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ABSTRACT 

 
Song, H., Fang, M.H., Zhou, C. and Gao, H.Q., 2022. Seismic random noise suppression 
using denoising autoencoder. Journal of Seismic Exploration, 31: 203-218. 
 
 In the seismic data acquisition phase, random noise will inevitably be introduced 
as undesirable components, which is not conducive to subsequent seismic signal 
processing and imaging tasks. In this article, we propose a denoising framework based on 
denoising autoencoder (DAE) for seismic random noise suppression. DAE can directly 
reconstruct noise-free seismic data from noisy seismic data in an unsupervised learning 
manner. The entire seismic data reconstruction requires three phases: corrupting phase, 
encoding phase, and decoding phase. In the corrupting phase, the original input is 
randomly corrupted, which helps the designed network to capture robust features. In the 
encoding phase, the corrupted input is encoded as a compressed representation that 
contains the important content of the seismic data. In the decoding stage, the compressed 
representation is decoded into reconstructed data. We choose the mean square error as the 
loss function, which is minimized by the back propagation algorithm to update the 
network parameters. The application of synthetic and real seismic data proves the 
effectiveness of the proposed method in suppressing seismic random noise. 
 
KEY WORDS: seismic data, random noise, unsupervised learning, 
    denoising autoencoder. 
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 INTRODUCTION 

 
In the process of seismic exploration, seismic signals acquired in the 

field are usually composed of two kinds of signals: effective signals, and 
interference signals. Effective signals contain important information about 
underground structures, which play an important role in oil and gas 
exploration. Interference signals contain all kinds of interference 
information unrelated to the strata which makes it more difficult to identify 
effective signals and brings adverse effects to the interpretation of seismic 
data. Therefore, suppression of interference signals and improvement of 
seismic signals quality become an extremely critical step in seismic data 
processing and interpretation (Lin et al., 2013; Kazemi et al., 2016; Gao et 
al., 2016; Liu et al., 2018). Interference signals are divided into coherent 
noise and random noise. Coherent noise has a certain dominant frequency, 
apparent velocity, and shape, while random noise does not have. Random 
noise is randomly mixed with the effective signals, which affects the 
identification of weak signals. Thus, the purpose of this paper is to suppress 
seismic random noise. 

 
Seismic noise suppression has been an existing problem in geophysics 

for a long time. Many researchers have put forward a variety of noise 
suppression methods, which have successfully suppressed seismic noise in 
practical application. Seismic noise suppression methods can be mainly 
divided into four categories: prediction-based, sparse transformation-based, 
decomposition-based, rank-reduction-based. The prediction-based noise 
suppression methods take advantage of the fact that useful signals are 
predictable and random noise is unpredictable (Abma and Claerbout, 1995). 
Sparse transform-based noise suppression methods utilize the characteristics 
that useful signals and random noises are easily distinguished in the sparse 
transform domain, such as wavelet transform method (Deighan and Watts, 
1997), curvelet transform method (Herrmann et al., 2007; Herrmann and 
Hennenfent, 2008), and dictionary sparse transform method (Chen et al., 
2016a; Siahsar et al., 2017).  The decomposition-based noise suppression 
methods can decompose the seismic data into several different components, 
and then select the main component representing the effective seismic 
signals (Chen and Ma, 2014). The principle of rank-reduction-based noise 
suppression algorithms is that the ideal noise-free seismic data can be 
constructed into a low-rank matrix, and the appearance of random noise 
increases the rank of the matrix, so the suppression of random noise is 
transformed into a matrix rank reduction (Oropeza and Sacchi, 2011; Chen 
et al., 2016b). 

 
Deep learning is a new branch of machine learning, and its emergence 

makes machine learning closer to the design goal of artificial intelligence.  
Its structure consists of multiple processing layers. The features captured at 
the low-level processing layer are combined into more abstract features at 
the high-level processing layer. Therefore, deep learning can provide plenty 
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 of abstract features of data layer by layer. In recent years, deep learning has 

achieved excellent applications in the field of seismic exploration, such as 
noise suppression (Yu et al., 2019), fault interpretation (Wu et al., 2019), 
waveform classification and picking (Yuan et al., 2018), and reservoir 
parameter prediction (Song et al., 2020). There are two strategies for seismic 
noise suppression based on deep learning: supervised-learning-based and 
unsupervised-learning-based. The supervised-learning-based denoising 
method depends on the label data, so the accuracy and quantity of the label 
data are of great significance to the denoising effect. The unsupervised-
learning-based denoising method can denoise the noisy data without label 
data. Autoencoder (AE) belongs to unsupervised learning, which uses back 
propagation algorithm to reconstruct unlabeled input. Its goal is to make the 
output as equal as possible to its input, but it is difficult to extract features 
that are representative of seismic data. Some improved versions of AE 
capable of capturing important information of seismic data are proposed, 
such as Denoising AE (DAE), sparse AE (Zhang et al., 2019; Chen et al., 
2019), etc. The DAE is a special neural network with denoising function, 
which captures features by training corrupted input data. As an unsupervised 
algorithm, DAE is capable of capturing robust characteristics from 
unlabeled data. 

 
In this paper, we propose a novel seismic noise suppression framework 

based on unsupervised learning. Firstly, we introduce the DAE and network 
parameter optimization. Additionly, we introduce the designed DAE 
architecture. Finally, we test our proposed method on synthetic seismic data 
and actual seismic data and compared it with three traditional denoising 
algorithms. The results show that our proposed method is suitable for 
seismic random noise suppression.  

 
 

METHOD 
 
Denoising autoencoder 
 

DAE is a special type of deep neural network. DAE is a feature 
extractor with denoising function, and it can transform a noisy input into a 
noise-free output. Data reconstruction using DAE requires three stages: (1) 
corrupting stage; (2) encoding stage; (3) decoding stage. In the corrupting 
stage, the original input P is first damaged into P̂  by the stochastic mapping 
qD: 

 
 ˆ ˆ( | )DP q P P:   .              (1) 

 
 In our experiments, we realize the corruption process of input by 
randomly selecting the components of the input in a fixed proportion to set it 
to 0, while the others remain unchanged. 
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 In the encoding stage, the damaged input data P̂  is encoded into 
compressed expression H: 
 
 
 1

ˆ( )c cH w P bψ= + ,                                                                      (2) 
 
 
where wc and bc denote weights and bias between the input layer and the 
hidden layer, respectively; 1ψ is the nonlinear activation function. In our 
study, the ReLU function 1( )xψ  is used as the nonlinear activation function 
between the input layer and the hidden layer: 
 

ReLU( ) max(0, )x x= .                                                                           (3) 
 
 In the decoding stage, the compressed expression H is decoded into 
reconstructed data Q. 

 
2 ( )d dQ w H bψ= + ,                                                                                (4) 

 
where wd and bd denote weights and bias between the hidden layer and the 
output layer, respectively; 2ψ  is the nonlinear activation function. In our 
study, the tanh function 2 ( )xψ  is used as the nonlinear activation function 
between the hidden layer and the output layer: 
 

tanh( )
x x

x x

e ex
e e

−

−

−
=

+
.                                                                                 (5) 

 
 Due to the denoising autoencoder is self-supervised learning, the loss 
function is defined as follows: 
 

2
2

1

1 ˆ( )
n

i
J P P

n
θ

=

= −∑P P ,                                                                           (6) 

 
where θ  are the network parameters including weights {wc, wd} and bias {bc, 
bd}; n is the sample number. Network parameters θ  play an important role 
in model performance, and its optimization is achieved by minimizing the 
loss function. 
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 Network parameter optimization 

 
In order to better optimize the network parameters, the adaptive 

moment estimation approach is used in our research (Kingma and Ba, 2015), 
and its update rules are as follows: 

 
(1) At time step t, the gradients gt should be first computed as 
 

-1( )t tg Jθ θ=∇ .                                                                              (7) 
 
(2) The biased first moment estimate ut and the biased second raw moment 
estimate vt are computed as 

 
1 1 1(1 )t t tu u gβ β−= ⋅ + − ⋅ ,                                                              (8) 

 
2

2 1 2(1 )t t tv v gβ β−= ⋅ + − ⋅ ,                                                           (9) 
 
where 1β  and 2β  denote exponential decay rates. Good default parameters 
are 1 0.9β = , 2 0.999β = . 
 
(3) The bias-corrected first moment estimate ˆtu  and the bias-corrected 
second raw moment estimate t̂v  are computed as 
 

1ˆ / (1 )t tu u β= − ,                                                                         (10) 
 

2ˆ / (1 )t tv v β= − .                                                                          (11) 
 
(4) Finally, parametersθ are updated as 
 

1 ˆ ˆ/ ( )t t t tu vθ θ η ε−= − ⋅ + ,                                                             (12) 
 
where η  is the learning rate, ε  is a small constant and its default value is 
10-8. 
 
 
Proposed DAE architecture 
 

Preparing the training set plays an important role in deep learning. Our 
training set is obtained from the original seismic data based on the patch-
based method. The patch-based method can generate a large number of 
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 training samples, which is conducive to obtaining optimized network 

parameters. In our study, the patch size is set as 20 × 20. In this paper, we 
design a denoising  autoencoder with a seven-layer structure illustrated in 
Fig. 1. The seven-layer structure of DAE consists of one input layer, five 
hidden layers and one output layer. The number of neurons in the input layer 
and output layer is determined by the patch size, and the number of neurons 
in the five hidden layers is set to 640, 160, 40, 160 and 640, respectively. It 
can be observed that DAE is composed of corruption framework, encoder 
framework, decoder framework. The corruption framework is responsible 
for randomly corrupting the input. The encoder framework is responsible for 
encoding the damaged input into a compressed expression. The decoder 
framework is responsible for reconstructing the compressed expression into 
an output close to the input. 
 

 
 

Fig. 1. The proposed DAE architecture. 
 
 

EXPERIMENT 
 

We test the denoising performance of the proposed method on two 
examples. The comparative experiments between the proposed method and 
traditional methods are done on synthetic and real seismic data. We choose 
three traditional methods multichannel singular spectrum analysis (MSSA), 
wavelet transform (WT) and f-x deconvolution (FX), and compare their 
denoising performance with the proposed method. 

 
 

Synthetic seismic data 
 
We first test the denoising performance of four methods on synthetic 

seismic data. The clean synthetic data consists of 140 traces with 900 time 
sampling points. Fig. 2a shows the clean seismic data. The synthetic seismic 
data contains strong and weak events. We add random noise to clean seismic 
data and obtain noisy seismic data displayed in Fig. 3b. With clean synthetic 
seismic data available, we can quantitatively evaluate denoising 
performance based on signal-to-noise ratio (SNR), which is expressed as 
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clean 2
10

denoised clean 2

SNR 20log
d

d d
=

−
   , 

 
where cleand  and denoisedd  represent clean data and denoised data, respectively. 
Therefore, the SNR of noisy seismic data displayed in Fig. 2b can be 
calculated to be 1.37 dB. 
 

 

  
 

Fig. 2. Synthetic seismic data. (a) Clean Data. (b) Noisy data (SNR = 1.37 dB). 
 
 
 

We utilize four denoising methods to denoise the noisy seismic data 
and obtain the corresponding denoising results illustrated in Fig. 3. It can be 
observed that the three traditional methods can suppress a lot of random 
noise, but there is still residual noise in the denoising results. Fig. 3d shows 
the denoising results of the proposed method，where almost no random 
noise can be seen. In terms of the SNR of the denoising result, the SNR of 
the proposed method is 18.34 dB, which is higher than 14.74 dB, 12.86 dB, 
and 16.77 dB of MSSA, WT, and FX methods, respectively. In order to 
compare the fidelity of the four methods, we calculated the residual profile 
of the four methods displayed in Fig. 4. The residual profile is obtained by 
making the difference between the original seismic data and the denoised 
results. The ideal residual profile should be chaotic and no trace of useful 
signal can be observed. It can be seen from Fig. 4 that the useful signal can 
hardly be seen on the residual profile of the proposed method, which means 
that the useful signal leakage is the least. 
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Fig. 3. (a) Denoised results of MSSA (SNR = 14.74 dB). (b) Denoised results of 
WT(SNR = 12.86 dB). (c) Denoised results of FX (SNR = 16.77 dB). (d) Denoised 
results of Proposed method (SNR = 18.34 dB). 
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Fig. 4. (a) Residual profile of MSSA. (b) Residual profile of WT.  (c) Residual profiles of 
FX. (d) Residual profiles of Proposed method. 
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Fig. 5. Denoising results on single channel seismic data. (a) MSSA.  (b) WT.  (c) FX.  
(d) Proposed method. 

 
 
 
We further compare the denoising results of the four methods on 

single-trace seismic data, as shown in Fig. 5. It can be observed that the 
single-trace denoising result of the proposed method is closest to the clean 
data. In addition, we calculate the SNR of the four methods at different 
noise levels, as shown in Fig. 6. It can be observed that the SNR of four 
methods at different noise levels has been improved after denoising, but the 
proposed method always maintains the highest SNR improvement, which 
indicates that the proposed method has stronger denoising robustness. 
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Fig. 6. The SNR comparison of four methods at different noise levels. 
 
 

 
 

Fig. 7. The effect of input damage on denoising performance.  
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  The effect of input damage on the denoising performance is displayed 

in Fig. 7. For the proposed method, damage to the input is conducive to the 
improvement of denoising performance, and the best denoising performance 
is achieved when the degree of damage is 60%. 
 
 
Real seismic data 
 

In the previous section, the proposed method has shown a good 
denoising effect on the synthetic seismic data. In this section, we assess the 
denoising ability of the proposed method on the real seismic data. The real 
seismic data consists of 110 traces with 600 time sampling points. The 
selected real seismic data are displayed in Fig. 8. It can be seen from Fig. 8 
that the real seismic data contains the curve events and faults. Due to the 
pollution of a large amount of random noise, the continuity of events is poor 
and weak signals are not clear. The interference of random noise makes the 
seismic resolution very low. 

 
  

  
Fig. 8. The real seismic data. 

 
 
Fig. 9 shows the denoising results of the four methods on the real 

seismic data. The seismic data denoised by WT has serious distortion of the 
seismic data, and a lot of local details are lost. There is still a small amount 
of random noise remaining on the seismic data after denoising by FX. The 
denoising results of the proposed method are not only more stable in events, 
but also almost no significant residual noise, which implies a higher profile 
quality. 
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Fig. 9. (a) Denoised results of MSSA. (b) Denoised results of WT.   (c) Denoised results 
of FX. (d) Denoised results of Proposed method. 

 
 
Since clean real seismic data are unavailable, we can not use SNR as a 

quantitative standard to compare the denoising performance of the four 
methods on real seismic data. Thus, we make a rough comparison of the 
four methods by means of residual profile illustrated in Fig. 10. It is obvious 
that useful signals can be observed in the residual profiles of the three 
traditional methods, which means a strong leakage of useful signals. Almost 
no useful signals can be observed in the residual profile of the proposed 
method, which means that the proposed method will not cause damage to 
useful signals. 
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Fig. 10. (a) Residual profile of MSSA. (b) Residual profile of WT.  (c) Residual profiles 
of FX. (d) Residual profiles of Proposed method. 

 
 

DISCUSSION 
 

In this section, we compare the calculation time on laptop with Inter(R) 
Core(TM) i7-6700HQ CPU@2.60GHz and Nvidia GPU GTX960M. On the 
synthetic data, the calculation time of the proposed method is 12.58 s, while 
the calculation time of MSSA, WT, and FX method are 0.29 s, 0.64 s, and 
0.34 s, respectively, which implies that the proposed method has good 
denoising performance but takes longer calculation time than the traditional 
method. In addition, we show the effect of calculation time on denoising 
performance, as shown in Fig. 11. It can be seen that better denoising 
performance of the proposed method means longer calculation time. 
Therefore, how to make a trade-off between denoising performance and 
calculation time is worthy of further study. 
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Fig. 11. The effect of calculation time on denoising performance. 
 

 
The proposed method utilizes the statistical difference between 

effective signals and random noise to denoise. The proposed method does 
not have the risk of over-filtering the data and has no special requirements 
on the data type. However, the proposed method has limitations in removing 
coherent noise. Since the statistical laws of coherent noise and effective 
signals are similar, it is difficult for unsupervised-learning-based denoising 
method to remove coherent noise, which means that the proposed method 
cannot directly remove coherent noise from unlabeled data. It is feasible to 
remove coherent noise by introducing label data into the proposed method, 
which means that the proposed method has changed from unsupervised-
learning-based denoising method to supervised-learning-based denoising 
method. 
 
 
CONCLUSION 
 

In order to effectively suppress random noise in seismic data, we have 
proposed a novel denoising method based on denoising autoencoder. The 
proposed method can recover clean seismic data from noisy seismic data in 
an unsupervised manner, which greatly reduces the effort of producing label 
data. The designed network with corrupting stage, encoding stage, and 
decoding stage can effectively suppress the random noise in seismic data. 
Examples with synthetic and real seismic data prove that the proposed 
method can cause minimal damage to the useful signals while effectively 
attenuate the random noise of seismic data. Examples also confirm that the 
proposed method has better denoising performance compared with the three 
state-of-the-art denoising methods. In the future, we will explore the 
removal of coherent noise by introducing label data into the proposed 
method. 
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