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ABSTRACT 
 
Ghanavati, M. and Shad Manaman, N., 2022. An efficient automatic Curvelet-Contourlet 
fault detection method using fuzzy entropy. Journal of Seismic Exploration, 31: 219-238. 
 
 Accurate detection of faults in seismic data can affect various disciplines such as 
subsurface geological studies, petroleum exploration, drilling strategies and production. 
Still, it is in general a manual and time consuming task. Therefore, bringing automatic 
methods to this field which can accurately extract useful information from seismic 
images and locate faults would be valuable. 
  
     In this paper we propose a novel method for automatic seismic fault detection 
using combination of multiresolution multidirectional algorithms and fuzzy entropy 
theory. The paper employs Curvelet (CV) and Contourlet (CN) transforms for feature 
extraction from transformed domain and to capture both detail and smooth information 
content of the data. The proposed framework introduces a novel feature space by 
extracting features in temporal domain using CN transform to capture smooth contour 
information and CV transform to capture details along the curve features in order to 
improve detection performance. It also introduces an automatic feature selection 
algorithm using differentiation which highlights fault information, to isolate faults from 
reflectors adaptively. The reduced coefficients are used as feature vectors to locate faults 
more accurately. Then, a multi-level thresholding based on fuzzy partition of the 
histogram and entropy theory is applied to classify image pixels into fault and non-fault. 
According to results and assessments, this method is very efficient in accurately locating 
faults and eliminates the need for manually interpret fault surfaces. 
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INTRODUCTION 
 
 Detection of faults is a key topic and a necessity in seismic data 
interpretation. Manual interpretation and visual investigation of seismic data 
is the most common method for seismic fault detection which needs 
interpreters to pick faults manually. Considering large volume of seismic 
data, manual interpretation is a time consuming process and takes significant 
amounts of manual work. To accelerate this procedure, in the past decade 
researches have made great efforts into developing computer-aided tools to 
extract fault information from seismic images. 
 
     In classical seismic interpretation, it is typical to use attribute analysis 
for fault detection. Many attributes have been introduced to assist 
interpreters (Bahorich and Farmer, 1995; Lisle, 1994; Marfurt et al., 1998; 
Van Bemmel and Pepper, 2000; Pepper and Van Bemmel, 2011; Deng and 
Gao, 2014; Roden et al., 2015). Although attributes are regularly used by 
interpreters and improve the image of fault within seismic data, the fault 
need to be interpreted manually. Introduction of image processing 
techniques such as multiresolution and multidirectional filters brought 
attention to make use of these filters in seismic processing. Different filters 
in spatial and frequency domains have been developed to pull out the useful 
features from images. 
 
 The conventional Discrete Wavelet Transform (DWT) (Matos and 
Osorio, 2002) is a main part of many signal and image processing 
techniques. It has a good performance when dealing with one and two-
dimensional signals with point singularity features, but as other methods, the 
wavelet transform (WT) has its own limitations. When it comes to two-
dimensional images, the filter has poor directionality and do not possess the 
directional information. It can only isolate discontinuities across horizontal 
or vertical edges and cannot be used in case of representing high 
dimensional signals with linear or surface singularities and will introduce 
artifacts during processing of curves. 

 
 In order to overcome shortcoming of wavelet transform and process 

images of high dimension more effectively, Curvelet (CV) and Contourlet 
(CN) transforms were introduced. Curvelet Transform and Contourlet 
Transform are capable of capturing the directional information with 
multiresolution representation. Concept of Curvelet transform was first 
proposed by Candès and Donoho (2000) in image processing to overcome 
the problem of edge representation and drawbacks caused by poor 
directionality of conventional WT and to capture smooth discontinuity curve 
more effectively. Their procedure was based on windowed Ridglete. This 
was called first generation CV transform but it had limited applications. 
Candès and Demanet (2002) and Candès and Guo (2002) presented 
computationally simpler CV approach by introduction a new tight frame. 
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Subsequently, Candès and Donoho (2004) developed the CV based 
frequency partitioning. This approach found many useful applications in 
different fields such as image and seismic processing (Starck et al., 2003). 
Yu and Yan (2011) also used the CV to attenuate multiples. Cao and Zhao 
(2016) and Zhang et al. (2017), applied CV transform for 3D simultaneous 
seismic data reconstruction and noise suppression, Lu et al. (2021) used CV 
for seismic resolution enhancement. 

 
 The Contourlet (CN) transform is one of the transforms with the 

property of representing images containing contours and textures. It can 
effectively capture the smooth contours in the images. CN transform was 
first proposed by Do and Veterlli (2001) and is one of the image processing 
transforms for feature extraction applications. Bamberger and Smith (1992), 
established the directional filters used in CN transform. Do and Veterlli 
(2001) combined directional filters with multiresolution filters to form this 
transform. The CN transform is an effective multiresolution image 
representation, which considers multiresolution, multiscale, multi-
directionality, and anisotropy properties (Liu et al., 2021). This transform is 
capable of capturing contours and fine details in images. Zhao et al. (2016) 
and Sang et al. (2019), utilized CN transform for random noise attenuation. 
Golpardaz et al. (2020) used CN transform for SAR image segmentation. 

 
 Fuzzy thresholding is the other approach that we have used in this 

paper. We have used thresholding method to isolate object of interest in the 
image from surrounding pixels. Fuzzy definition can be use to describe 
image classification, particularly for issuing problem with fuzzy nature. De 
Luca and Termini (2001) first discussed Application of fuzzy approach for 
image segmentation. It has attracted great interests especially in medical 
image processing. Orujov et al. (2020) proposed fuzzy based image edge 
detection algorithm for blood vessel detection in retinal image. Versaci and 
Morabito (2021) used fuzzy entropy for image edge detection. 

 
      In this study, considering unique characteristics of CV and CN 
transform, we have used these filters as the basis for our designed automatic 
seismic fault detection along with Fuzzy entropy thresholding. The proposed 
method was examined over two real data sets containing fault features, and 
the performance of the method was evaluated by comparing the result with 
common variance attribute. 
 
 
THEORY and CONCEPT 
 
Curvelet Transform 
 
 The CV construction is based on combination of Ridgelets and 
Bandpass Filtering as: employing a multiscale Ridgelets which is a pyramid 
of windowed Ridgelets, renormalized and then transported to a custom range 
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of scales and locations, then using bandpass filtering for decomposing an 
object into a series of disjoint scales (Candès and Donoho, 1999) (Fig. 1).    
CVs are known as result of applying translation, parabolic dilation, and 
rotation on a basis function. They are indexed by a scaling parameter a, 
location b, and an orientation 𝜽 and obey the following formula (Candès, 
2003): 
 

𝝍𝒂,𝒃,𝜽 𝒙 = 𝒂!
𝟑
𝟒𝝍 𝑫𝒂𝑹𝜽 𝒙 − 𝒃 , (1) 

 
where 𝑫𝒂 is the parabolic scaling matrix, and 𝑹𝜽 is amount of rotation 
defined by 𝜽 radians. One of the important CV properties is that it obeys the 
harmonic analysis principle, which means that it is possible to analyze and 
rebuilt an optional function 𝒇(𝒙𝟏,𝒙𝟐) by superposition of a series of CVs 
(Candès, 2003). The principal advantage of CV is this potential of 
representing a curve as a series of superimposed functions of various lengths 
and widths and the ability to capture detail information in the image. The 
CV transform is a multiscale transform but, unlike the wavelet transform, 
has a very high directional sensitivity (Alparone et al., 2006). 
 
 

 

 
Fig. 1. CV transform flow graph (Mankar et al, 2021). 
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Contourlet transform 
 
 CN transform proposed by Do and Veterlli (2001) is an image 
processing transforms. The CN construction is based on combination 
directional filters and multiresolution filters. The directional filters were 
introduced by Bamberger and Smith (1992). Then, Do and Veterlli (2001) 
combined directional filters with multiresolution filters where maximum 
information is grouped into a small number of samples. CN is a powerful 
method in visual information processing and capturing smooth contours in 
the images. The transform is capable of performing multiresolution, 
multiscale, multidirectionality, and anisotropy properties (Liu et al., 2021). It 
can efficiently capture the intrinsic geometrical structures by achieving the 
best approximation rate for piecewise smooth functions (Dong and Ma, 
2012). 
 
 

 
 

Fig. 2. CN transform flow graph, Laplacian pyramid followed by directional filter bank 
(Hameed, 2021). 

 
     In this transform the original image is first decomposed into frequency 
subsets (bandpass subsets and a lowpass subset). Then, bandpass subsets are 
directed to various orientation using directional filters, to be decomposed 
into bandpass subsets with particular directional features. The procedure can 
be iterated on the lowpass subband, resulting in multiple subbands with 
various scales and directions (Liu et al., 2021) (Fig. 2). Let us suppose that 
an image x is fed onto CN transform and is decomposed into J bandpass 
images b! and a lowpass image a! (Do and Vetterli, 2001). By applying 
directional filters, it decomposes each band-pass image b! into the 
directional coefficients d! with ||b!||

2 = ||d!||
2 where d!: x à (d!, d!, … , d!, 

a!) by following equation (Do and Vetterli, 2001): 
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!

!!!

 
 

(2)  

 
 Selecting higher number of direction and scaled decomposition, will 

lead to a more detailed decomposition. Decomposed images in CN domain 
contain a sequence of CN transform coefficients. The dominant features in 
the original image are expressed by high-magnitude coefficients and images 
mostly containing noise is represented by smaller coefficients (Liu et al., 
2021). 

 
 

Fuzzy Entropy 
 
 Fuzzy Entropy thresholding approach is an entropy based thresholding 

method used to partition an image to sets of pixels with similar 
characteristics (entropy). It is an effective and adaptive tool for isolating 
target and background regions of an image. The principle of thresholding is 
searching for an adequate threshold to separate object from background. The 
multilevel thresholding is an extension of thresholding technique and is used 
in the case of segmenting several objects from background (Rajini, 2019). 
However, it takes great deal of time and mathematical calculation when 
searching multilevel thresholds. Differential Evolution as a global 
optimization technique found to be very helpful for this optimization issue. 
The method quickly and efficiently suggests an adequate solution. It gives 
close optimal solution, acceptable for real time applications (Rajini, 2019). 
The definition of Fuzzy Entropy for image segmentation was proposed by 
De Luca and Termini (2001) based on Shannon's function. The Shannon's 
function is given in the following equation (Al-Sharhan et al., 2001): 

 
 

H X = − P!logP!     ,!
!!!                   (3)   

 
 
where P! is the set of probabilities of a set of random variables X (Al-
Sharhan et al., 2001). The thresholding method based on entropy values is 
done by considering histogram of entropy values of all image pixels. For 
threshold selection from image histogram, a novel technique depending on 
Differential Evolution had been projected. The selection of threshold values 
depends always over the image gray level histogram. Through appropriate 
function optimization, the best threshold is computed (Rajini, 2019). For 
categorizing the normalized histogram into n classes, n1 thresholds (t) is 
needed, where the entropy for each class can be computed as (Sarkar et al., 
2014): 
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 Trapezoidal membership function was used for this method to 

calculate membership of n segmented areas, therefore by adding estimated 
memberships (µ!, i = 1, 2,… , n) we can rewrite above equation as following 
to find maximum fuzzy entropy for each segment (Sarkar et al., 2014): 

 
 

H! = −
P! ∗ µ!(j)
P! ∗ µ!(j)

!!
!!!

ln
P! ∗ µ!(j)
P! ∗ µ!(j)

!!
!!!

!!

!!!!!!!!

 
 

(5)                   ,      
 

 
 

where by maximizing total entropy [eq. (14)], we can have optimum value 
of parameters (Femy and Victor, 2014), 
 

 
   φ t!, t!,…… . , t! = Argmax H! X + H! X +⋯+ H! X . )6(  

 
 

 The optimum value was achieved using Differential Evolution as a 
global optimization technique, which was recommended by Sarkar et al. 
(2014) based on the result of comparing different optimization methods for 
multi-level image thresholding problems. According to the definition of 
fuzzy entropy, the higher the value of fuzzy entropy in a certain region, the 
larger the ambiguity fluctuation near the pixel which belongs to the detail 
region and the lower fuzzy entropy, the smaller fluctuations in the region 
which belongs to the flat region (Li et al., 2020). 

 
 

METHODOLOGY 
 
 In this paper we have designed a machine fault detection algorithm. 
The main objective of our research is to help seismic interpreters and 
reducing the burden of workload. With our method seismic images are 
automatically scanned to locate faults within the data without the need to 
manually interpret seismic fault surfaces. The proposed framework consists 
of three main phases: Feature Extraction, Feature Selection, and 
Classification of the output image. 
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Feature Extraction 
 
 In the proposed fault detection method, we have used variance 
attribute as the input. Our designed framework introduces a novel feature 
space by extracting features in temporal domain using CN and CV 
transforms, as two most powerful multiresolutional multiderectional filters, 
in order to improve detection performance, benefits from both transforms 
unique characteristics and obtain detail and smooth information content of 
the data. CV transform has the potential to represent curves more effectively. 
It has better ability to capture curve like features and singularities along the 
curves and more detailed content of the image. On the other hand, CN 
transform can obtain flat contour information along different directions in a 
more effective way. This transform is designed to efficiently represent 
images made of smooth region and smooth contours by a directional filter 
bank, DFB, design directionality and anisotropy, which are the important 
properties of the contourlet. Due to directional filter bank, contourlet is able 
to develop smooth object boundaries more effectively. 
 

 Fig. 3 is a representation of CV ability to decompose images into 
different scales and directions. Fig. 4(a) shows a sample variance attribute 
section containing fault feature as input to CV and CN transform. Part (b) is 
a sample subscale in CV domain containing fault information and (c) is the 
same subscale of part (b) in time domain after zeroing all other subscales 
and reconstruction. In the same way, part (d) is the same subscale indices in 
CN domain, and (e) is the same subscale of part (d) in time domain in time 
domain. As illustrated, CV domain provide much more coefficient to be able 
to capture curve like features and contain more detail and the same subscale 
in CT domain is capable of obtaining smooth and continuous feature more 
effectively. Hence, output image of our designed feature space would have 
detail and smooth features. 

 
 

Feature Selection 
 
 The proposed method provides a mechanism for automatic feature 
selection procedure in transform domains. We have applied CV and CN 
transforms on variance section to decompose it to various resolutions and 
directions of subscales and to extract transforms coefficients for each 
subscale. By using faults and reflectors characteristics and dip difference 
between these events, CV and CN can discriminate between them. There are 
some subscales containing fault features mostly and some subscales 
containing reflector features mostly. Coefficients of CN and CV transform 
subsets are used as extracted features. 
  

 The automatic feature selection process as the second phase of our 
research in both CV and CN transforms domain is carried out in two steps: 
at first, applying horizontal differentiation on each subscale to highlight the 
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effect of fault (as a more vertical event). Then, calculating 2D correlation 
coefficient between input image and each subscale to find subscales 
containing main features of the input image. Since, higher correlation 
coefficient corresponds to principal subscales with key features, a threshold 
for correlation coefficient is set experimentally, to keep subscales with 
correlation coefficient higher that the threshold and to zero the rest. 

  
 Afterward, reconstruction on the processed subscales is applied to 

transfer them to time domain. Outputs of both transforms are summed up to 
form detailed and smooth fault information. In this way, we can 
automatically select subscales containing fault features by the use of 
differentiation and 2D correlation. 

 
 

 
 
 

 

Fig. 3. Schematic presentation of multiscale and multidirectional decomposition in CV 
domain up to five level (Amirpour Asl and Shad Manaman, 2020). 
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       (a)  

 
          (b) (c) 

 
              (d) (e) 

 
Fig. 4. (a) Variance attribute section containing fault feature as input to CV and CN 
transform, (b) a sample subscale in CV domain containing fault information, (c) the same 
subscale of part  (b) in time domain, (d) a sample subscale in CN domain containing fault 
information, (e) the same subscale of part  (d) in time domain. 
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Classification 
 
 The final phase of our proposed workflow is classification. We have 
employed fuzzy entropy thresholding technique developed by Sarkar et al. 
(2014) as classifier to distinguish fault and non-fault areas of processed 
output of both transforms. To partition the processed image to target (fault) 
and background pixels, considering histogram of the image, initial threshold 
values is assigned to fuzzify the processed output image of both transforms 
using trapezoidal membership function. Then, it searches for an adequate 
threshold to separate faults from the background. Differential Evolution 
technique is used to maximize fuzzy entropy values and find optimized 
threshold values for histogram partitioning. Fig. 5 is the flowchart of our 
designed technique. 
 

 

Fig. 5. Flowchart of automatic fault extraction using our designed method. 



 230 

Experimental result 
  
 This paper examines the result of applying the designed technique on 
two real seismic datasets from two different fields. The first case is shown in 
Fig. 6. Fig. 6(a) is a real seismic section containing fault event. As the first 
step of this research, variance section of part (a), shown in part (b), is fed 
into CV and CN transforms. This paper uses four-level contourlet 
decomposition and the number of each direction sub-band are 1-8-16-16 for 
both transforms decomposition. As a result of dip difference between 
reflectors and faults, and with considering CV and CN ability to discriminate 
between events with various dip and frequency content in various subscales, 
there are some subscales with fault data dominantly and some subscales with 
reflectors dominantly. 
  

 
  (a) (b) 

 
  (c) (d) 

 
Fig. 6. (a) Real seismic section containing fault feature, (b) variance section of part (a), 
(c) output of CV-CN domain feature selection before employing fuzzy entropy 
classification, (d) final output of our designed method (after fuzzy entropy classification). 
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 After applying CV and CN for feature selection, first 2D correlation 
coefficient between input image and each subscale image was calculated. In 
this way subscales which are more similar to input image and containing key 
features of input image were highlighted. Then correlation coefficients were 
plotted versus subscales indices [Fig. 7(a)]. As illustrated there exists two 
general peaks in the plot illustrated by black arrows, corresponding to 
subscales holding two key features of input image, reflectors and faults, 
other subscales embody useless features such as random noise which can be 
attenuated by using this method. According to subscale numbers, the first 
peak corresponds to subscales containing fault features and the second one 
corresponds to subscales containing reflectors. 

 
    To be able to select fault features automatically and discriminate 

between faults and reflectors, we have applied a horizontal differentiation 
prior to correlation coefficient calculation, to highlight the effect of fault (as 
a more vertical phenomena) and decrease the effect of reflectors. Fig. 7(b) is 
the result of applying horizontal differentiation ahead of correlation 
coefficient calculation. Higher correlation coefficient corresponds to 
subscales containing fault information. By setting a threshold, keeping 
subscales with higher correlation coefficient than threshold and zeroing 
other subscales, and applying reconstruction on the processed subscales, 
automatic feature selection is carried out. Afterwards reconstruction is 
applied on processed subscales of both domains to provide an output fault 
image. The output of both transforms are added up to have detail and smooth 
contents of image. Fig. 6(c) is representation of output automatic feature 
selection in CV-CT domain prior to classification. It is notable that this plan 
has separated fault feature from other features in the data efficiently. 

 

 
(a)  (b) 

 
Fig. 7. The plot of 2D correlation coefficient between input and subscales (a) before 
applying directional differentiation, two black arrows pointing at peaks representing 
subscales embodying key features, and (b) after applying directional differentiation to 
reduce the effect of reflector features, black arrows pointing at the same subscales of part 
(a). 



 232 

    To classify output of CV-CN transform to fault and non-fault areas, 
multi-level thresholding method based on the principal of fuzzy entropy 
maximization, proposed by Sarkar et al. (2014) was applied on the output 
image. Therefore, we have used a method based upon fuzzy entropy which 
search for optimal threshold according to the clusters. This method works as 
first considering image histogram (Fig. 8), it fuzzifies the image utilizing 
trapezoidal membership function, second it calculates fuzzy entropy values 
using membership degrees by abovementioned equations, finally, the 
maximize fuzzy entropy and optimal threshold values, was obtained using a 
global optimization method, Differential Evolution. Since, the higher the 
value of fuzzy entropy in a certain region corresponds to the larger the 
ambiguity fluctuation near the pixel which belongs to the detail region, and 
the lower fuzzy entropy, the smaller fluctuations in the region which belongs 
to the flat region (Li et al., 2020), higher threshold values was selected to 
represent fault and isolating fault from non-fault. Fig. 6(d) illustrates the 
result of classification. According to the result, the proposed scheme can 
accurately locate fault in the data and separate fault from non-fault areas. By 
comparing Fig. 6(b) which is the variance section of seismic data as a 
common method for seismic fault detection to Fig. 6(d) as the final result of 
our proposed scheme, it clearly can be concluded that this paper’s method 
works considerably better than variance attribute. 

 

 

Fig. 8. The histogram of output of CV-CN transform filtering, as input to fuzzy entropy 
classification. 

 
    Similarly, Fig. 9 to Fig. 11 explain the same procedure for the second 

dataset. Fig. 9(a) and Fig. 9(b) show the second real seismic section 
containing fault data and its variance section, respectively. Similar to 
previous dataset, a four-level CV and CN decomposition were applied on 
variance section and the number of each direction sub-band are 1-8-16-16, 
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respectively. The plot of 2D correlation coefficient between input and each 
subscale before and after applying directional differentiation is shown in 
Fig.10. In the same way as previous example, two general peaks in the plot 
pointed by black arrows, corresponding to subscales holding reflectors and 
faults. Fig. 10(b) is the result of applying horizontal differentiation prior to 
correlation coefficient calculation to highlight the effect of fault (as a more 
vertical phenomena) and reduce the effect of reflectors. Then, by setting a 
threshold to isolate higher correlation coefficient, zeroing remaining 
subscales and reconstructing, fault features are extracted from the dataset 
adaptively. Reconstructed images from both domain containing both detail 
and smooth information are added up. Fig. 9(c) is the added output of 
automatic feature selection in CV-CN domain prior to classification. 

 

 
         (a) (b) 

 
        (c) (d) 

 
Fig. 9. (a) Real seismic section containing fault feature, (b) variance section of part (a), 
(c) output of CV-CN domain feature selection before employing fuzzy entropy 
classification, (d) final output of our designed method (after fuzzy entropy classification) 
which has located fault accurately. 
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(a) (b) 

 
Fig. 10. The plot of 2D correlation coefficient between input and subscales (a) before 
applying directional differentiation, two black arrows pointing at peaks representing 
subscales embodying key features,  and (b) after applying directional differentiation to 
reduce the effect of reflector features, black arrows pointing at the same subscales of part 
(a). 

 
    For classification, the same procedure as mentioned above was applied 

on output of CV-CN transform. Therefore, owing to the image histogram 
(Fig. 11), it fuzzifies the image using trapezoidal membership function, then 
fuzzy entropy values was computed using the estimated membership degrees 
by abovementioned equations. At last, the maximize fuzzy entropy and 
optimal  threshold  values,  was obtained using a global optimization method 
(Differential Evolution). 

 

 

Fig. 11. The histogram of output of CV-CN transform filtering, as input to fuzzy entropy 
classification. 
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Correspondingly, higher threshold values were selected as fault and the rest 
as non-fault. Fig. 9(d) illustrates the result of classification. According to the 
result, and comparing it to variance section of part (b) as the common 
method for fault detection, our proposed scheme performs successfully and 
considerably better than variance attribute in locating fault in seismic data. 

 
 

 
DISCUSSION 

  
 One of the important parameters in multidirectional multiresolutional 

domains is the number of decomposition levels and directional subscales in 
each level. It is noteworthy that most of data energy is concentrated in the 
first level of these domains. This energy can be distributed to other levels 
and subscales by increasing the number of levels, vice versa, by selecting 
high number of levels, there will remain less feature in each subscale and is 
not suitable for our analysis. Therefore, optimal number of levels and 
subscales is one of issues we need to take care of. As mentioned above, 4 
was selected as optimum number of level for this study for both subscales. 
Also, each level was decomposed into 1-8-16-16 subscales in both domains. 

 
  CN focuses on the concept of directional filter banks which have 

higher capability to capture linear singularities in the specified directions. 
This transform has the potential to develop smooth object boundaries and to 
efficiently represent images made of smooth region. CV transform can 
represent curves successfully. It has superior ability to capture curve like 
features and provide more detailed content of the image. Using both 
transform provides a powerful feature space to extract target features. These 
features will be used in image classification. 

  
 To be able to select fault features automatically and discriminate 

between faults and reflectors, it was decided to apply a horizontal 
differentiation prior to correlation coefficient calculation, in order to 
highlight the effect of fault and reduce the effect of reflectors. By setting a 
threshold, holding subscales with higher correlation coefficient than 
threshold, and zeroing other subscales, and finally applying reconstruction, 
the automatic feature selection is carried out. One of parameter influencing 
the performance of this filter in this step is the value of threshold that we 
choose. By selecting higher values for threshold, less subscales will be 
selected and leads to not selecting whole length of fault or select fault with 
less amplitude. This will cause error in classification task as a histogram 
based method. Also, by choosing less values of thresholds, more subscale 
will be selected and more features will be in the output image, causing error 
in classification task and non-fault area may classify as fault. After detecting 
the subscales of interest, other subscales were zeroes in all levels and the 
remaining subscales were reconstructed.  



 236 

    In the classification step, as the last stage of this technique, the number 
of threshold we choose is an impacting factor within the execution of the 
planned approach. By choosing more numbers of thresholds, it will divide 
data to more than two areas with less probability of being fault. Therefore, 
choosing the number of thresholds for multi-thresholding approach is an 
influencing parameter in the result. 

 
 

CONCLUSION 
 
 We have designed an adaptive seismic fault detection framework by 

making the use of CV-CN feature space benefiting from both transform 
domain, and fuzzy entropy thresholding algorithm. By applying this filter to 
a variance section, first subscales embodying fault feature had been 
adaptively detected in both domains, and reconstructed and categorized as 
fault and non-fault using fuzzy entropy thresholding. This filter was applied 
to two real seismic datasets. Results indicate that this method is very 
efficient in locating faults accurately. The principal effective parameters for 
this filter is the number of level and subscales in each level, the threshold 
value for selecting higher correlation coefficient, and selecting number of 
threshold for classification. 
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