r 
= 0, which is computed by the Cagnidard-de Hoop method (De Hoop, 1960). 
It can be observed that with the increase of the dissipation factor r, the 
amplitudes become significantly smaller, demonstrating the attenuation 
effect in D’Alembert media. To study this attenuation effect more 
quantitatively, we record the amplitudes at the crest and trough for r = 4, 8, 
and 16, and divide them accordingly by the amplitudes at the crest and 
trough when r = 0. The results are the attenuation ratios of the amplitude. 
Table 3 lists the amplitudes at the crest and trough recorded in Fig. 8 and 
their corresponding amplitude attenuation ratios. Also listed are the 
theoretical attenuation ratios for comparisons, which are given by /2e−rT  
(see eq. (23)). T is the propagation time for the acoustic wave to travel from 
the source to the receiver. Here it is easy to calculate: / 0.4243 s= =PT L V . 
From Table 3 we see the attenuation ratios at the crest and trough are in 
good agreement with the theoretical cases, which illustrates the correctness 
of the previous dissipation analysis. In Fig. 9, we also show the snapshots of 
the wave fields for r = 0 and r = 8 at T = 1.0 s, and the attenuation effect can 
be clearly observed. 

 
Table 3. The amplitudes and attenuation ratios at the crest and trough. 
 

r 
amplitude at 

crest 
amplitude at 

trough 
attenuation 

ratio at crest 
attenuation 

ratio at trough 
theoretical 

attenuation ratio 
0 6.3329E-01 1.0000E+00 

   
4 2.7100E-01 -4.2768E-01 0.428 0.428 0.428 
8 1.1954E-01 -1.8156E-01 0.189 0.182 0.183 

16 2.5381E-02 -3.2492E-02 0.040 0.032 0.034 
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Fig. 8. Waveforms recorded at the receiver with different dissipation factors.  
 

   
(a)                                   (b) 
 

Fig. 9. Snapshots of the acoustic wave fields for dissipation factors of (a) r = 2, (b) r = 8. 
 
 
Elastic wave model in D’Alembert media 

 
In this example, we consider the P-SV wave propagation in 

D’Alembert media. The P and SV wave velocities are cp = 2 km/s and cs = 
1.25 km/s. The density is ρ = 2 g/cm3. The domain is 0 , 2x z≤ ≤  km with a 
homogeneous triangular mesh. The average edge length for the triangles is 
20 m. The source is applied in the z-direction, and is located at the center of 
the domain with the source function as in eq. (26) with f0 = 20 Hz. A 
receiver at (1.3, 1.2) km is set to record the waveforms. 

 
We first consider the case when the dissipation factor r = 0. Fig. 10 

shows the waveforms for the v and w components at the receiver. For the 
purpose of comparison, this model is also simulated by the popular 
fourth-order finite-difference staggered grid (SG) method (Virieux, 1986; 
Moczo et al., 2000) with the same computational parameters. The SG 
method is favored for its easy implementation and low storage requirement. 
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It is observed that when the spatial step is 20 m, the waveforms of the SG 
method have evident pseudo fluctuations, demonstrating that the SG method 
suffers from serious dispersion on coarse mesh. To eliminate the numerical 
dispersion and offer a reference solution, we perform the simulation with 
the SG method using a finer grid with a spatial step of 5 m. With the finer 
grids the SG method produces almost the same solution as that of the DG 
method on coarse mesh. 

 
We now compare the waveforms with different dissipation factors. 

Fig.11 shows the waveforms with r = 0, 2, 4 and 8. The attenuation of the 
amplitude is obviously observed. Table 4 lists the numerical and theoretical 
numerical attenuation ratios of the P and SV waves at the crest and trough. 
We notice that the numerical attenuation ratios at the crest and trough are 
close to the theoretical ones. For the P wave, the relative error does not 
exceed 2%. For the SV wave, the difference between the two does not 
exceed 4%. 

 
 
Table 4. The amplitudes and attenuation ratios at the crest and trough for the P-SV waves. 
 

 r 
amplitude at 

crest 
amplitude at 

trough 
attenuation 

ratio at crest 
attenuation 

ratio at trough 
theoretical 

attenuation ratio 

P 

0 3.8981E-01 -4.7282E-01 
   

2 3.2217E-01 -4.0062E-01 0.826 0.847 0.835 
4 2.6730E-01 -3.3807E-01 0.686 0.715 0.697 
8 1.8595E-01 -2.3871E-01 0.477 0.505 0.486 

       

SV 

0 1.0000E+00 -7.1561E-01    
2 7.5393E-01 -5.3209E-01 0.754 0.744 0.749 
4 5.6761E-01 -3.9744E-01 0.568 0.555 0.562 
8 3.1984E-01 -2.2452E-01 0.320 0.314 0.315 

 

   
(a)                                 (b) 
 

Fig. 10. Comparisons of the waveforms at the receiver for the DG method and the 
finite-difference SG method with dissipation factor r = 0. (a) v component and (b) w 
component. 
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(a)                                 (b) 

 
Fig. 11. Waveforms recorded at the receiver for the velocity components (a) v and (b) w 
with r = 0, 2, 4, and 8. The reference solution for r = 0 is computed by the SG method on 
fine grids.     
 
 
Lamb’s model in D’Alembert media 

 
Here, we test the proposed method for the classical Lamb’s problem 

(Lamb, 1904). The P and SV wave velocities are cp = 3.2 km/s and cs = 
1.8475 km/s. The density is ρ = 2.2 g/cm3. The model has a total length of 4 
km, the left boundary is at 2 km, and the upper boundary is a slope with a 
tilt angle θ = 10o to test the free surface boundary conditions. The source in 
this example is a Ricker wavelet with 

 

( ) ( )20 0 0( ) exp ( ( ))f t t t f t tπ= − − −   .                (27) 

  
A central frequency of f0 = 10 Hz is used. t0 = 0.08 s is the source decay time. 
We set the source in both x- and z- directions, with 
 

( , ) ( sin ,cos ) ( )θ θ= −x zf f f t   .                   (28) 

  
The source is located at (1.720, 2.303) km, exactly on the surface. We 
discretize the model with 23864 triangles, with an average length of 30 m. 
The time step is set to be 0.468 ms. Part of the mesh is illustrated in Fig. 12, 
where the pentagram indicates the location of the source.  

 
In Fig. 13, we show the resulting snapshots of the wavefields in the 

z-direction at T = 0.6 s. The dissipation factors r = 0 and 8 are considered. 
The Rayleigh wave propagations at the surface can be clearly observed from 
the figure, showing that the proposed method could be effectively combined 
with free surface boundary conditions. In addition, we can see that the 
attenuation of the wave energy is obvious, verifying the attenuation effect in 
D’Alembert media. 
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Fig. 12. Part of the mesh for Lamb’s model. The pentagram in the figure indicates the 
location of the source. 

 

	 	 	 	
(a)                                  (b) 

 
Fig. 13. Snapshots of the velocity wavefield in the z-direction at T = 0.6 s for Lamb’s 
model. The dissipation factors are: (a) r = 0, (b) r = 8. 
 
 
Model with surface topography 
 
 In the last example, we test the proposed method for dissipative elastic 
wave propagation with surface topography. The P and SV wave velocities 
are cp = 4 km/s and cs = 2.5 km/s. The density is ρ = 2 g/cm3. The upper 
geometry of the model is a curve with a sine function. The Ricker source 
has a central frequency of f0 = 15 Hz. The source is loaded in the z-direction, 
and is located at the surface with coordinates (3.545, 3.894) km. We 
discretize the model with 66051 triangles with an average length of 30 m. 
The simulation is carried out for dissipation factors r = 0 and 4. For both 
cases, the time step is set to 0.5 ms.  

 
Fig. 14 shows the snapshots of the wavefields with the z component at 

T = 0.8 s for r = 0 and 4. The wave fronts are very clear and the attenuation 
of the wave energy with r = 4 is obvious. The converging of the wave 
energy below the curved surface can also be observed. This model shows 
the validity of the proposed method for modelling wave propagation with 
surface topography.  
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(a)                                   (b) 

 
Fig. 14. Snapshots of the velocity wavefield in the z-direction at T = 0.8 s for the model 
with surface topography. The dissipation factors are taken as (a) r = 0 and (b) r = 4. 

 
 
 

CONCLUSIONS and DISCUSSIONS 
	

In this study, we focus on the DG method for solving seismic wave 
equations in 2D D’Alembert media. This method employs the flux-based 
discontinuous Galerkin formulations with the explicit 3rd-order TVD 
Runge-Kutta method. We analyze the numerical stability conditions, 
dispersion and dissipation in great detail. For stability conditions, we derive 
an empirical formula suitable for first-order systems with dissipation. For 
dispersion and dissipation, we first compare them with the theoretical cases 
in D’Alembert media, and find that they have good consistency. The 
analysis shows that both the dispersion and dissipation in D’Alembert media 
are frequency dependent. At low frequencies, dispersion and dissipation are 
mainly caused by the viscous term in the seismic equations. As the 
frequency increases, the dispersion and dissipation caused by the numerical 
algorithm method gradually increase. 

  
To verify the validity of the proposed method, we have presented 

several numerical examples. We simulate the dissipative acoustic and elastic 
wave propagations in D’Alembert media, and study the effects of different 
dissipation factors on the amplitude of the waves. Under the selected grid 
conditions, we found that there is almost no visible numerical dispersion, 
but there exists a significant dissipative effect. We quantitatively analyze the 
attenuation ratios at the crests and troughs and find that they are close to the 
theoretical ones, verifying the findings of the dissipation analysis. In 
addition, we test Lamb’s model in D’Alembert media, and observe clear 
Rayleigh waves at the free surface and their obvious dissipation, 
demonstrating that our proposed method could be effectively combined with 
free surface boundary conditions. Finally, we give an example of elastic 
wave propagation in a model with surface topography, indicating the 
effectiveness of the method for dealing with complex geometry. 
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The method can be directly generalized to the 3D case. We are 
currently considering the 3D DG method in solving dissipative acoustic and 
elastic equations. But for large-scale 3D simulations, the computational cost 
is very large, so parallel algorithms will need to be implemented and 
optimized. These problems will be addressed in future research. 
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