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ABSTRACT 
 
Belaeva, A. and Murtazin, D., 2022. Method of complex interpretation of spectral 
decomposition for seismic facies analysis and parametrization of lithological traps. 
Journal of Seismic Exploration, 31: 239-251. 
 
 The study aims at creating a method for complex interpretation of spectral 
decomposition for seismic facies analysis, parametrization of potential lithological traps, 
prediction of effective reservoir thicknesses in the inter-well space and risk reduction in 
the assessment of reserves and resources. The method of spectral decomposition using 
the Wavelet transform was applied during the research. This method of seismic route 
decomposition was used as part of the proposed methodology. Many clustering methods 
from the Sklern Python library were used. The study placed a premium on the KMeans 
methods. Correlation analysis and qualitative interpretation of the obtained seismic 
images were used to link geological and seismic information. The developed method of 
sorting the centres of spectral curves clusters allowed a joint analysis of wells data and 
clustering results. The developed approach was applied to comprehensively study the 
paleochannel systems of the West Siberian, Timan-Pechora and Volga-Ural oil and gas 
provinces. The advantages of the proposed technology over attribute analysis, spectral 
characteristics analysis and RGB blending were proved by comparing the deposits of the 
above-mentioned provinces. Various geological objects in the wavefield were identified 
using qualitative interpretation and then linked with wells data. This technology proved 
to be the best when using quantitative interpretation. High correlation coefficients 
between the effective thicknesses in wells and the results of spectral curves clustering 
were obtained. 
 
KEY WORDS: 3D seismic measurements, dynamic interpretation, RGB Blending, 
    spectral decomposition, clustering of amplitude-frequency spectra,  
    terrigenous deposits. 
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INTRODUCTION 
 

The current state of the hydrocarbon deposits resource base poses new 
challenges to the oil industry. The deposits with thinner reservoirs and high 
lateral and vertical heterogeneity require a higher technological level of 
each stage of exploration and production of hydrocarbons (HC). Seismic 
measurements are an integral part of the geological survey. However, there 
are new challenges when forecasting properties in the interwell space. The 
existing dynamic analysis methods have some engineering constraints and 
do not fully solve the set geological tasks. Advanced methods of attribute 
seismic analysis, spectral decomposition, dynamic analysis algorithms open 
up new opportunities for qualitative and quantitative interpretation of 
seismic data, thus, allowing the discovery and development of more 
complex deposits. A new method of complex analysis of the spectral 
decomposition results has been developed when seeking a new approach for 
predicting effective thicknesses based on seismic data. The new method is 
based on the clustering of the target interval by the amplitude-frequency 
spectrum form followed by cluster sorting. 

  
 

Literature review 
 

According to numerous studies, various spectral decomposition 
techniques have been successfully applied at most deposits worldwide (Al-
Maghlouth et al., 2017; Hamerli et al., 2019; Xiang et al., 2021; Yuan et al., 
2019; Zhang et al., 2017). Many studies and publications devoted to this 
topic confirm the increasing popularity of spectral decomposition. Castagna 
and Sun (2006), Chakraborty and Okaya (1995), Chopra and Marfurt 
(2015), Dewett et al. (2021), Partyka et al. (1999), and many other scientists 
have recently changed their research direction from attribute analysis to the 
study of algorithms and spectral decomposition application. Spectral 
decomposition allows the interpreter to identify the well-known from the 
theory effects of the seismic signal peak frequency dependence on the time 
power of a thin layer. Thus, the interpreter can control the behaviour of thin 
reservoir layers with a power of less than 1/4 of the seismic wavelength. In 
Western literature, this phenomenon is called the tuning effect by Cooke et 
al. (2014), Meza et al. (2018), Partyka et al. (1999), and the reservoir time 
thickness where this effect is observed is called tuning thickness. 

  
The spectral decomposition results depend on the method chosen to 

decompose the initial data into individual frequencies. Many decomposition 
methods have appeared since the beginning of spectral decomposition 
development. One of the first decomposition methods was the Short Term 
Fourier Transform (STFT). This method involves the calculation of the 
time-frequency spectrum using the Fourier transform in the selected time 
window. According to this method, the time-frequency solution is 
determined by the length of the selected window. As a result, the resolution 
will strongly depend on the length of the window selected by the interpreter 
(Butorin, 2016). Fig. 1 shows the problem of window selection when using 
the Fourier transform. The figure analysis allows concluding that it is 
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impossible to estimate the low frequency in a short window correctly - 
moreover, the wider the window, the lower the detail level. 

 
 

 
 
Fig. 1. Various frequency harmonics in a short evaluation window according to the 
Fourier transform. 
 
 

The wavelet transform has recently been used for seismic 
measurements and various engineering tasks. Continuous Wavelet 
Transform (CWT) allows using various wavelets in signal analysis. Instead 
of calculating the time-frequency spectrum, time-scaled maps are 
constructed. They are called scale charts (Rioul and Vetterli, 1991). A 
constant analysis window is not the main difference between the CWT and 
the Fourier transform but an increased time-frequency resolution. 

 
Later, a new approach to transform time-scaled maps into time-

frequency maps appeared. The time-frequency continuous wavelet 
transform allows obtaining a large frequency resolution at low-frequency 
time-section intervals. When analyzing high frequencies allows obtaining a 
high time resolution (Castagna and Sun, 2006; Chopra and Marfurt, 2015) . 
The optimal frequency-time resolution parameters of the TFCWT method 
make it indispensable in the analysis of seismic data. 

 
Another method, or a group of methods, is related to wavelet analysis 

but differs in the formulation of the problem. Some authors call this 
direction spectral inversion (Butorin and Krasnov, 2016; McArdle and 
Paton, 2014). According to many studies, spectral inversion methods allow 
reconstructing the signal spectrum in minute detail, making it possible to 
study the features of energy distribution over frequencies more accurately. 
This method is characterized by a very high resolution of the results 
obtained. However, there are few software complexes in which this 
algorithm is implemented. Thus, this method is not widely used in seismic 
data interpreting. 

 
The CWT algorithm is the most used for many reasons. It is the basis 

for most existing spectral decomposition methods used for predicting 
effective thicknesses in the inter-well space. Various methods of 
interpreting spectral decomposition results can be used at a quantitative and 
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qualitative level. Greg Pertika proposed one of the methods of quantitative 
prediction (Partyka et al., 1999). It is based on the analysis of low-frequency 
components. Low-frequency components have a low temporal resolution, 
and the tuning effect is observed only at high capacities (>40m). However, 
their use is possible even for the quantitative interpretation of thin layers. 
The following assumption has been taken as a basis for this method. 
According to a linear or close to a linear law, the energy of a single low-
frequency component increases until the tuning effect is achieved. In other 
words, if the power of the target interval varies from 5 to 50 meters, then at 
the interval speed of 4000 m /s, the tuning effect for a maximum thickness 
of 50 m will be achieved at a frequency of 20 Hz. Therefore, as the 
thickness of the target interval decreases, the energy at a frequency of 20 Hz 
will gradually decrease. The papers of foreign by Partyka et al. (1999) and 
Russian scientists Butorin (2016), and Murtazin (2016) contain modelling 
results and practical examples. 

  
 

 
 
Fig. 2. Comparison of the results of seismic facies analysis (a) is partial or blurred. Only 
a part of the channel and RGB blending along the P2-VI formation are identified. 
 
 

Qualitative interpretation of the spectral decomposition results has a 
broader range of techniques compared to a quantitative interpretation. A 
map qualitative analysis can be made in the formation segment at various 
frequencies (Murtazin, 2016; Murtazin and Sirazhiev, 2017). It allows for 
various reasons to see parts of the formation, which full-frequency data 
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don’t show since they are hidden or dusky (Olneva et al., 2018; Olneva and 
Zhukovskaya, 2016, 2017). However, the results obtained represent only a 
narrow spectral band of the amplitude-frequency, and some reservoir parts 
are not displayed at these frequencies. Thus, a comprehensive analysis of 
several frequencies is necessary. RGB-blending is a kind of such analysis 
(Murtazin, 2016). This algorithm allows simultaneous visualization and 
analysis of three frequencies. The amplitudes at each point are analyzed 
based on the predominance of one or another component. The pixel colour 
value in the red-green-blue spectrum is calculated (Murtazin, 2016) (see 
Fig. 2). 
 
 
Goal setting 
 

The tasks within the framework of the study are as follows: 
 
1. Analysis of currently used spectral decomposition algorithms 

for seismic measurements.  
2. Development of a method for complex analysis of the 

wavefield spectral decomposition results. 
3. Justification of the choice of clustering algorithm. 
4. Development of a method for sorting spectral curves to link 

with geological information 
5. Testing of the developed approach on the example of 

paleochannel systems of the West Siberian, Timan-Pechora and Volga-Ural 
oil and gas provinces for predicting effective thicknesses in the inter-well 
space.  

 
The most common analysis method is to study the relation of the 

amplitude frequencies characteristics with the formation parameters 
(Hamerli et al., 2019; Partyka et al., 1999; Xiang et al., 2021). The analysis 
of individual frequency components shows that frequencies that worsen the 
amplitude characteristic correlation and effective thicknesses are eliminated 
from the general recording spectrum. The display of individual geological 
bodies also improves. However, even with the improved dependence of the 
individual frequency and the effective thickness, the features manifesting at 
other frequencies are lost. 

 
RGB blending eliminates the gap described earlier. At the same time, 

three frequencies reflecting most of the formation features in some cases are 
described (Fan et al., 2017; Zeng, 2017). However, the amplitude-frequency 
response is more than three frequencies. Moreover, the RGB results are not 
interpretable. The analysis of the above shortcomings helps understand 
which parameters the new method should possess. 

  
Thus, the method should possess the following properties: 
 
• it should take into account all frequencies that are in the 

informative range of the amplitude-frequency characteristic of the area of 
interest;  



	

	
	

244 

• eliminate the RGB blending disadvantages to make the results 
of the new method quantitatively interpreted;  

• have a physical meaning from the point of view of the forecast 
validity of effective reservoir thicknesses.  
 
 
METHODS AND MATERIALS 
 

The spectral curves clustering consists of the following main steps: 
  
• decomposition of the original seismic cube into frequency 

components. The wavelet transform (CWT) method is chosen from all the 
methods of wavefield decomposition into frequency components. In 
comparison to the Fourier transform, this method doesn't have such gaps as 
a constant analysis window, and it has an increased frequency-time 
resolution; 

  
• selection of the initial pulse. In this case, it is the Morlet pulse. 

According to research, this pulse provides improved resolution and display 
of small and hard-to-distinguish objects in the seismic field compared to 
other synthetic and extracted pulses; 

 
• calculation of energy for frequencies with a given step. The 

step of 2-5 Hz between the frequencies is optimal. In this case, a detailed 
display of all the spectrum features is achieved, and the number of values on 
the resulting amplitude spectrum will not be too large. A large number of 
values complicates the interpretation of clustering results. Too small 
frequency step increases the algorithm time and reduces the practical 
significance of the method; 

  
• formation of a cube of spectral curves. The amplitude 

characteristics of various frequencies calculated in the previous step form a 
cube. Frequencies are plotted along the Z-axis of the cube. Each trace of the 
cube represents a spectral curve at a point or interval of the reflecting 
horizon; 

  
• interpretation of the materials obtained in the previous steps. 

The method of clustering traces by their shape using neural network 
technology is chosen. 

 
Each trace of the cube represents a spectral curve at a point or interval 

of the reflecting horizon (Fig. 3). 
 
The method is called spectral curves clustering (Patent No. 2718135, 

Russian Federation). 
  
The resulting cube of spectral curves is difficult to interpret in its pure 

form due to the high data dimensionality and the received data volume. 
Thus, the clustering algorithm of the spectral curves cube is an essential part 
of the method. 
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Fig. 3. Schematic representation of the spectral curve. 
 

 
RESULTS 
 

The solution to the problem of finding the most productive algorithm 
for large datasets like seismic data needs testing all algorithms from the 
Sklearn machine learning library. Table 1 shows the number of points 
clustered using the algorithm for a specific time interval. According to the 
analysis of the results, the first four clustering algorithms are not suitable for 
seismic data processing due to their low performance. Fast cluster and 
DBSCAN algorithms are suitable for seismic data clustering. However, in 
this case, the cube clustering time is about 12 hours.  

 
 

Table 1. Comparison of different clustering types performance. 
 

 
 Interactive 

<10sec 
<5min <60 min <12 hours 

AffinityPropagation 2,000 10,000 25,000 100,000 

Spectral Claster 2,000 5,000 25,000 75,000 

Agglomerative 2,000 10,000 25,000 100,000 

DeBaCl 5,000 25,000 75,000 250,000 

Fastcluster 50,000 100,000 500,000 1,000,000 

DBSCAN 75,000 250,000 1,000,000 2,500,000 

KMeans 1,000,000 3E+7 4E+8 5E+9 
MiniBatchKmeans 5,000,000 1.5E+8 2.1E+9 2.5E+10 
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Thus, only the last two algorithms are suitable for interactive seismic 

data processing. Although the DBSCAN algorithm clusters data better, the 
Kmeans and MiniBatchKMeans algorithms allow quick selection of 
parameters, the correct research window and the number of clusters, finally 
giving the best result. 

 
The Mini Batch KMeans clustering algorithm is a variant of the 

KMeans algorithm built into the Sklearn library. This algorithm uses dataset 
mini-samples to reduce the calculation time and optimizes the same target 
function. Mini-samples are subsets of input data randomly selected at each 
learning iteration. Mini-samples significantly reduce the number of 
calculations required for a local solution convergence. Unlike other 
algorithms that reduce the k-means convergence time, Mini Batch KMeans 
clustering algorithms give results that are usually only slightly worse than 
those of the standard algorithm. 

 
The algorithm repeats between two main steps, similar to k-means 

clustering. In the first stage, data are taken randomly from a dataset to form 
a mini-sample. They are then assigned to the nearest centroid. In the second 
stage, the centroids are updated at random, unlike k-means clustering. 
Unlike k-means, this is done on a selective basis. For each sample in the 
mini-package, the assigned centroid is updated using the average stream 
value of the sample and all previous samples assigned to this centroid. As a 
result, the rate of the centroid change decreases over time. These steps are 
performed until convergence or a given iteration number is reached. 

 
Fig. 4 shows the results of the two algorithms and the difference 

between the clustering results. As can be seen from the last cross plot, the 
difference in clustering points is minimal. Thus, performance is the main 
criterion for the final choice of the clustering algorithm. The derived time 
metrics show that clustering time decreases five times when using the Mini 
Batch Kmean algorithm compared to Kmeans. Thus, the Mini Batch Kmean 
algorithm was chosen for the software module. 

  
 

 
 
Fig. 4. Results of comparative testing of KMeans and Mini Batch KMeans algorithms. 
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All the algorithms discussed above have a disadvantage when used to 

analyze seismic data. These algorithms are aimed at data clustering and 
assigning a random number to each cluster. The number of the cluster centre 
is not essential for most tasks and areas of application of these algorithms. It 
is much more essential to mesh the point clouds into clusters. 

  
Therefore, clustering is not the only task to be solved using the 

algorithms for seismic measurements. Since a change in entry format or the 
amplitude curve shape is regular, the correct value assignment to the cluster 
centres becomes as essential as the clustering algorithm. The matter is that 
the 'best' cluster centres are characterized by an energy shift to a more low-
frequency region and have higher energy values. Therefore, sorting should 
be carried out so that clusters characterizing increased thicknesses are at the 
beginning. And further, in the order of the energy pick shift in the cluster 
towards high frequencies. For sorting at the software level, a coefficient that 
would limit the area of energy comparison in the frequency domain is 
necessary. Call this coefficient the sorting coefficient. The coefficient cuts 
off the cluster centres by frequency so that only low- and mid-frequencies 
are taken into account when sorting from higher to lower energy. According 
to numerous tests, the recommended values for this coefficient are from 3 to 
4. Therefore, the larger the coefficient is, the more significant the role of 
low frequencies. The smaller the coefficient, the more the influence of 
medium frequencies. 

  
The Vasyugan suit Iu1-1 formation of the South-Shinginsk deposit 

has become one of the cases for testing the efficiency of the methodology 
proposed by the author. The analysis of dynamic and kinematic parameters 
of seismic recording revealed the impossibility of predicting effective 
thicknesses based on seismic measurements using standard techniques. The 
analysis of seismic attributes convergence, seismic facies analysis and the 
inversion results showed low correlation coefficients from 0 to 0.5. The 
study of elastic parameters using GIS data also confirms the complexity of 
geological section forecasts applying standard techniques. The analysis of 
acoustic impedance in some wells of the deposit showed an almost complete 
overlap of collector or non-collector lithotypes and the impossibility of their 
separation in the acoustic field. The clustering of spectral curves was 
applied to predict effective thicknesses in the interwell space.  

 
Fig. 5 shows the results of correlation analysis of the spectral curves 

cluster map and the values of effective thicknesses in wells. As shown on 
the cross plot, the correlation coefficient was 0.79. Ten wells drilled after 
the study confirmed the forecast power of the described technique. 

  
Economic indicators of newly drilled wells have been calculated to 

assess the economic effect of the proposed technique. The increase in the 
accumulated economic effect (NPV) when using spectral curve clustering 
amounted to 99,565,217 rubles, which is proven by the results of drilling ten 
wells. Cumulative oil production is 300.7 thousand tons. 
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Fig. 5. Results of regression analysis of the South-Shinginsk deposit wells. 
 
 
DISCUSSION 

 
The application of spectral curves clustering proved to be effective for 

predicting the effective thicknesses of some deposits of the Tomsk region, 
Khanty-Mansiisk autonomous district and Perm Territory. This technique 
can certainly be applied in other regions. It allows forecasting effective 
thicknesses with sufficient physical conditions such as the collector and 
individual layers thicknesses, the collector acoustic contrast and the seismic 
data frequency composition. 

  
The obtained results can be compared to the study of Greg Partika, 

which played the most significant role in introducing spectral analysis into 
seismic interpretation (Partyka et al., 1999). In his paper, he presents a 
‘tuning cube’. It is similar to a spectral curves cube. However, the Fourier 
transform is used to create a tuning cube. Another difference is the use of 
cubes of spectral characteristics. Greg Partika suggests using this cube for 
more convenient analysis of individual frequency components. Though, he 
doesn’t consider the possibility of interpreting the cube traces. Other 
researchers who used tuning cube analyzed only individual frequency 
components, too (Bataller et al., 2019; Miao et al., 2007; Xiang et al., 2021). 
Thus, the proposed method has a scientific novelty as it involves techniques 
that were not used in other studies. One of these techniques is the clustering 
of the spectral curves cube. It allows avoiding high dimensions and joint 
analysis using wells data. Another one is sorting applied to link with 
geology. In modern complex studies of hydrocarbon deposits, spectral 
decomposition is mainly used together with other methods of dynamic 
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analysis (Cooke et al., 2014; Dewett et al., 2021; Khonde and Rastogi, 2013; 
Miao et al., 2007). Neural networks or multi regression help combine the 
results of the spectral curves clustering with other methods. 

  
The results of the spectral curve clustering prove its more significant 

effect in comparison with other methods of dynamic analysis of seismic 
data, which is achieved for terrigenous reservoirs composed of sediments of 
meandering systems. The following facts prove this: 

 
1. The shape and the spread of the meanders are directly related to 

the dispersal of sand-shingle material, which has an acoustic stiffness 
different from the host rocks. Thin sandstone alternations in accretion 
complexes of channels achieve a tuning effect at a specific frequency. The 
information about this frequency can be obtained just by decomposing the 
wavefield into separate frequencies (Feng et al., 2020; Zhang et al., 2017). 

 
2. As mentioned above, the channel parts have different effective 

thicknesses. Therefore, the channel parts will achieve the tuning effect at 
different frequencies. Thus, the complex riverbed structure cannot be 
described thoroughly using full-frequency attributes or transformations 
based on full-frequency data such as inversion. Besides, several frequency 
components where the channel parts achieve tuning effect are necessary for 
a complete description of the channel system. The accounting of several 
components is possible using RGB blending and the spectral curves 
clustering proposed in this paper. 

 
3. Since channel objects can lie on top of each other at a distance 

of about twenty meters, their separation in a full-frequency field will be 
difficult. Such objects will interfere in the wave field, making the singled-
value localization difficult (Gao et al., 2020; Ni et al., 2019). This can lead 
to an incorrect conceptual model of the reservoir and high risks when 
drilling an object, especially in the case of horizontal wellbore placement. 

 
Thus, the proposed method of spectral curves clustering can 

completely solve all of the above problems. This technique has vast 
potential for replication since the importance of deposits with a high degree 
of lateral variability (lithologically limited deposits) is increasing. 

 
 

CONCLUSION 
 

The method presented in this paper proved to be effective at the 
deposits mentioned above. The Gazpromneft company applied it to solve 
problems at the stage of geological exploration and field development. The 
study's theoretical significance lies in the scientific substantiation of the 
spectral curves clustering and a new way of sorting clusters to integrate 
seismic and wells data. 

  
The developed method improves the forecast of effective reservoir 

thicknesses in the inter-well space, which is of great practical importance 
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for seismological monitoring of field development. Implementing the 
method as a software module allows its interactive use in the current 
production process. 

 
The results of the spectral decomposition analysis obtained using the 

spectral curve clustering were used to characterize in more detail the 
geological section in the interval of productive deposits at some of the fields 
of the Perm Territory and the Komi Republic and to refine the conceptual 
geological model at several fields in the Western Siberia region. 
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