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The data generation process is time-consuming since the finite 
difference method and the reverse time migration for each velocity model 
are required. To reduce the amount of computation, we set the size of the 
velocity model to 512 256. To improve the convergence of training and 
balance the differences in numerical values between the training data and the 
prediction data, we normalize the input migration images. Many factors can 
affect the performance of this proposed network, such as the learning rate, 
batch size, and training epoch. During the training process, data is 
transmitted to the network in batch form. For data with complex features and 
large sample differentiation, a larger batch size helps to find the descending 
direction of gradient more accurately and avoid falling into the local 
minimum. For the single feature recognition problem with obvious features, 
the smaller batch is generally adopted to obtain better convergence. During 
the training stage, the 2D migration images are fed into the neural network 
in batches with a batch size of 8. It means that for each batch of inputs, the 
whole neural network will perform complete error backpropagation and 
gradient calculation, which makes the network achieve better convergence 
with the same epoch. We use the Adam method (Kingma and Ba, 2014) to 
optimize the network parameters and set the learning rate to be 0.0001.  

 
We train the network with 100 epochs, and all the 2475 training 

migration images are processed at each epoch. Fig. 7 shows the	convergence 
curves of the training and validation data sets, where the training loss 
gradually decreases from 0.0038 to 0.0035, and the validation loss gradually 
decreases from 0.00363 to 0.00354. As shown in Fig. 7, the error of the 
training data set has been decreasing, while the error of the validation data 
set has not decreased since the 38 epoch, which is reasonable because at 38 
epoch,  the network trained with 2475 training samples has achieved the best 

 
Fig. 7. The training and validation loss decrease with epochs. 
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set has not decreased since the 38 epoch, which is reasonable because at 38 
epoch, the network trained with 2475 training samples has achieved the best 
effect on the 275 validation samples, and the continuous training may lead to 
overfitting. We train the network with 100 epochs, and all the 2475 training 
migration images are processed at each epoch. Fig. 7 shows the	convergence 
curves of the training and validation data sets, where the training loss 
gradually decreases from 0.0038 to 0.0035, and the validation loss gradually 
decreases from 0.00363 to 0.00354. As shown in Fig. 7, the error of the 
training data set has been decreasing, while the error of the validation data 
set has not decreased since the 38 epoch, which is reasonable because at 38 
epoch, the network trained with 2475 training samples has achieved the best 
effect on the 275 validation samples, and the continuous training may lead to 
overfitting. 
 

 

NUMERICAL EXPERIMENTS AND RESULTS 
 

In this section, we first present one synthetic test on the testing data 
set. Then we discuss the sensitivity of the proposed method to imaging 
quality and wavelet frequency. 

  
 

Prediction for the testing data set 
 

To evaluate the detection performance of our proposed network, we 
first test it with the migration images generated with seismic data in the 
absence of noise. The test samples are not included in the training data set 
and are unknown during the prediction process. Fig. 8a and Fig. 8b show the 
original velocity model, in which the colored squares denote the karst caves 
with different scales and different velocities. Fig. 8c and Fig. 8d present the 
migration imaging resultsgenerated from noise free seismic data. Fig. 8e and 
Fig. 8f are the overlaid images consisting of the predicted karst caves of the 
trained neural network (red spots) and the migration image (Fig. 8c and Fig. 
8d). The prediction results show that when there is noise free, the cavities 
predicted by our network are in good agreement with the true karst caves in 
both the locations and scales. The trained network can not only accurately 
identify the karst caves with obvious beadlike diffraction phenomenon, but 
also identify the karst caves with weak deep energy and indistinct wave field 
response characteristics satisfactorily. For the image results of the karst 
caves at the edge of the model, which show the characteristics of inclined 
beadlike diffractions, the network can also make accurate recognition. As 
shown in Fig. 8c, the prediction results of the karst caves distributed around 
the model tend to remain inclined. Due to the full-receiving observation 
system, the migration imaging result with the karst cave located at the edge 
of the model shows slanted beadlike diffraction. For the conventional 
vertical distribution of beadlike diffraction characteristics, the neural 



	 491 

network can identify and distinguish the karst caves accurately. The 
advantage of the neural network over manual recognition is that it can not 
only identify the karst caves accurately but also predict the locations and the 
scales of the karst caves with high accuracy. The loss function is calculated 
pixel by pixel and is affected by the accuracy and precision of karst cave 
identification. Once the training stage is completed, the prediction results 
will gradually converge to the true locations of the karst caves. Therefore, 
the trained neural network can not only identify karst caves but also describe 
their locations accurately. 
 

 
 
Fig. 8. The prediction results on the testing data set. (a) The velocity model with karst 
caves based on the section of the BP 2.5D model. (b) The velocity model with karst caves 
based on the section of the Marmousi model. (c-d) The corresponding migration image of 
(a-b). (d-f) The overlaid imageconsists of the predicted karst caves of the trained neural 
network (red spots) and migration image (c-d). 
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Sensitivity tests on the imaging quality and wavelet frequency 
 

We further test the influence of migration noise on the predictions. 
We apply the trained network to the new testing data generated with the 
same process as the training data generation. Note that the migration images 
of the training data set are generated from shot records with random noise. 
Fig. 9a and Fig. 9b are the same velocity models as in Fig. 8a and Fig. 8b. 
 

 
Fig. 9. Sensitivity test on the noisy migration images. The symbols are the same as Fig. 8. 

 
Fig. 9c and Fig. 9d are the imaging results migrated from seismic data 

in the presence of random noise. The migration noise is obvious and is close 
to the imaging noise in the field data. We make predictions directly with the 
trained network, the prediction results are shown as an overlaid image in Fig. 
9e and Fig. 9f. The prediction results indicate that our trained network can 
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be well applied to the imaging results with migration noise, and predict karst 
caves with high accuracy in locations and scales. For the migration noise 
similar to the characteristics of beadlike diffractions, the neural network 
does not mistake them as karst caves.  This is reasonable since the migration 
images in the training data set are generated from shot records with random 
noise. During the training process, the network learns the difference between 
migration noise and characteristics of beadlike diffractions, making the 
trained network less susceptible to noise.  
 
 

 
 

 
Fig. 10. Sensitivity test on the testing data generated with a 15 Hz Ricker wavelet. The 
symbols are the same as in Fig. 8. 
 

 

Considering that the frequencies of different seismic data can be 
different from each other, we test our network with migration images of 
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different frequencies to study its sensitivity to wavelet frequency. We 
generate the new noise free testing data with a 15 Hz Ricker wavelet and the 
other parameters are the same as those used in the training data generation.  
The reverse time migration results in Fig. 10c  and  Fig. 10d show that due 
to the decrease of frequency, the resolution of imaging results decreases 
significantly  and the seismic events become more blurred.	 	Fig. 10e  and  
Fig. 10f present the prediction results overlaid with the corresponding 
migration images. It shows that the network can only recognize the karst 
caves with obvious beadlike diffraction, and the detection accuracy is 
reduced compared with the prediction results with a Ricker wavelet of 30Hz 
in Fig. 8e and Fig. 8f. For the beadlike diffraction with weak energy and less 
obvious characteristics, the trained network can not recognize it as a karst 
cave well. Those with very weak energy cannot be identified by the neural 
network or mistakenly identified as karst caves. Though the overall imaging 
resolution decreases significantly, our trained model can make accurate 
predictions from the obvious beadlike diffraction energy. This is very 
important for practical applications because the karst cave velocity in field 
data is generally different from the surrounding rock velocity, which shows 
obvious beadlike diffraction characteristics on the imaging profile. 
 

 
Sensitivity tests on inaccurate migration velocity 
 
            We further study the detection performance of the trained network on 
the migration images with incorrect migration velocity. We apply the trained 
network to imaging results with different migration velocity errors. Fig. 11a, 
Fig. 11c, and Fig. 11e are the migration images with migration velocity 
errors of 0.5%, 1%, and 2%, respectively. Fig. 11b, Fig. 11d, and Fig. 11f 
are the corresponding prediction results overlaid with migration images. 
Reverse time migration is sensitive to the accuracy of initial velocity, even a 
small migration velocity error may lead to inaccurate imaging position of the 
reflector and ono-convergence of energy for small-scale structure in imaging 
results. However, the trained network shows satisfactory performance in the 
case of inaccurate migration velocity. Some karst caves with weak imaging 
energy cannot be identified by the neural network due to the migration 
velocity errors. For most caves with a large difference in velocity from the 
surrounding rock, the trained network can still identify them even though 
their diffraction characteristics are also different from normal. 
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Fig. 11. (a), (c), (e)	are the imaging results with migration velocity errors of 0.5%, 1%, 
and 2%, respectively. (b), (d), (f) are the corresponding prediction results overlaid with 
migration images. 
 

 
Prediction on the physical simulated dataset 
 

To test the applicability of our method in real data, we apply the 
trained model to a set of physical simulation data. This physical model 
simulates the ancient river channels and the caves of different scales and 
depths. The model is made by three-dimensional casting. In areas where 
cave physics is simulated, small balls made of specific materials are used to 
simulate karst caves of different sizes. The proposed karst cave identification 
method is based on the assumption that the karst cave is a cube, and the 
spherical cave in this physical simulation data is suitable to verify the 
effectiveness of our method. Fig. 12a is the migration imaging section on the 



	 496 

crossline. It shows that there are three groups of caves placed in sequence 
from left to right. Fig. 12b is an overlaid display of Fig. 12a and the 
prediction results. The size and location of almost all karst caves are 
accurately predicted, and there are no mispredictions. Fig. 13a is the 
migration imaging profile on the inline. On the left side of the profile, there 
are a group of karst caves with a gradually deepening buried depth, and 
some sporadic karst caves are embedded in the cross-section of the ancient 
channel on the right side. Fig. 13b is an overlay display of the prediction 
results and the migration image. It indicates that the trained neural network 
can effectively and accurately predict the karst caves in this geological 
background. 
 

 
 
Fig. 12. The migration imaging section of physical simulated data on the crossline. (a) is 
the migration image. (b) is the overlaid display of (a) and the predicted results. 
 
 

 
 
Fig. 13. The migration imaging section of physical simulated data on the inline. The 
symbols are the same as in Fig. 12. 
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DISCUSSION 
 

Through a self-defined modeling method, we generate 55 velocity 
models with data augmentation and simulate karst caves of different sizes 
and velocities by adding diffraction points. The seismic records 
corresponding to these velocity models are generated by the finite difference 
method with a 30 Hz Ricker wavelet and a grid size of 10 m. Random noise 
is added to the shot records before performing the migration process. Then 
the image profiles are derived by reverse time migration. The network takes 
in the migration imaging profiles and outputs a 2D karst cave distribution 
probability map. The network shows high performance on the testing data 
set that are different from the training data set and validation data set. We 
further study the performance of the karst cave identification of the proposed 
network with the testing data with poor imaging qualities and different 
wavelet frequencies. For the data quality sensitivity test, the prediction 
results with a poor imaging quality are almost accurate as the prediction 
results with the noise free migration data. This is reasonable because the 
training data set includes the migration images generated from seismic data 
with random noise.	 The neural network learns the difference between 
migration noise and characteristics of beadlike diffractions during the 
training process, making it less susceptible to noise. For the input data with a 
lower wavelet frequency, the prediction accuracy of the trained network is 
reduced while most of the karst caves can be identified successfully. The 
smallest size of the karst cave in this grid size, which is 10 10 m, can also 
be correctly identified by the trained network. The main reason for not 
making the correct identification is that the diffraction features of some karst 
caves are quite different from those of the training data set, which can be 
solved by adding these diffraction features to the training data set and 
transfer learning. The sensitivity test of migration velocity demonstrates that 
the trained network is less susceptible to the initial velocity error. When the 
migration velocity error is large, most of the karst caves with obvious 
characteristics can still be identified. 

 
In practical seismic exploration, the moving acquisition system is 

usually adopted due to the large distribution of the work area, and the 
underground karst cave structure mainly presents a vertical beadlike 
diffraction structure. The training data set generated in this study uses the 
observation system of full reception on each shot, therefore, the proportion 
of edge diffraction features is relatively high in the imaging results, which 
may increase the misidentification rate of the network. Besides, the 
geometry of the actual underground karst caves is not always regular 
rectangular. These problems need to be optimized by designing a velocity 
model similar to the carbonate work area and by designing the karst caves 
with different geometric shapes to achieve automatic karst cave 
identification in  field data. 
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CONCLUSIONS 
 

The detection of karst caves in seismic imaging results generally 
depends on manually searching for beadlike diffraction features. In this 
study, we present a convolutional neural network to automatically identify 
karst caves from 2D migration images. In the data preparation stage, we add 
diffraction points to the velocity model to simulate the karst caves of 
different scales and velocities under different geological backgrounds. To 
improve the recognition effect and simulate the imaging characteristics of 
different types of karst caves more accurately, we generate the training data 
sets based on the finite difference method and reverse time migration. We 
add random noise in the forward simulation to make more realistic migration 
profiles. Considering that the binary karst cave image is highly imbalanced 
between ones (karst caves) and zeros (non-karst caves), we use a class-
balanced binary cross-entropy loss function to improve the convergence 
effect of training. The network trained with only 55 synthetic migration 
images can not only accurately identify the karst caves, but also determine 
the location and scale of the karst caves with high accuracy.  The synthetic 
tests with  a lower wavelet frequency, poor imaging qualities, and incorrect 
migration velocities demonstrate the capability and stability of our proposed 
network. Finally, the prediction results on the physical simulated data prove 
the practicability of our method. 
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