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ABSTRACT   
 
Wang, Z.F., Cao, H., Yang, Z.F., Xu, H.Q., Yang, M.Q. and Zhao, Y., 2022. Transfer 
learning seismic impedance inversion method based on temporal convolutional networks. 
Journal of Seismic Exploration, 31: 391- 405. 

 
         The nonlinear mapping between seismic data and impedance can be established by 
Temporal Convolutional Networks (TCN), which has been proved by forward modeling 
data. However, whether the deep neural network can be used to train an inversion mapping 
model with good generalization ability under a small number of labeled samples remains 
to be explored. In view of this, the noise analysis of the TCN seismic impedance inversion 
method was firstly carried out, and the model test showed that the TCN seismic impedance 
inversion method had certain noise resistance. Secondly, an inversion mapping model was 
obtained based on the training of Marmousi-2 data set, and then five traces of Overthrust 
model samples were added for fine-tuning to obtain a new inversion mapping model. The 
inversion of Overthrust was performed based on the TCN transfer learning inversion 
mapping model. And the model test results showed that: with a small number of labels, the 
inversion results of the Overthrust dataset based on TCN transfer learning are higher than 
the Pearson sum determination results obtained by TCN inversion, and the error profile is 
relatively small compared to the true impedance. Furthermore, TCN transfer learning 
method ,which was effectively proved in adjacent blocks of the actual data, compared with 
the result of the TCN inversion. Therefore, the introduction of transfer learning in TCN 
seismic impedance inversion can improve the generalization ability of the inversion 
mapping model trained with a few labeled samples in practical application. 
 
KEY WORDS: temporal convolutional network, transfer learning, fine-tuning, 
         seismic impedance inversion. 
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INTRODUCTION 
 
Deep learning technology has been widely applied in image (Cao et al., 

2016), voice (Hou et al., 2017) and computer vision (Lu and Zhang, 2016), 
etc. The successful application of the above scenarios provides ideas for 
intelligent geophysical inversion (Song et al., 2021; Zhang et al., 2021; Shao 
et al., 2022). 

 
At present, Convolutional Neural Networks (CNN) (Lecun and Bottou, 

1998) and Recurrent Neural Network (RNN) (Zaremba et al., 2014), which 
are the two main categories of deep learning algorithms, can be used for 
seismic inversion (He and Wang, 2021; Li et al., 2020). Das et al. (2019) 
obtained inversion mapping model by one-dimensional CNN, and Guo et al. 
(2019) used RNN [Bidirectional Short and Long Time Memory Network 
(BILSTM)] for seismic impedance inversion. In addition, Alfarraj and 
Alregib (2019) proposed to apply the C-RNN model, which is integrated 
CNN with RNN. And the results showed that the combination of CNN and 
RNN can obtain better inversion results. In recent years, various inversion 
methods based on convolutional networks have emerged in an endless 
succession. Wu et al. (2020) used Fully Convolution Neural network (FCN) 

(Long et al., 2015) and transfer learning (Yosinski et al., 2014; Tzeng et al., 
2014, 2017), to carry out the seismic impedance inversion in different 
geological features of the actual seismic data. Generative Adversarial 
Networks (GAN) are used to achieve semi-supervised seismic impedance 
inversion (Wu et al., 2021). 

 
With the further study of deep learning in seismic inversion, Bai et al. 

(2018) proposed TCN by combining the advantages of CNN and RNN, 
which is superior to RNN in various time series modeling tasks (Hochreiter 
and Schmidhuber, 1997; Pascanu et al., 2013). According to the test of 
Marmousi-2 model (Martin et al., 2006), TCN has certain advantages in 
seismic impedance inversion (Mustafa et al., 2019), which proves that TCN 
can obtain better inversion results by seismic impedance inversion of data 
with the same data characteristics. However, it has not been confirmed 
whether this method has certain anti-noise performance (Richardson and 
Feller, 2019; Huang et al., 2020) or whether the inversion mapping model 
trained under a small number of labeled samples is effective. In view of this, 
the author introduces the strategy of transfer learning (Zhuang et al., 2015) 
on the basis of predecessors and proposes a seismic impedance inversion 
method based on TCN transfer learning. The verification of this method 
mainly includes four stages. First, noise analysis is carried out on TCN 
seismic impedance inversion. It is proved that TCN can effectively establish 
the mapping relationship between seismic data and impedance and has a 
certain anti-noise property. Secondly, the pre-trained inversion mapping 
model is obtained by training the Marmousi-2 model. The pre-trained 
inversion mapping model can effectively predict the impedance of the data 
with the same characteristics. And the inversion effect is not good when it is 
directly used as the inversion mapping model with different data 
characteristics. Thirdly, five traces of Overthrust (Liu et al., 2004) samples 
were added to the pre-training inversion mapping model for retraining and 
fine-tuning to obtain the TCN transfer learning inversion mapping model. 
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And then seismic impedance inversion was performed for the Overthrust 
model based on the above seismic mapping model. Finally, the inversion 
results of TCN transfer learning were compared with the inversion results, 
which of the 5 traces of the Overthrust data directly by the pre-training 
model in the second step above, obtained by TCN training. The results 
showed that: TCN transfer learning seismic impedance inversion method is 
used to invert the seismic impedance of small dataset training with different 
data characteristics. And the predicted impedance is closer to the labeled 
impedance. We also know that its related evaluation index is improved to a 
certain extent, and it has a certain anti-noise property. TCN transfer learning 
inversion has achieved certain effect in model testing. The TCN transfer 
learning seismic impedance inversion method is further applied to the actual 
data. From the results, this method mentioned above has certain application 
value in seismic impedance inversion in the small training dataset with 
different data characteristics. 

 
 

TCN TRANSFER LEARNING SEISMIC IMPEDANCE INVERSION 
 
TCN seismic impedance inversion can be used to directly learn the 

complex mapping between seismic data and impedance, which can be used 
to convert the inversion task into time series modeling. But samples of TCN 
seismic impedance inversion is less, limitations in the process of practical 
seismic exploration is larger, on the basis of the author in TCN seismic 
impedance inversion on the basis of introducing the migration study was 
carried out on the adjacent region of seismic data inversion, below the 
structure of the TCN, inversion principle, migration strategy and the 
inversion process of TCN transfer learning. 

 
 

Structure of TCN 
 
TCN is a time series prediction network framework proposed by Bai et 

al. (2018), which has been widely used in sequence script recognition 
(Lecun and Bottou, 1998), increment problem (Hochreiter and Schmidhuber, 
1997), Nottingham Music (Pascanu et al., 2013) and other tasks. TCN 
combines extended convolution and causal convolution, which can extract 
feature information across time. It is a deep neural network for time series 
modeling. Such as Fig. 1(a) is the expansion coefficient of 1, 2, 4, the 
expansion of the convolution kernel size is 2 causal convolution structure 
diagram, its network receptive field depends on the depth of the network, 
and the size of the convolution kernels, and the expansion coefficient, in 
order to further deepen the network depth and improve the generalization 
ability of network model to study temporal information, TCN using residual 
module instead of the convolution layer. To sum up, TCN network is formed 
by stacking a series of residual blocks in the application of various time 
series modeling problems [Fig. 1(c)]. The residual blocks have the same 
structure and are encapsulated by extended causal convolution, the 
WeightNorm unit, the ReLU unit and the Dropout unit. The schematic 
diagram is shown in Fig. 1(b). The expansion of the receptive field in TCN 
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depends on the network depth, and the residual structure can well suppress 
the problem of gradient disappearance or explosion caused by the increase 
of network layer, and the introduction of extended causal convolution makes 
TCN more advantageous in time series modeling tasks. In view of this, TCN 
has the following advantages in time sequence modeling: (1) it has the 
capability of parallel computing, that is, the mapping of each moment can be 
calculated simultaneously, and there is a causal relationship between 
network layers, so there will not be "missed connection" information; (2) 
TCN is an adaptive architecture, that is, it can be flexibly adjusted to any 
length, and can obtain sequences of any length and map them to output 
sequences of the same length; (3) Not only inherits the advantages of RNN 
in natural language processing to maintain long-term memory, but also 
through the introduction of causality and expansion convolution, it can 
maintain longer memory than RNN, and requires less memory, but has a 
more stable gradient and a more flexible receptive field. 

 

 
                 (a) 

                            
      (b)                             (c) 

 
Fig. 1. TCN network structure. (a) Dilated causal conv structure. (b) TCN residual 
structure. (c) TCN residual stacked structure. 
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TCN seismic impedance inversion principle 
 
Make S ={ 1 2,s , ,s }ns L  is seismic records, where si is trace number i of 

the seismic record, P = { 1 2,p , ,p }np L  is a corresponding record of 
impedance will first S  a subset of the input to the TCN after pretreatment, 
after prior to transmission, get forecast impedance values of isPθ（ ）, and 
calculate the prediction between impedance and the real impedance values 
of loss function value, and then used to calculate the gradient, In addition, 
gradient is applied to TCN inversion mapping model to update parameter θ  
iteratively through back propagation. The loss function value can be 
minimized by repeating the above process. This process can be called 
parameter optimization process, and the corresponding mathematical 
expression is as follows: 

 
1= -I I ILθθ θ η θ+ ⋅∇ （ ）     ,               (1) 

i i
n=1

1=argmin x
N

L
N θθ ∧ ∑（p，P（ ））

 ,            (2)
 

 
where 1Iθ + , Iθ  and θ  are the set of weight value w and bias term b, 
generation I  refers to the number of current iterations, η  is the learning rate, 
and Lθ θ∇ （ ） is the gradient of loss function calculated according to 
parameters. L  represents the loss value between predicted impedance and 
true impedance, N  represents the number of seismic tracks in a subset of S , 
ip  represents the impedance data model, and isPθ（ ） is the predicted value 

propagated forward through TCN. For end-to-end TCN seismic impedance 
inversion, the target loss function is the Mean Square Error (MSE) loss 
function: 

2
i i

1 ˆ= = (p -p )
n

L MSE ∑    ,                (3) 

 
where n is the number of samples, ip̂  is the predicted value of seismic 
impedance, and pi is the true value of seismic impedance. With the decrease 
of the loss value L , the inversion mapping results tend to be stable and 
converge at last. 
 
 
TCN transfer learning strategy and inversion process 

 
Conventional machine learning method to follow the training and 

prediction of data must be in the same feature space and distribution, and 
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need to have a large number of labeled samples, and migration study is to 
use existing knowledge to solve the problems of the different but related 
areas of a machine learning method, mainly using the similarity between the 
data and the field, Make reasonable use of the knowledge learned before 
(Yosinski et al., 2014; Tzeng et al., 2014, 2017). Transfer learning has 
relaxed the two basic assumptions in machine learning. Based on existing 
knowledge, this method solves the learning problem of only a small amount 
of data with labeled samples in the target field, or even no labeled samples 
(Zhuang et al., 2015). The purpose of introducing transfer learning into TCN 
seismic impedance inversion is also to solve the TCN seismic impedance 
inversion problem of a small number of labeled sample seismic data with 
different data characteristics (Fig. 2). The realization process is to first train 
the seismic data in feature block 1 to obtain a pre-trained TCN inversion 
mapping model. Further, on the basis of the above pre-trained TCN 
inversion mapping model, a small number of labeled samples of feature 
block 2 are added for retraining and fine-tuning to obtain the TCN transfer 
learning inversion mapping model, and then the data of feature block 2 are 
inverted. The specific workflow is as follows: In the first step, a large 
number of labeled samples in block 1 were preprocessed, including noise 
analysis, normalization and random allocation of input sequence, etc. 
Secondly, a TCN seismic impedance inversion network is constructed, as 
shown in Fig. 1(c). The third step is the training of the pre-training inversion 
mapping model. The samples processed in block 1 are input to the TCN 
inversion network, and the training network obtains the pre-training 
inversion mapping model. In the fourth step, transfer learning is carried out, 
pre-training inversion mapping model is loaded, and a small number of 
labeled samples in block 2 are input into TCN inversion network for 
retraining, so as to fine-tune the pre-trained inversion mapping model and 
obtain the INVERSION mapping model of TCN transfer learning. Finally, 
seismic data of block 2 are input into TCN transfer learning inversion 
mapping model to obtain impedance, and the specific implementation 
process is shown in Fig. 3.  

 
 

 
 
 

Fig. 2. Implementation pattern of transfer learning. 
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Fig. 3. Implementation process of TCN transfer learning seismic impedance inversion. 
 
 
FORWARD DATA TESTING 

 
The data to be tested were open data set Marmousi-2 and Overthrust 

model. Firstly, seismic impedance inversion was performed on Marmousi-2 
data using TCN inversion method to prove the effectiveness of TCN seismic 
impedance inversion method. On this basis, the impedance inversion of 
Overthrust model by TCN transfer learning was performed, and the 
inversion results were compared with other inversion results. 

 
 

Anti-noise test of TCN seismic impedance inversion 
 

In order to prove the anti-noise performance of TCN seismic 
impedance method, inversion tests were performed on Marmousi-2 model 
before and after noise addition (Fig. 4). 
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(a) 

 

 
   (b) 

 
 
Fig. 4. Seismic profile of Marmoris-2. (a) Noiseless seismic profile. (b) 20% noisy 
seismic profile. 

 
 
The test constructed the training set, verification set and test set in a 

ratio of about 1:1:4. 450 channels of samples were used as the training set to 
train the TCN inversion mapping model, and 450 channels were used as the 
verification set for internal parameter tuning to preliminarily evaluate the 
generalization ability of the TCN inversion mapping model. In addition, 
1821 channels were used as the test set. Used to evaluate the ultimate 
generalization capability of the inversion mapping model. By testing the 
Marmousi-2 model before and after adding noise, its TCN inversion profiles 
are shown in Figs. 5(a), 5(b), 5(c) and 5(d), where 5(c) and 5(d) are the error 
profiles of inversion results respectively. The experimental analysis before 
and after adding noise shows that the TCN seismic impedance inversion 
method can obtain good results in the data containing noise, which shows 
that the TCN inversion method has a certain anti-noise ability, and lays a 
foundation for its further application. 
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         (a) 

 
         (b) 

 
         (c) 

 
         (d) 

 
Fig. 5. Inversion results of Marmousi-2 model.  (a)  Noiseless model inversion profile. 
(b) 20% noise inversion profile. (c) Noiseless model inversion error. (d) 20% noise 
inversion error. 
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TCN transfer learning seismic impedance inversion experiment 
 
The model test results show that TCN seismic impedance inversion 

method can effectively establish the mapping relationship between seismic 
and impedance, and has a certain anti-noise performance. In order to prove 
the feasibility of TCN transfer learning seismic impedance method, the 
Marmousi-2 model was further trained to obtain the pre-trained TCN 
inversion mapping model. On the basis of the pre-trained TCN inversion 
mapping model, five Overthrust model samples were added to fine-tune the 
TCN transfer learning inversion mapping model. Inversion of the Overthrust 
model (Fig. 6) using the seismic impedance inversion mapping model 
showed that the inversion results of different methods were different (Fig. 7 
and Fig. 8), and the inversion results of TCN migration learning were better 
than those of other non-migration learning methods (Fig. 8). In order to 
further quantitatively analyze the inversion results, Pearson Correlation 
Coefficient (PCC) and Coefficient of determination (r2) are introduced to 
evaluate the inversion results. The mathematical formula is as follows: 

ˆp p
n=1ˆp p

1 1 ˆ(p(n)- )(p(n)- )
N

PCC
N

µ µ
σ σ

= ∑      ,          (5) 

2

2 n=1

2
p

n=1

ˆ[p(n)-p(n)]
r =1-

[p(n)- ]

N

N

µ

∑

∑
    .              (6) 

       Assume p indicates the seismic impedance label, 𝑝  indicates the 
predicted seismic impedance, and N  indicates the number of samples. σ and 
µ indicate the standard deviation and mean of the seismic impedance, 
respectively. The larger the absolute value of Pearson coefficient is, the 
predicted impedance is closer to the real impedance, and the determination 
coefficient is a measure of the goodness of fit between seismic tracks. The 
larger the determination coefficient is, the more similar the overall trend is. 
In this test, Pearson's coefficient, determination coefficient and loss values 
of some methods under three inversion methods are given respectively, as 
shown in Table 1. The results show that The PCC and r2 values of TCN 
transfer learning inversion are the highest, and the convergence loss of TCN 
transfer learning inversion on Overthrust model is smaller than that of TCN 
direct inversion, indicating that TCN transfer learning inversion mapping 
model has strong generalization ability. 
 
Table 1. Related evaluation indicators. 
 

The evaluation index 
    Inversion method PCC/% r2/% Convergence 

loss 
Pre-trained inversion mapping model for 

direct prediction 8.31 0.69  
TCN direct inversion 97.19 94.47 0.019556 

TCN transfer learning inversion 97.96 95.97 0.001082 
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Fig. 6. Seismic profile of the Overthrust model. 
 

(a) 
                

 
(b) 

 
Fig. 7. Single-channel impedance. (a) Channel 70 impedance. (b) Channel 350 
impedance. 
 
 
THE PRACTICAL APPLICATION 

 
In order to verify the applicability of the study of seismic impedance 

inversion method based on TCN migration, the author uses the actual data of 
adjacent region, the main lithology is sand mudstone, in which area A with 
more well data, the use of the data set to train the inversion mapping model, 
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and select adjacent area B data in data set for fine-tuning the inversion 
mapping model in section A, Then the fine-tuned inversion mapping model 
is used to predict the B region. As can be seen from Fig. 9(a) inversion 
profile in the B area, TCN migration learning inversion results are in good 
agreement with logging impedance curves [Figs. 9(b) and 9(c)]. Therefore, 
this method has certain application value to seismic impedance inversion of 
a few labeled samples. 
 
 

 
         (a)               (b) 
  
                                

 
         (c)               (d) 
 
 

 
         (e)               (f ) 
 
Fig. 8. Inversion results of the Overthrust model. (a) Inversion mapping model prediction 
inversion profile. (b) Inversion mapping model prediction inversion error. (c) TCN direct 
inversion profile (d) TCN direct inversion error. (e) TCN transfer learning inversion 
profile. (f ) TCN transfer learning inversion error. 
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(a)        

(b) 
 

(c) 
 

Fig. 9.  Actual data.  (a)  Seismic profile.  (b)  TCN transfer learning inversion profile.  
(c) TCN direct inversion profile. 
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CONCLUSION 

 
The impedance inversion method of TCN transfer learning is tested in 

two different models and data with similar seismic reflection characteristics 
in adjacent areas. The results show that: the transfer learning of seismic 
impedance inversion method to get better inversion results of the evaluation 
index, the Pearson coefficient, decision coefficient is higher, the 
convergence loss value is small, and the error which is compared with 
known information is small. Therefore, using a small amount of labeled data 
set can get a better generalization ability inversion mapping model, the 
evaluation is relatively reliable in terms of model data. Unfortunately, the 
evaluation reference information of the actual data inversion results is 
relatively weak, it can still be used as a potential inversion method for the 
target area with similar geological conditions in adjacent areas. However, 
the actual data are complicated, and there may not be a certain correlation 
between the data. Therefore, this method has certain application potential, 
and its universality needs to be further verified. More importantly, TCN 
transfer learning of the seismic impedance inversion focuses on the transfer 
learning of inversion mapping model. It is worth further studying how to 
avoid negative transfer learning when learning dataset features are updated 
iteratively to the model. 
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